A 2.5D Numerical Study on Open Water Hydrodynamic Performance of a Voith-Schneider Propeller

Total Page:16

File Type:pdf, Size:1020Kb

A 2.5D Numerical Study on Open Water Hydrodynamic Performance of a Voith-Schneider Propeller Mechanics & Industry 20, 617 (2019) Mechanics © AFM, EDP Sciences 2019 & https://doi.org/10.1051/meca/2019049 Industry Available online at: www.mechanics-industry.org REGULAR ARTICLE A 2.5D numerical study on open water hydrodynamic performance of a Voith-Schneider propeller Mohammad Bakhtiari and Hassan Ghassemi* Department of Maritime Engineering, Amirkabir University of Technology, Tehran, Iran Received: 15 September 2018 / Accepted: 20 September 2019 Abstract. Marine cycloidal propeller (MCP) is a special type of marine propulsors that provides high maneuverability for marine vessels. In a MCP, the propeller axis of rotation is perpendicular to the direction of thrust force. It consists of a number of lifting blade. Each blade rotates about the propeller axis and simultaneously pitches about its own axis. The magnitude and direction of thrust force can be adjusted by controlling the propeller pitch. Voith-Schneider propeller (VSP) is a low-pitch MCP with pure cycloidal blade motion allowing fast, accurate, and stepless control of thrust magnitude and direction. Generally, low-pitch cycloidal propellers are used in applications with low speed maneuvering requirements, such as tugboats, minesweepers, etc. In this study, a 2.5D numerical method based on unsteady RANS equations with SST k-v turbulent model was implemented to predict the open water hydrodynamic performance of a VSP for different propeller pitches and blade thicknesses. The numerical method was validated against the experimental data before applying to VSP. The results showed that maximum open water efficiency of a VSP is enhanced by increasing the propeller pitch. Furthermore, the effect of blade thickness on open water efficiency is different at various advance coefficients, so that the maximum efficiency produced by the VSP decreases with increasing blade thickness at different propeller pitches. Keywords: Voith-Schneider propeller / low-pitch / pure cycloidal motion / 2.5D numerical method / blade thickness effect 1 Introduction distinguishing features of a cycloidal propeller is that the axis of rotation is perpendicular to the thrust force, as Marine propulsion is an important engineering issue with a opposed to a screw propeller, in which the axis of rotation is long history. Until the 1970s, the conventional screw along the thrust force. Cycloidal propellers are also known propeller has shown a superior performance among the as vertical-axis propellers. A marine cycloidal propeller consists of a number of lifting blades fitted to a disc usually modes of marine propulsion. With the development of fl special purpose ship types in the last decades, a well- set ush with the ship hull. The disc revolves about the balanced compromise is demanded between the main vertical axis (propeller axis of rotation) while the blades requirements of ship propulsion, such as high efficiency, oscillate about their own individual axes through a minimum cavitation, noise and erosion, high maneuver- mechanical linkage system, as shown in Figure 1. In this ability and minimum vulnerability and low maintenance type of propulsor system, the propulsion and manoeuvring costs. Modern screw propellers have shown to be competi- units are combined together as a single unit. Therefore, no separate rudder is required to manoeuvre the ship. tive to the conventional screw propeller. Although screw fi propellers offer several advantages, such as mechanical So far, two con gurations have been studied and developed based on pitch propeller for this type of marine simplicity, they have some practical limitations in fi increasing overall hydrodynamic efficiency, such as the propellers. First con guration is a low-pitch propeller (designed for advance coefficient less than one, means limitations of aspect ratio due to cavitation at high tip l < speeds [1,2]. Cycloidal propellers are promising alternative 1) referred as cycloidal propellers, and second one is a high-pitch propeller (designed for l > 1) referred as concepts to screw propellers. The idea of cycloidal propeller l < l > dates back to the early 1870s. One of the important trochoidal propellers. Blade trajectories for 1 and 1 are shown in Figure 2. l is absolute advance coefficient of marine cycloidal propeller and defined as VA/Rv, where VA, v and R are advance velocity, angular velocity and * e-mail: [email protected] radius of the propeller, respectively. 