Status and Impact of Walnut Twig Beetle in Urban Forest, Orchard, and Native Forest Ecosystems
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Malosma Laurina (Nutt.) Nutt. Ex Abrams
I. SPECIES Malosma laurina (Nutt.) Nutt. ex Abrams NRCS CODE: Family: Anacardiaceae MALA6 Subfamily: Anacardiodeae Order: Sapindales Subclass: Rosidae Class: Magnoliopsida Immature fruits are green to red in mid-summer. Plants tend to flower in May to June. A. Subspecific taxa none B. Synonyms Rhus laurina Nutt. (USDA PLANTS 2017) C. Common name laurel sumac (McMinn 1939, Calflora 2016) There is only one species of Malosma. Phylogenetic analyses based on molecular data and a combination of D. Taxonomic relationships molecular and structural data place Malosma as distinct but related to both Toxicodendron and Rhus (Miller et al. 2001, Yi et al. 2004, Andrés-Hernández et al. 2014). E. Related taxa in region Rhus ovata and Rhus integrifolia may be the closest relatives and laurel sumac co-occurs with both species. Very early, Malosma was separated out of the genus Rhus in part because it has smaller fruits and lacks the following traits possessed by all species of Rhus : red-glandular hairs on the fruits and axis of the inflorescence, hairs on sepal margins, and glands on the leaf blades (Barkley 1937, Andrés-Hernández et al. 2014). F. Taxonomic issues none G. Other The name Malosma refers to the strong odor of the plant (Miller & Wilken 2017). The odor of the crushed leaves has been described as apple-like, but some think the smell is more like bitter almonds (Allen & Roberts 2013). The leaves are similar to those of the laurel tree and many others in family Lauraceae, hence the specific epithet "laurina." Montgomery & Cheo (1971) found time to ignition for dried leaf blades of laurel sumac to be intermediate and similar to scrub oak, Prunus ilicifolia, and Rhamnus crocea; faster than Heteromeles arbutifolia, Arctostaphylos densiflora, and Rhus ovata; and slower than Salvia mellifera. -
Annotated Check List and Host Index Arizona Wood
Annotated Check List and Host Index for Arizona Wood-Rotting Fungi Item Type text; Book Authors Gilbertson, R. L.; Martin, K. J.; Lindsey, J. P. Publisher College of Agriculture, University of Arizona (Tucson, AZ) Rights Copyright © Arizona Board of Regents. The University of Arizona. Download date 28/09/2021 02:18:59 Link to Item http://hdl.handle.net/10150/602154 Annotated Check List and Host Index for Arizona Wood - Rotting Fungi Technical Bulletin 209 Agricultural Experiment Station The University of Arizona Tucson AÏfJ\fOTA TED CHECK LI5T aid HOST INDEX ford ARIZONA WOOD- ROTTlNg FUNGI /. L. GILßERTSON K.T IyIARTiN Z J. P, LINDSEY3 PRDFE550I of PLANT PATHOLOgY 2GRADUATE ASSISTANT in I?ESEARCI-4 36FZADAATE A5 S /STANT'" TEACHING Z z l'9 FR5 1974- INTRODUCTION flora similar to that of the Gulf Coast and the southeastern United States is found. Here the major tree species include hardwoods such as Arizona is characterized by a wide variety of Arizona sycamore, Arizona black walnut, oaks, ecological zones from Sonoran Desert to alpine velvet ash, Fremont cottonwood, willows, and tundra. This environmental diversity has resulted mesquite. Some conifers, including Chihuahua pine, in a rich flora of woody plants in the state. De- Apache pine, pinyons, junipers, and Arizona cypress tailed accounts of the vegetation of Arizona have also occur in association with these hardwoods. appeared in a number of publications, including Arizona fungi typical of the southeastern flora those of Benson and Darrow (1954), Nichol (1952), include Fomitopsis ulmaria, Donkia pulcherrima, Kearney and Peebles (1969), Shreve and Wiggins Tyromyces palustris, Lopharia crassa, Inonotus (1964), Lowe (1972), and Hastings et al. -
Incidence, Dispersal, and Risk Assessment of Walnut Twig Beetle, Pityophthorus Juglandis, on Black Walnut in Appalachian Forests
