Construction of a Hardware-In-The-Loop Simulator for Azipod Control System Testing
Total Page:16
File Type:pdf, Size:1020Kb
Markus Nylund Construction of a hardware-in-the-loop simulator for Azipod control system testing Thesis submitted for examination for the degree of Master of Science in Technology. Espoo 03.08.2016 Thesis supervisor: Prof. Seppo Ovaska Thesis advisor: D.Sc. (Tech.) Juha Orivuori Aalto-universitetet, PL 11000, 00076 AALTO www.aalto.fi Sammandrag av diplomarbete Författare Markus T. V. Nylund Titel Construction of a hardware-in-the-loop simulator for Azipod control system testing Examensprogram Utbildningsprogrammet för elektronik och elektroteknik Huvud-/biämne Elektronik med tillämpningar Kod S3007 Övervakare Prof. Seppo Ovaska Handledare TkD Juha Orivuori Datum 03.08.2016 Sidantal 9+90 Språk engelska Sammandrag Syftet med detta diplomarbete är att konstruera en simulator för Azipod® roderpropellern. Azipod® är ett varumärke av en roderpropeller med en elmotor som driver propellern. Hela roderenheten är belägen utanför fartygets skrov och det är möjligt att rotera roderpropellern obegränsat runt sin axel. Unikt för roderpropellrar är att drivkraften kan göras fullständigt elektriskt samt att roderpropellern är en dragande propeller till skillnad från tryckande konventionella propellrar. Dessa egenskaper ökar på ett fartygs energieffektivitet. Målet med arbetet är att bygga en (Azipod®) roderpropellersimulator och en tillhörande styrenhet som liknar fartygs styrenheter. Fokus för arbetet ligger på propulsionsstyrenheten. Simulatorn skall fungera liknande som den kommersiella produkten, men med mindre hårdvara. Fartygs styrkonsolpaneler samt alla nödvändiga mätinstrument virtualiseras. Ett extra program skapas för att möjliggöra stimulans för systemet för de virtualiserade mätinstrumenten. Detta program körs från en godtycklig dator som är uppkopplad till simulator nätverket. Simulering av Azipod® roderpropellern utförs av två sammankopplade motorer. Den ena motorn representerar en Azipod® rodermotor och den andra motorn belastar propulsionsmotorn. Rodermotorns belastning är ickelinjär och väderförhållanden och sjögång inverkar starkt på motorns belastning. Rodermotorns belastning måste styras och kontrolleras för skapandet av varierande förhållanden. Från den skapade styrkonsolen med en kontrollspak styrs simulatorn. För att lyckas med detta måste de nuvarande styregenskaperna och -funktionerna granskas. I detta arbete genomgås allmänna fysikaliska faktorer som inverkar på drivkraften, samt redogörs för faktorerna för att kunna återskapa sunda förhållanden för simulatorn och rodermotorn. Nyckelord System integrering, hårdvara i loopen simulering, drivkraft simulator, marine, Azipod® roderpropeller Sammandrag Aalto University, P.O. BOX 11000, 00076 AALTO www.aalto.fi Abstract of master's thesis Author Markus T. V. Nylund Title of thesis Construction of a hardware-in-the-loop simulator for Azipod control system testing Degree programme Degree Programme in Electronics and Electrical Engineering Major/minor Electronics and Applications Code S3007 Thesis supervisor Prof. Seppo Ovaska Thesis advisor(s) D.Sc. (Tech.) Juha Orivuori Date 03.08.2016 Number of pages 9+90 Language English Abstract The purpose of this thesis is to construct an Azipod® azimuth thruster simulator from control point of view. Azipod® is a brand of an azimuth thruster with an electric motor that drives the propeller. The whole propulsion unit is located outside of the hull and the azimuth thruster has unlimited steering possibility. Unique to azimuth thrusters are that the propulsion can be achieved completely electrically and that the Azipod® is a pulling propeller unlike conventional propellers, which are pushing. These characteristics increase the energy efficiency of a ship. The objective of this thesis is to construct an Azipod® control simulator and a control console. The focus of work is on the propulsion part. The control of the simulator must function as the real product, but with less hardware. Ship control console panels and all necessary measuring devices are virtualized. An additional program is created to enable the input to the controller for the virtualized instruments and the program can be run from any computer. The simulator consists of two coupled motors. One motor is representing an Azipod® propulsion motor and the other motor is acting as the load for the propulsion motor. The load characteristics of the propulsion motor are nonlinear and environmental factors have a strong influence on the load of the propulsion motor. The load motor is controlled for creation of varying propulsion conditions. The propulsion simulator is operated from the created control console with a thrust lever and touch screen panels. To accomplish the construction of the simulator the current control characteristics and functions must be studied. In this thesis are the general physical factors studied that are effecting on the propulsion to recreate sound conditions for the simulator. Keywords System integration, hardware-in-the-loop simulation, propulsion simulator, marine, Azipod® propulsor Abstract iv Preface This thesis was carried out at ABB Marine Helsinki, Finland, and was a part of the Master of Science degree at Aalto University School of Electrical Engineering. First of all, I want to thank ABB for offering me this thesis. Also, I’m thankful for the opportunity to get in touch with the marine and shipbuilding industry at Mitsubishi Heavy Industries in Nagasaki, Japan before starting on my thesis. It was a unique experience, giving me an overview of the entity and helped me to put everything into context while working on the thesis. I would like to thank my supervisor Seppo Ovaska for his insightful comments and support for the thesis. I would like to thank my advisor and my superior Juha Orivuori for his support, for starting this project and that he has taken the time to read, to correct and to give feedback on this thesis despite his busy schedule. I would also like to thank my colleagues for their assistance in various troubleshooting. Last, but not least, I want to thank my partner Jenna for supporting me and listening to my troubles. In Espoo, 3rd August 2016 Markus Nylund v Contents Sammandrag ...................................................................................................................... ii Abstract ............................................................................................................................ iii Preface .............................................................................................................................. iv Contents ............................................................................................................................ v Symbols ........................................................................................................................... vii Abbreviations ................................................................................................................. viii 1 Introduction .................................................................................................................. 1 1.1 Background ........................................................................................................... 1 1.2 Problem statement ................................................................................................. 1 1.3 Research objectives ............................................................................................... 1 1.4 Scope of the thesis ................................................................................................. 2 1.5 Structure of the thesis ............................................................................................ 2 2 Background .................................................................................................................. 3 2.1 Introduction to marine propulsion ......................................................................... 3 2.2 Azipod propulsion control system ......................................................................... 6 2.3 Propeller load theory ............................................................................................. 8 2.4 Hardware-in-the-loop simulation .......................................................................... 9 2.5 Specifications of the simulator ............................................................................ 11 3 Presentation of the control system .............................................................................. 15 3.1 Diesel-electric propulsion control system ........................................................... 15 3.2 Propulsion control system functionalities ........................................................... 17 3.2.1 Basic system settings and selection functions ........................................... 18 3.2.2 Starting and stopping the system .............................................................. 20 3.2.3 Reference chain function........................................................................... 22 3.2.4 Principal control functions ........................................................................ 22 3.2.5 Interlocking ............................................................................................... 22 3.2.6 Protective functions for torque limiting .................................................... 23 3.2.7 Protective functions for tripping ............................................................... 24 3.2.8 Alarm and evet handling functions ..........................................................