2 M. Bakhtiari and H. Ghassemi: Mechanics & Industry 20, 617 (2019) Fig. 1. (a) Top view of a cycloidal propeller with 6 blades. (b) Ship with twin cycloidal propellers. Taniguchi’s method [8] for calculating the hydrodynamic performance of a cycloidal propeller with semi-elliptical blades [9]. In later years, improvements in performance of cycloidal propeller were presented by Sparenberg and James, [10–12]; Sparenberg optimized the blade pitch function of a single-blade propeller by minimizing kinetic energy in the wake of 1969, and James worked on Sparenberg’s optimization work with a more detailed model in 1971. Much later, in 1991, Brockett created a Fig. 2. Different blade trajectories of cycloidal propellers. computational model employing lifting line and actuator disk theories in an attempt to optimize the pitch function [13]. Van Manen and Van Terwisga expanded Brockett’s computational model to optimize the pitch function [14]. High-pitch propellers provide higher hydrodynamic In most experimental tests of marine cycloidal propel- efficiency than low-pitch propellers and permit high-speed ler, blades with small aspect ratios have been used leading operation. However, low-speed maneuvering requirements to poor agreement with theoretical models. Systematic have led to further development of the low-pitch series of these experiments were carried out by Nakonechny configuration. Voith-Schneider propeller is a well-known [15,16], Van Manen [17], Ficken [18], Bjarne [19], and Bose commercial application of a low-pitch cycloidal propeller and Lai [20]; Van Manen’s systematic tests showed lower optimized for high rotation speed and high thrust hydrodynamic efficiency for low-pitch propellers relative to production. It is used primarily for ships that have to high-pitch propellers. Furthermore, Van Manen demon- satisfy particularly demanding safety and manoeuvrability strated that Sparenberg’s pitch function is more efficient requirements. The VSP has very rapid and precise thrust than a cycloidal pitch function for multi-bladed propellers. variation according to Cartesian Coordinates and it makes More recently, using computational fluid dynamics the VSP an ideal propulsion system for efficient dynamic (CFD) to analyze marine cycloidal propeller have been positioning even in extremely rough weather conditions [3]. extended [21–25]. Extensive studies have been carried out Although the idea of cycloidal propeller was originated on Voith-Schneider propeller (VSP) as a low-pitch over a century ago, rigorous theoretical analyses and cycloidal marine propeller by Jurgens et al. In 2005, systematic experiments were performed much later. Jurgens et al. presented a numerical optimization of blade Kirsten was the first person who worked on a fixed low- steering curve for Voith-Schneider propeller by using CFD pitch cycloidal propeller in 1922 [4]. In 1928, Schneider method [21]. Various profiles of VSP blades have been improved Kirsten’s design by creating a variable low-pitch investigated in tests with single-bladed model and in device and commercialized his design under the name propulsion and cavitation tests with VWT model. The Voith-Schneider propeller (VSP) [5,6]. Henry provided a results of these tests have been presented at the survey of marine cycloidal propeller in 1959, which was a Hydrodynamic Symposium À Voith Schneider Propulsion foundation for subsequent theoretical analyses and sys- in 2006 [26]. In later years, Jurgens et al. investigated the tematic series of experiments [7]. Early theoretical models influence of the VSP on stern slamming conditions, the roll presented for analyzing marine cycloidal propeller made damping capabilities of the VSP and the effect of air simplifying assumptions, leading to inaccurate models [8]. ventilation. They used experimental and CFD methods Also, most theoretical models were developed in 2D, and compared the results of VSP with azimuth thruster. neglecting 3D effects. In 1961, Haberman and Harley used They demonstrated that the VSP decreases the impact of M. Bakhtiari and H. Ghassemi: Mechanics & Industry 20, 617 (2019) 3 Fig. 3. (a) Kinematics of a cycloidal propeller. (b) Schematic of a 6-bladed VSP. stern slamming