University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Masters Theses Graduate School 8-2018 Incidence, Dispersal, and Risk Assessment of Walnut Twig Beetle, Pityophthorus juglandis, on Black Walnut in Appalachian Forests Philip Gerald Hensley University of Tennessee, [email protected] Follow this and additional works at: https://trace.tennessee.edu/utk_gradthes Recommended Citation Hensley, Philip Gerald, "Incidence, Dispersal, and Risk Assessment of Walnut Twig Beetle, Pityophthorus juglandis, on Black Walnut in Appalachian Forests. " Master's Thesis, University of Tennessee, 2018. https://trace.tennessee.edu/utk_gradthes/5177 This Thesis is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Masters Theses by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. To the Graduate Council: I am submitting herewith a thesis written by Philip Gerald Hensley entitled "Incidence, Dispersal, and Risk Assessment of Walnut Twig Beetle, Pityophthorus juglandis, on Black Walnut in Appalachian Forests." I have examined the final electronic copy of this thesis for form and content and recommend that it be accepted in partial fulfillment of the equirr ements for the degree of Master of Science, with a major in Entomology and Plant Pathology. Jerome F. Grant, Major Professor We have read this thesis and recommend its acceptance: Paris L. Lambdin, Gregory J. Wiggins, Mark T. Windham Accepted for the Council: Dixie L. Thompson Vice Provost and Dean of the Graduate School (Original signatures are on file with official studentecor r ds.) Incidence, Dispersal, and Risk Assessment of Walnut Twig Beetle, Pityophthorus juglandis, on Black Walnut in Appalachian Forests A Thesis Presented for the Master of Science Degree The University of Tennessee, Knoxville Philip Gerald Hensley August 2018 Copyright © 2018 by Philip Hensley All rights reserved. -
UNIVERSITY of CALIFORNIA Santa Barbara Ancient Plant Use and the Importance of Geophytes Among the Island Chumash of Santa Cruz
UNIVERSITY OF CALIFORNIA Santa Barbara Ancient Plant Use and the Importance of Geophytes among the Island Chumash of Santa Cruz Island, California A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Anthropology by Kristina Marie Gill Committee in charge: Professor Michael A. Glassow, Chair Professor Michael A. Jochim Professor Amber M. VanDerwarker Professor Lynn H. Gamble September 2015 The dissertation of Kristina Marie Gill is approved. __________________________________________ Michael A. Jochim __________________________________________ Amber M. VanDerwarker __________________________________________ Lynn H. Gamble __________________________________________ Michael A. Glassow, Committee Chair July 2015 Ancient Plant Use and the Importance of Geophytes among the Island Chumash of Santa Cruz Island, California Copyright © 2015 By Kristina Marie Gill iii DEDICATION This dissertation is dedicated to my Family, Mike Glassow, and the Chumash People. iv ACKNOWLEDGEMENTS I am indebted to many people who have provided guidance, encouragement, and support in my career as an archaeologist, and especially through my undergraduate and graduate studies. For those of whom I am unable to personally thank here, know that I deeply appreciate your support. First and foremost, I want to thank my chair Michael Glassow for his patience, enthusiasm, and encouragement during all aspects of this daunting project. I am also truly grateful to have had the opportunity to know, learn from, and work with my other committee members, Mike Jochim, Amber VanDerwarker, and Lynn Gamble. I cherish my various field experiences with them all on the Channel Islands and especially in southern Germany with Mike Jochim, whose worldly perspective I value deeply. I also thank Terry Jones, who provided me many undergraduate opportunities in California archaeology and encouraged me to attend a field school on San Clemente Island with Mark Raab and Andy Yatsko, an experience that left me captivated with the islands and their history. -
Thousand Cankers Disease
Species Brief 5.6 What Is in Your Firewood? Thousand Cankers Disease Pest and Target Species Identification and Symptoms Thousand cankers disease (TCD) is caused The walnut twig beetle is approximately one- by the interaction between the walnut twig sixteenth of an inch long, and yellowish brown beetle, Pityophthorus juglandis (Coleoptera: to dark brown in color (Figure 1). A black walnut Curculionidae: Scolytinae), and a fungus, tree can be infected with TCD for many years Geosmithia morbida. The twig beetle is the only before showing symptoms. Not easily detected, known vector of this fungus, which can attack this insect bores into the host tree, creating the eastern species of the black walnut. The galleries (tunnel-like paths) underneath the black walnut has little to no resistance to the bark (Figure 2). The beetle carries a harmful disease. fungus on its body that spreads, causing can- kers to form in these galleries (Figure 3). The cankers expand and combine to girdle infected Range branches, disrupting the flow of water and The walnut twig beetle is native to the western nutrients. The leaves will yellow, wilt rap- United States and Mexico. Geosmithia morbida idly, and turn brown. Stem dieback or branch is also believed to be native to southwestern mortality occurs in the crown. Numerous tiny North America. This insect and fungus com- entrance and exit holes created by adult beetles plex was first identified east of the Mississippi are noticeable on dead and dying branches. Tree River in Tennessee in 2010. By the end of 2011 it mortality typically occurs approximately three had been found in Virginia and Pennsylvania. -
Juglans Californica, Southern California Black Walnut
The IUCN Red List of Threatened Species™ ISSN 2307-8235 (online) IUCN 2008: T35154A9915361 Juglans californica, Southern California Black Walnut Assessment by: World Conservation Monitoring Centre View on www.iucnredlist.org Citation: World Conservation Monitoring Centre. 1998. Juglans californica. The IUCN Red List of Threatened Species 1998: e.T35154A9915361. http://dx.doi.org/10.2305/IUCN.UK.1998.RLTS.T35154A9915361.en Copyright: © 2015 International Union for Conservation of Nature and Natural Resources Reproduction of this publication for educational or other non-commercial purposes is authorized without prior written permission from the copyright holder provided the source is fully acknowledged. Reproduction of this publication for resale, reposting or other commercial purposes is prohibited without prior written permission from the copyright holder. For further details see Terms of Use. The IUCN Red List of Threatened Species™ is produced and managed by the IUCN Global Species Programme, the IUCN Species Survival Commission (SSC) and The IUCN Red List Partnership. The IUCN Red List Partners are: BirdLife International; Botanic Gardens Conservation International; Conservation International; Microsoft; NatureServe; Royal Botanic Gardens, Kew; Sapienza University of Rome; Texas A&M University; Wildscreen; and Zoological Society of London. If you see any errors or have any questions or suggestions on what is shown in this document, please provide us with feedback so that we can correct or extend the information provided. THE IUCN RED -
(Coleoptera) of Peru Miguel A
University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Center for Systematic Entomology, Gainesville, Insecta Mundi Florida 2-29-2012 Preliminary checklist of the Cerambycidae, Disteniidae, and Vesperidae (Coleoptera) of Peru Miguel A. Monné Universidade Federal do Rio de Janeiro, [email protected] Eugenio H. Nearns University of New Mexico, [email protected] Sarah C. Carbonel Carril Universidad Nacional Mayor de San Marcos, Peru, [email protected] Ian P. Swift California State Collection of Arthropods, [email protected] Marcela L. Monné Universidade Federal do Rio de Janeiro, [email protected] Follow this and additional works at: http://digitalcommons.unl.edu/insectamundi Part of the Entomology Commons Monné, Miguel A.; Nearns, Eugenio H.; Carbonel Carril, Sarah C.; Swift, Ian P.; and Monné, Marcela L., "Preliminary checklist of the Cerambycidae, Disteniidae, and Vesperidae (Coleoptera) of Peru" (2012). Insecta Mundi. Paper 717. http://digitalcommons.unl.edu/insectamundi/717 This Article is brought to you for free and open access by the Center for Systematic Entomology, Gainesville, Florida at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Insecta Mundi by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. INSECTA MUNDI A Journal of World Insect Systematics 0213 Preliminary checklist of the Cerambycidae, Disteniidae, and Vesperidae (Coleoptera) of Peru Miguel A. Monné Museu Nacional Universidade Federal do Rio de Janeiro Quinta da Boa Vista São Cristóvão, 20940-040 Rio de Janeiro, RJ, Brazil Eugenio H. Nearns Department of Biology Museum of Southwestern Biology University of New Mexico Albuquerque, NM 87131-0001, USA Sarah C. Carbonel Carril Departamento de Entomología Museo de Historia Natural Universidad Nacional Mayor de San Marcos Avenida Arenales 1256, Lima, Peru Ian P. -
Vascular Plant and Vertebrate Inventory of Fort Bowie National Historic Site Vascular Plant and Vertebrate Inventory of Fort Bowie National Historic Site