pressure because of its vertical rotating Li and Dr are hydrodynamic forces of drag and lift axis, and can be used to reduce the roll motion of a vessel. producing thrust and side forces of Tb and Fb acting on one They also showed that VSP is less prone to ventilation than blade. VR is the resultant velocity of blade due to propeller azimuth thruster [23,24]. At the same year, Jurgens and advance and rotation. Heinke investigated cavitation behaviour of heavily loaded In a cycloidal propellers, blade pitch angle (b) can be VSP with different blade profiles under bollard pull considered as the second important parameter defining the condition [27]. kinematics of the propeller, since it ultimately dictates In the present study, the open water hydrodynamic kinematic angle of attack, and thus the resulting performance of a Voith-Schneider propeller (a low-pitch hydrodynamic loads on the propeller blade. marine cycloidal propeller with pure cycloidal
Recommended publications
  • A Study of the Twin Fin Concept for Cruise Ship Applications
    Centre for Naval Architecture A Study of the Twin Fin Concept for Cruise Ship Applications Frida Nyström [email protected] Master of Science Thesis KTH Stockholm, Sweden June 2015 Abstract The aim with this thesis is to investigate if the Twin Fin concept can be a beneficial propulsion system for large cruise ships, about 300 m long. The Twin Fin concept is a new propulsion system, launched in 2014 by Caterpillar Propulsion [1]. The concept is diesel-electric and has two fins, containing a gearbox and an electric motor, immersed in water [2]. Previous investigations have shown the concept to have several advantages compared to other propulsion systems . A seismic vessel, Polarcus, has been retrofitted with the Twin Fin concept and it has been proved to have both operating and cost benefits compared to its previous arrangement with azimuth thrusters [3]. Diesel-electric propulsion is common for cruise ships, which would make the Twin Fin concept a possible propulsion solution for them. It’s of interest to investigate if the concept can be as beneficial for large cruise ship as it has shown to be for other vessel types. To investigate this the whole concept is considered. A cruise ship hull and fins are modeled with computer-aided design (CAD) using CAESES/FRIENDSHIP- Framework (CAESES/FFW), starting building up a procedure for customization of fin design into ship layout. Tracking of the operation of similar cruise ships is performed with automatic identification system (AIS) in order to create an operational profile for the model cruise ship. A propeller is designed for the model cruise ship, using a Caterpillar Propulsion in-house software.
    [Show full text]
  • Veth Rudder Propellers Toturn Yourworld the Power
    VETH RUDDER PROPELLERS TO TURN YOUR WORLD YOUR TURN TO THE POWER POWER THE BY About Veth Propulsion Veth Propulsion, by Twin Disc, is a customer-oriented Dutch thruster manufacturer. A family-owned company, established in Papendrecht in the Netherlands in 1951, and international player which is leading in quality, service, innovation and sustainability. Veth Propulsion develops and produces various types of Your requirements are our starting point to entering into a Z-drives, including retractable thrusters, Hybrid Drives, Swing relationship. Due of the wide range of products, combined Outs and deck mounted units. You can find the Veth Rudder with the expertise of our staff and our innovative designs, you propeller everywhere, from inland marine to tug and offshore can always expect a total concept. vessels. The type of Z-drive that best suits your needs, depends on factors such as the type of vessel you have and the desired You can also choose to have the drive line delivered with your maneuverability. It revolves around what you consider to be rudder propeller or thruster. As a leading Scania and Sisu Diesel important! dealer, Veth Propulsion delivers new and remanufactured propulsion engines (variable speed) and generator engines You can expect a personal and down-to-earth approach and a (set and variable speed). reliable image and brand awareness in several marine markets. Your sailing profile and specific needs form the basis for our Relying on our expertise and decades of experience, we can bespoke solutions including rudder propellers, bow thrusters, give you advice on the most suitable solution and possibilities.