Powell, Schmidt, Halvorson In Cooperation with the University of Arizona, School of Natural Resources Vascular Plant and Vertebrate Inventory of Fort Bowie National Historic Site Vascular Plant and Vertebrate Inventory of Fort Bowie National Historic Site Plant and Vertebrate Vascular U.S. Geological Survey Southwest Biological Science Center 2255 N. Gemini Drive Flagstaff, AZ 86001 Open-File Report 2005-1167 Southwest Biological Science Center Open-File Report 2005-1167 February 2007 U.S. Department of the Interior U.S. Geological Survey National Park Service In cooperation with the University of Arizona, School of Natural Resources Vascular Plant and Vertebrate Inventory of Fort Bowie National Historic Site By Brian F. Powell, Cecilia A. Schmidt , and William L. Halvorson Open-File Report 2005-1167 December 2006 USGS Southwest Biological Science Center Sonoran Desert Research Station University of Arizona U.S. Department of the Interior School of Natural Resources U.S. Geological Survey 125 Biological Sciences East National Park Service Tucson, Arizona 85721 U.S. Department of the Interior DIRK KEMPTHORNE, Secretary U.S. Geological Survey Mark Myers, Director U.S. Geological Survey, Reston, Virginia: 2006 For product and ordering information: World Wide Web: http://www.usgs.gov/pubprod Telephone: 1-888-ASK-USGS For more information on the USGS-the Federal source for science about the Earth, its natural and living resources, natural hazards, and the environment: World Wide Web:http://www.usgs.gov Telephone: 1-888-ASK-USGS Suggested Citation Powell, B. F, C. A. Schmidt, and W. L. Halvorson. 2006. Vascular Plant and Vertebrate Inventory of Fort Bowie National Historic Site. -
Heterodichogamy.Pdf
Research Update TRENDS in Ecology & Evolution Vol.16 No.11 November 2001 595 How common is heterodichogamy? Susanne S. Renner The sexual systems of plants usually Heterodichogamy differs from normal (Zingiberales). These figures probably depend on the exact spatial distribution of dichogamy, the temporal separation of underestimate the frequency of the gamete-producing structures. Less well male and female function in flowers, in heterodichogamy. First, the phenomenon known is how the exact timing of male and that it involves two genetic morphs that is discovered only if flower behavior is female function might influence plant occur at a 1:1 ratio. The phenomenon was studied in several individuals and in mating. New papers by Li et al. on a group discovered in walnuts and hazelnuts5,6 natural populations. Differential of tropical gingers describe differential (the latter ending a series of Letters to movements and maturation of petals, maturing of male and female structures, the Editor about hazel flowering that styles, stigmas and stamens become such that half the individuals of a began in Nature in 1870), but has gone invisible in dried herbarium material, population are in the female stage when almost unnoticed7. Indeed, its recent and planted populations deriving from the other half is in the male stage. This discovery in Alpinia was greeted as a vegetatively propagated material no new case of heterodichogamy is unique new mechanism, differing ‘from other longer reflect natural morph ratios. The in involving reciprocal movement of the passive outbreeding devices, such as discovery of heterodichogamy thus styles in the two temporal morphs. dichogamy…and heterostyly in that it depends on field observations. -
V. Environmental Impact Analysis C. Biological Resources
V. ENVIRONMENTAL IMPACT ANALYSIS C. BIOLOGICAL RESOURCES INTRODUCTION A Biological Resources Evaluation for the Proposed Project was prepared by TeraCor Resource Management in November 2003 to analyze the potential impacts on biological resources associated with the Proposed Project. A summary of the Biological Resources Evaluation with respect to potential impacts on biological resources, and as reviewed and revised for consistency with the City of Malibu LCP1, is set forth below. The Biological Resources Evaluation, which is incorporated herein by this reference, is included in its entirety as Appendix D to this Draft Final EIR. A Technical Memorandum amending the Biological Resources Evaluation prepared by Teracor Resource Management was written on 27 March 2007 to clarify and evaluate three issues: 1) to confirm the status of biological resources present on site, 2) to confirm the presence or absence of wetlands, “waters of the U.S.” streambeds, or other water features present