    [Show full text]
  • DYNAMIC POSITIONING CONFERENCE October 10-11, 2017
    Author’s Name Name of the Paper Session DYNAMIC POSITIONING CONFERENCE October 10-11, 2017 Thrusters Influence of Thruster Response Time on DP Capability by Time-Domain Simulations D. Jürgens, M. Palm Voith Turbo, Heidenheim, Germany D. Jürgens, M. Palm Influence of Thruster Response Time on DP Capability Abstract Due to their simplicity static approaches are a commonly used method of assessing the DP capability of offshore vessels. These static approaches are essentially based on a balance of forces and moments caused by environmental conditions, as well as the thruster forces. The ensuing DP plots usually come up with unrealistically high application limits regarding admissible environmental conditions for a given operation. This phenomenon is due to the fact that important influencing factors are being neglected. One example is the assumption that the vessel is at rest and another one is the fact that the responsiveness of thrusters is not considered. With the Voith-Schneider-Propeller an alternative propulsion system for DP applications is available. It differs from conventional azimuth thrusters primarily because of its faster thrust variation and thrust change over zero position. Since static approaches completely ignore this factor, this paper intends to quantify the influences of the response time of a thruster on the wind envelope with the help of time-domain DP simulations and the ensuing capability plots. For this purpose comprehensive simulations have been carried out for an offshore support vessel while varying the dynamic thruster characteristics. Relevant assessments show that the response time has a significant influence on the DP capability and thus the operational window.
    [Show full text]
  • Construction of a Hardware-In-The-Loop Simulator for Azipod Control System Testing
    Markus Nylund Construction of a hardware-in-the-loop simulator for Azipod control system testing Thesis submitted for examination for the degree of Master of Science in Technology. Espoo 03.08.2016 Thesis supervisor: Prof. Seppo Ovaska Thesis advisor: D.Sc. (Tech.) Juha Orivuori Aalto-universitetet, PL 11000, 00076 AALTO www.aalto.fi Sammandrag av diplomarbete Författare Markus T. V. Nylund Titel Construction of a hardware-in-the-loop simulator for Azipod control system testing Examensprogram Utbildningsprogrammet för elektronik och elektroteknik Huvud-/biämne Elektronik med tillämpningar Kod S3007 Övervakare Prof. Seppo Ovaska Handledare TkD Juha Orivuori Datum 03.08.2016 Sidantal 9+90 Språk engelska Sammandrag Syftet med detta diplomarbete är att konstruera en simulator för Azipod® roderpropellern. Azipod® är ett varumärke av en roderpropeller med en elmotor som driver propellern. Hela roderenheten är belägen utanför fartygets skrov och det är möjligt att rotera roderpropellern obegränsat runt sin axel. Unikt för roderpropellrar är att drivkraften kan göras fullständigt elektriskt samt att roderpropellern är en dragande propeller till skillnad från tryckande konventionella propellrar. Dessa egenskaper ökar på ett fartygs energieffektivitet. Målet med arbetet är att bygga en (Azipod®) roderpropellersimulator och en tillhörande styrenhet som liknar fartygs styrenheter. Fokus för arbetet ligger på propulsionsstyrenheten. Simulatorn skall fungera liknande som den kommersiella produkten, men med mindre hårdvara. Fartygs styrkonsolpaneler samt alla nödvändiga mätinstrument virtualiseras. Ett extra program skapas för att möjliggöra stimulans för systemet för de virtualiserade mätinstrumenten. Detta program körs från en godtycklig dator som är uppkopplad till simulator nätverket. Simulering av Azipod® roderpropellern utförs av två sammankopplade motorer. Den ena motorn representerar en Azipod® rodermotor och den andra motorn belastar propulsionsmotorn.
    [Show full text]
  • Optimal Thrust Allocation Methods for Dynamic Positioning of Ships
    Delft University of Technology Faculty of Electrical Engineering, Mathematics and Computer Science Delft Institute of Applied Mathematics Optimal Thrust Allocation Methods for Dynamic Positioning of Ships A thesis submitted to the Delft Institute of Applied Mathematics in partial fulfillment of the requirements for the degree MASTER OF SCIENCE in APPLIED MATHEMATICS by CHRISTIAAN DE WIT Delft, the Netherlands July 2009 Copyright © 2009 by Christiaan de Wit. All rights reserved. MSc THESIS APPLIED MATHEMATICS “Optimal Thrust Allocation Methods for Dynamic Positioning of Ships” CHRISTIAAN DE WIT Delft University of Technology Daily supervisor Responsible professor Dr. J.W. van der Woude Prof. dr. K.I. Aardal Other thesis committee members M. Gachet, Ingenieur ENSTA Dr. R.J. Fokkink July 2009 Delft, the Netherlands Optimal Thrust Allocation Methods for Dynamic Positioning of Ships Christiaan de Wit July 2009 Environment from Abstract The first Dynamic Positioning (DP) systems emerged in the 1960’s from the need for deep water drilling by the offshore oil and gas industry, as conventional mooring systems, like a jack-up barge or an anchored rig, can only be used in shallow waters. GustoMSC has been developing DP drill ships since the early 1970’s and it is still one of their core businesses. DP systems automatically control the position and heading of a ship subjected to environmental and external forces, using its own actuators. The thrust allocator of a DP system is responsible for the thrust distribution over the actuators of the ship. Apart from minimizing the power consumption an ideal thrust allocator can also take other aspects into account, such as forbidden/spoil zones and thruster relations.
    [Show full text]
  • Extending Uptimes for Tugs with the Voith Schneider Propeller (VSP) Case Study SHIPBUILDING & EQUIPMENT PROPULSION & MANOEUVRING TECHNOLOGY
    voith.com Extending uptimes for tugs with the Voith Schneider Propeller (VSP) Case study SHIPBUILDING & EQUIPMENT PROPULSION & MANOEUVRING TECHNOLOGY Extending uptime for tugs SEAKEEPING BEHAVIOUR Rolling movements are often the limiting factor for tug operations in waves. However, the Voith Schneider Propeller (VSP) with its fast and dynamic thrust adjustment, enables efficient active roll stabilisation and dynamic positioning (DP). This opens up new opportunities to increase the efficiency of tug operations, write Dr Dirk Jürgens and Michael Palm from Germany’s Voith GmbH. Tug rolling motions are often the limiting factor in offshore applications. While the waves counter LNG carriers from an optimal direction – from bow or stern – tugs often have to operate un- der the worst beam wave conditions. At a moderate significant wave height of Hs = 1.9m, roll angles of up to 26.7° were measured [5], with significant implica- tions for crew welfare and productivity. The VWT or RAVE Tug is a well- heberrechtlich untersagt. proven design and the Carrousel Rave Tug (CRT) [6] offers scope to deploy active Voith Roll Stabilization (VRS). As a re- sult, roll movements can be reduced con- siderably, by as much as 70% on tugs. The basis for the VRS is the fast response of the VSP [7], [8]. This article explains the effect of VRS using calculations, model tests and cus- tomer feedback as examples. The conclu- sion is that through the targeted use of Figure 1: Voith Water Tractor, Forte, equipped with two Voith Schneider Propellers (VSP36EC) VRS to reduce roll, the operating times and the electronic Voith Roll Stabilization (VRS) Source for all images and figures: Voith of offshore tugs can be significantly ex- ugs must now work in bigger waves because today’s larger vessels require Tthem to make line connections ear- lier, particularly in areas where consider- able waves build up [1].
    [Show full text]
  • A Methodology to Select the Electric Propulsion System for Platform Supply Vessels (PSV)
    CRISTIAN ANDRÉS MORALES VÁSQUEZ A methodology to select the electric propulsion system for Platform Supply Vessels (PSV) Dissertation submitted to Escola Politécnica da Universidade de São Paulo to obtain the degree of Master of Science in Engineering. São Paulo 2014 CRISTIAN ANDRÉS MORALES VÁSQUEZ A methodology to select the electric propulsion system for Platform Supply Vessels (PSV) Dissertation submitted to Escola Politécnica da Universidade de São Paulo to obtain the degree of Master of Science in Engineering. Concentration Area: Naval Architecture and Ocean Engineering. Advisor: Prof. Dr. Helio Mitio Morishita São Paulo 2014 Este exemplar foi revisado e corrigido em relação à versão original, sob responsabilidade única do autor e com a anuência de seu orientador. São Paulo, 27 de maio de 2014. Assinatura do autor ____________________________ Assinatura do orientador _______________________ Catalogação-na-publicação Morales Vasquez, Cristian Andres A methodology to select the electric propulsion system for Platform Supply Vessels / C.A. Morales Vasquez. – versão corr. -- São Paulo, 2014. 246 p. Dissertação (Mestrado) – Escola Politécnica da Universidade de São Paulo. Departamento de Engenharia Naval e Oceânica. 1.Propulsão 2.Navios I. Universidade de São Paulo. Escola Politécnica. Departamento de Engenharia Naval e Oceânica II.t. This work is especially dedicated to my parents, Tuli Vásquez and Andrés Morales. ACKNOWLEDGMENTS I would like to express my most sincere gratitude to my advisor, Prof. Dr. Helio Mitio Morishita, for giving me the opportunity to develop my Master’s dissertation with his help and guidance, for his teachings about naval architecture and ocean engineering, for his patience and for his excellent support. Thank you very much professor.