on-site, and, 3) determine if California black walnut (Juglans californica) trees are present on-site. The conclusions of the findings made by TeraCor Resource Management with respect to these three issues are set forth below. The Technical Memorandum, which is incorporated herein by reference, is provided in Appendix D-1, Biological Assessment – Verification of Conditions. The purpose of this evaluation is to provide an understanding of the biological resources present within the Project Site, as determined from field reconnaissance and available scientific literature. This biological evaluation inventories floral and faunal resources detected on or near the Project Site, and predicts faunal resources determined likely to be present based on habitat conditions, known species distribution, and field observations. -
Riparian Plants in the Southwestern United States
Phenology and Stand Composition of Woody Riparian Plants in the Southwestern United States Item Type Article Authors Brock, John H. Publisher University of Arizona (Tucson, AZ) Journal Desert Plants Rights Copyright © Arizona Board of Regents. The University of Arizona. Download date 07/10/2021 05:55:16 Link to Item http://hdl.handle.net/10150/554241 Brock Riparian Plants 23 species were observed monthly (bimonthly in summer) at six Phenology and Stand sites in eastern Arizona and New Mexico. Phenologi- cal events were placed into eight categories for data collection. Stand composition data was collected from four randomly lo- Composition of Woody cated macroplots at each site in the summer of 1983. Weather data for the period of study was summarized for the region. Riparian Plants in the Four general phenology groups were identified: 1) spring flow- ering and fruit dispersal as characterized by Fremont cotton- Southwestern United wood (Populus fremontii) and Goodding willow (Salix gooddingii), 2) Spring flowering/autumn -winter fruit dispersal characterized by box elder (Acer negundo var. interius), netleaf States hackberry (Celtis reticulata), Arizona sycamore (Plantanus wrightii), and velvet ash (Fraxinuspennsylvanica ssp. velutina), 3) Spring flowering and late summer fruit dispersal demon- strated by Arizona walnut (Juglans major), and 4) Multidate flowering and fruit dispersal displayed by velvet mesquite (Prosopis velutina). Fremont cottonwood and Goodding wil- low dominated the sites, while netleaf hackberry, box elder, velvet -
Analysis of Phylogenetic Relationships in the Walnut Family Based on Internal Transcribed Spacer Sequences and Secondary Structures(ITS2)
Analysis of Phylogenetic Relationships in The Walnut Family Based on Internal Transcribed Spacer Sequences and Secondary Structures(ITS2) Zhongzhong Guo Tarim University Qiang Jin Tarim University Zhenkun Zhao Tarim University Wenjun Yu Tarim University Gen Li Tarim University Yunjiang Cheng Tarim University Cuiyun Wu Tarim University rui Zhang ( [email protected] ) Tarim University https://orcid.org/0000-0002-4360-5179 Research Article Keywords: Base sequence, Evolution, Juglandaceae, Ribosomal spacer, Secondary structure Posted Date: May 13th, 2021 DOI: https://doi.org/10.21203/rs.3.rs-501634/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Page 1/23 Abstract This study aims to investigate the phylogenetic relationships within the Juglandaceae family based on the Internal Transcribed Spacer's primary sequence and secondary structures (ITS2). Comparative analysis of 51 Juglandaceae species was performed across most of the dened seven genera. The results showed that the ITS2 secondary structure's folding pattern was highly conserved and congruent with the eukaryote model. Firstly, Neighbor-joining (N.J.) analysis recognized two subfamilies: Platycaryoideae and Engelhardioideae. The Platycaryoideae included the Platycaryeae (Platycarya+ (Carya+ Annamocarya)) and Juglandeae (Juglans-(Cyclocarya + Pterocarya)). The Engelhardioideae composed the (Engelhardia+Oreomunnea+Alfaroa)). The Rhoiptelea genus was generally regarded as an outgroup when inferring the phylogeny of Juglandaceae. However, it is clustered into the Juglandaceae family and showed a close relationship with the Platycaryoideae subfamily. Secondly, the folded 3-helices and 4-helices secondary structure of ITS2 were founded in the Juglandaceae family. Therefore, these ITS2 structures could be used as formal evidence to analyze Juglandaceae's phylogeny relationship.