    [Show full text]
  • Hybrid Propulsion
    Rotterdam Mainport University of Applied Sciences - RMU Hybrid Propulsion Electrical Installations Group members: Arie Meerkerk Simon Zaalberg Nicky de Wit Wilco van Wijk Henk Kievit Group Principal: Mr. Voesenek Group Managers: Mr. Van kluijven Mrs. Toemen 1 Contents Preface: .................................................................................................................................................... 4 Introduction: ............................................................................................................................................ 5 1. What is hybrid propulsion, and what types of hybrid propulsion exist? ............................................ 6 1.1 Azimuth thrusters .................................................................................................................... 6 1.1.1 Azipod/ Azipull: ................................................................................................................ 6 1.2 Diesel-electrical ............................................................................................................................. 7 1.3 Gas-electric .................................................................................................................................... 7 2. On what types of ships would hybrid propulsion actually be useful? ................................................. 8 2.1 Ship types ...................................................................................................................................... 8
    [Show full text]
  • Marine Products and Systems
    MARINE PRODUCTS AND SYSTEMS kongsberg.com Our technologies, products and systems are continually improving. For the latest information please go to www.km.kongsberg.com All information is subject to change without notice. Content Introduction 03 Ship design 05 Propulsion systems 25 Diesel and gas engines 35 PROPULSORS • Azimuth thrusters 49 • Propellers 61 • Waterjets 67 • Tunnel thrusters 75 • Promas 81 • Podded propulsors 87 Reduction gears 97 STABILISATION AND MANOEUVRING • Stabilisers 101 • Steering gear 109 • Rudders 117 Deck machinery solutions 123 ELECTRICAL POWER AND AUTOMATION SYSTEMS • Electrical power systems 145 • Automation systems 163 Global service and support 171 02 We are determined to provide our customers with innovative and dependable marine systems that ensure optimal operation at sea. By utilising and integrating our technology, experience and competencies within design, deck machinery, propulsion, positioning, detection and automation we aim to give our customers the full picture - shaping the future of the maritime industry. Our industry expertise covers a fleet of more than 30,000 vessels. While we are the largest marine technology specialist organisation in the world, with the most extensive product and knowledge base, our focus continues to be on customers and the environment. Only by listening to you and predicting industry needs can we enable the transformation needed to put safety and sustainability first, while continuing to generate value for all stakeholders. The Full Picture consists of our product portfolios, world class support networks and more than 3500 expert staff located in 34 countries across the globe. We are shaping the maritime future with leading edge operational technology, solutions for big data and digital transformation, new electric and hybrid power systems and truly game-changing developments in remote operations and Maritime Autonomous Surface Ships (MASS).
    [Show full text]
  • Lloyd's Register – Written Evidence (ARC0048)
    Lloyd’s Register – Written evidence (ARC0048) 1. Summary The objectives of this submission of evidence to the Select Committee on the Arctic are: To offer supporting data and insights on transit and destination shipping in the Arctic and, in addition, the characteristics of the UK registered Arctic shipping fleet. To contribute evidence on the technological challenges for future Arctic shipping activities To contribute evidence on the regulatory framework that will govern Arctic shipping To contribute advice, and views, on Arctic shipping to support consideration of the “UK dimension” by the Select Committee Considering each objective in turn: Key points on supporting data and insights on transit and destination shipping in the Arctic: 1. Very small numbers of ships use Arctic transits for voyages between ocean basins (i.e. Pacific and Atlantic basins) as an alternative shipping route to transits through the Panama or Suez canal 2. Shipping in the Russian Arctic is likely to increase, but will be mainly export shipping for dedicated natural resources projects. Transit of commercial ships through the Russian Arctic is likely to occur during the summer season only 3. The UK registered ice-classed fleet is small, with 119 ice classed ships, and just 8 ships potentially suitable for transiting the Russian Northern Sea Route independently in an average summer season Figure 1.1 % of Ice Classed UK Fleet Figure 1.2 Ice Classes assigned to UK flagged ships 1 Key points on the technological challenges for future Arctic shipping activities: 1. Technological challenges remain for efficient Arctic shipping with a significant build and operating cost premium associated with current generation of Arctic capable ships 2.
    [Show full text]
  • A Procedure for the Dynamic Positioning Estimation in Initial Ship-Design
    A Procedure for the Dynamic Positioning Estimation in Initial Ship-Design Syed Marzan Ul Hasan Master Thesis presented in partial fulfillment of the requirements for the double degree: “Advanced Master in Naval Architecture” conferred by University of Liege "Master of Sciences in Applied Mechanics, specialization in Hydrodynamics, Energetics and Propulsion” conferred by Ecole Centrale de Nantes developed at University of Rostock, Germany in the framework of the “EMSHIP” Erasmus Mundus Master Course in “Integrated Advanced Ship Design” EMJMD 159652 – Grant Agreement 2015-1687 Supervisor: Dr. Robert Bronsart , University of Rostock, Germany Reviewer: Dr. Lionel Gentaz, École Centrale de Nantes, France Rostock, February 2018 P 2 Syed Marzan Ul Hasan (This page is intentionally left blank) Master Thesis developed at University of Rostock, Germany Declaration of Authorship I, …………………………………………………………………………………………….Syed Marzan Ul Hasan declare that this thesis and the work presented in it are my own and has been generated by me as the result of my own original research. ………………………………………………………………………………………………………… A Procedure for the Dynamic Positioning Estimation in Initial Ship-Design ………………………………………………………………………………………………………… I confirm that: 1. This work was done wholly or mainly while in candidature for a research degree at this University; 2. Where any part of this thesis has previously been submitted for a degree or any other qualification at this University or any other institution, this has been clearly stated; 3. Where I have consulted the published work of others, this is always clearly attributed; 4. Where I have quoted from the work of others, the source is always given. With the exception of such quotations, this thesis is entirely my own work; 5.
    [Show full text]
  • Comparative Investigation on Influence of the Positioning Time of Azimuth Thrusters on the Accuracy of DP
    Author’s Name Name of the Paper Session DYNAMIC POSITIONING CONFERENCE October 9-10, 2012 Thrusters Comparative Investigation on Influence of the Positioning Time of Azimuth Thrusters on the Accuracy of DP D. Jürgens, M. Palm, A. Brandner Voith Turbo Marine, Heidenheim, Germany D. Jürgens, M. Palm, A.Brandner, Voith Voith Schneider Propeller 1. Introduction The Voith Schneider Propeller (VSP) allows extremely fast thrust variation [1]. Contrary to all other types of azimuth thrusters (thrust changes accordingly to polar coordinates), the thrust is varied on the basis of X/Y logic. Fig. 1 shows both thruster types; the Voith Radial Propeller (VRP) is an azimuth thruster developed by Voith Turbo Marine. As a result, ships with VSP can be kept stable in dynamic positioning (DP) mode, while the rolling motion of the vessel can also be reduced. DP capabilities and good sea handling are very important for the offshore industry. Fig. 1 Voith Schneider Propeller (VSP) and Voith Azimuth Thruster (VRP) In 2003, Voith Turbo Schneider Propulsion started to carry out intensive research programs aimed at making the VSP available to the offshore industry as an efficient propulsion system. These R & D activities focused primarily on the development of the Voith Roll Stabilization (VRS), model tests and CFD calculations on the interaction between the ship's hull and the propulsor ( [2], [3] and [4]). The first VSP-driven platform supply vessel is the Edda Fram (Fig. 2.) of Ostensjö Rederi AS. In the meantime, the vessel has demonstrated the successful application of VSPs in offshore service in over 35 000 operating hours.
    [Show full text]