Lloyd's Register – Written Evidence (ARC0048)

Total Page:16

File Type:pdf, Size:1020Kb

Lloyd's Register – Written Evidence (ARC0048) Lloyd’s Register – Written evidence (ARC0048) 1. Summary The objectives of this submission of evidence to the Select Committee on the Arctic are: To offer supporting data and insights on transit and destination shipping in the Arctic and, in addition, the characteristics of the UK registered Arctic shipping fleet. To contribute evidence on the technological challenges for future Arctic shipping activities To contribute evidence on the regulatory framework that will govern Arctic shipping To contribute advice, and views, on Arctic shipping to support consideration of the “UK dimension” by the Select Committee Considering each objective in turn: Key points on supporting data and insights on transit and destination shipping in the Arctic: 1. Very small numbers of ships use Arctic transits for voyages between ocean basins (i.e. Pacific and Atlantic basins) as an alternative shipping route to transits through the Panama or Suez canal 2. Shipping in the Russian Arctic is likely to increase, but will be mainly export shipping for dedicated natural resources projects. Transit of commercial ships through the Russian Arctic is likely to occur during the summer season only 3. The UK registered ice-classed fleet is small, with 119 ice classed ships, and just 8 ships potentially suitable for transiting the Russian Northern Sea Route independently in an average summer season Figure 1.1 % of Ice Classed UK Fleet Figure 1.2 Ice Classes assigned to UK flagged ships 1 Key points on the technological challenges for future Arctic shipping activities: 1. Technological challenges remain for efficient Arctic shipping with a significant build and operating cost premium associated with current generation of Arctic capable ships 2. A combination of uncertainty of ice loads, and the development of much larger Arctic ship designs than hitherto, may lead to Arctic ships that are uneconomic in operation with reduced cargo carrying capacity and excessive hull structural steel-weights 3. Dedicated, or specialised, ships designed for year round ice-going navigation, even those enhanced only for seasonal navigation in light ice conditions, are uncompetitive in build and operation costs when compared with open water shipping Key points on the regulatory framework that will govern Arctic shipping: 1. Canada and the Russian Federation have requirements that regulate Arctic shipping including seasonal limitations on ship operations in Arctic sea areas under their jurisdiction, primarily based on the ice strengthening standard (ice class) assigned to the ship. 2. International Maritime Organisation (IMO) finalised mandatory standards (“Polar Code”) for Polar Shipping in 2014. The entry into force date will be 1st January 2017. The Polar Code is intended to supplement SOLAS1 and MARPOL2, and covers additional aspects of ship design and construction for international ships operating in the Polar Regions. 3. The Polar Code will require limitations to be recorded on the Polar Ship Certificate i.e. ice conditions and temperature limits of ship operations. Key points on Arctic shipping to support consideration of the “UK dimension”: 1. There may be direct economic and/or employment benefits to the UK from: a. An increase in Passenger Cruise Voyages in the Arctic b. Imports to the UK of natural resources from the Arctic 2. UK Arctic shipping experience and knowledge will be difficult to sustain if current low volumes of Arctic shipping prevail in future. A similar situation does, however, prevail for most other countries interested in the development of Arctic shipping. 3. Any initiative, as part of a “UK dimension” of Arctic shipping, may need to consider co- operation with other countries with interests in development of Arctic. 1 International Convention for the Safety of Life at Sea, 1974 as modified by the 1988 SOLAS Protocol 2 International Convention for the Prevention of Pollution from Ships, 1973/1978 2 2. Contents 1. Summary 2. Contents 3. Introduction 3.1 Objective 3.2 About Lloyd's Register 3.3 Lloyd's Register’s involvement with Arctic shipping 4. Arctic shipping 4.1 Arctic sea ice and “choke points”: transit shipping obstacles 4.2 Arctic shipping demands 4.3 Arctic shipping statistics 4.4 World and UK fleet statistics 5. Arctic Technology 5.1 Technological advancements to support expanded shipping activities 5.2 Technological challenges for future Arctic shipping activities 6. Arctic shipping regulations 6.1 Current international regulations 6.2 Polar Code 7. Arctic Shipping developments and the UK 7.1 Passenger Cruise Voyages 7.2 Export of Natural Resources 7.3 Summary of expected impact development of Arctic Shipping on UK interests 8. Concluding Remarks 9. References Appendix A: Lloyd's Register’s involvement with Arctic shipping Appendix B: Supporting Information – Arctic shipping statistics Appendix C: Supporting Information – Arctic technology Appendix D: Ice Class descriptions Appendix E: Arctic oil, gas and mineral major projects 3 3. Introduction 3.1 Objective The objectives of this submission of evidence are: To offer supporting data and insights on transit and destination shipping in the Arctic and, in addition, the characteristics of the UK registered Arctic shipping fleet To contribute evidence on the technological challenges for future Arctic shipping activities To contribute evidence on the regulatory framework that will govern Arctic shipping To contribute advice, and views, on Arctic shipping to support consideration of the “UK dimension” by the Select Committee 3.2 About Lloyd's Register Lloyd’s Register is a provider of marine classification services, helping ensure that internationally recognised safety and environmental standards are maintained at every stage of a ship's life. 3.3 Lloyd's Register’s involvement with Arctic Shipping Lloyd's Register publishes and maintains rules for design, construction and survey of ships, including specific rules for ships operating in ice (ice class ships) and ships intended to operate as icebreakers. Accumulated practical experience with ships designed, constructed and operated for ice navigation forms the basis of our commentary and evidence to The Select Committee on the Arctic. Further detail about Lloyd's Register’s involvement in Arctic Shipping is included in Appendix A. 4. Arctic Shipping 4.1 Arctic sea ice and “choke” points: transit shipping obstacles This section presents evidence of the environmental considerations (notably ice cover) relevant to Arctic shipping opportunities Recent measurements of the extent of Arctic sea ice, particularly the minimum extent in the summer have been used to suggest that the Arctic may soon become a viable transit route between the Atlantic and Pacific basins, and an alternative to the Panama and Suez canals. Figure 4.1 shows a plot of historical averages, including recent years, of the Arctic sea ice extent. The following points are highlighted: 2012 is the lowest ice extent on record, however 2014 data is closer to the 2000’s average Increase in variability of ice extent year-on-year The variability year-on-year is more significant in the summer time, in the winter there is less variability There is still significant ice coverage during the winter season Data on sea-ice extent is based on satellite observations that begin in 1979 4 Figure 4.1 Arctic Sea ice extents – historical averages and recent measurements3 With respect to the impact of the changing sea ice on shipping, the following observations are offered: The trend of less extent of ice in the summertime would suggest that the summer season is increasing for transit of open water ships (i.e. ships not specially designed to operate in ice). In 2013 the ice free season was approximately 40 days4 along the Russia Arctic transit routes The variability of the summer season will continue to making long-term planning difficult for transits using the Arctic as a commercial shipping route The consistent cover of ice in the winter will remain a hazard and block all but high specification (high ice class) ships transiting outside of the summer season Figure 4.2 shows three plots of sea ice extent for the 2014 season. The figure is intended to highlight the significant presence of ice during the mid-winter period. The middle plot in Figure 4.2 indicates the start of the “formal” summer shipping season on the Northern Sea Route. However significant ice remains on the route, effectively blocking entry and exit to the route for all but specialist ice class shipping. The right hand plot in Figure 4.2 shows the lowest ice extent for 2014 and shows open water for the Northern Sea Route, but with ice still keeping all but the shallow southern North West Passage route closed. Figure 4.2: Left hand plot: Mid-Winter (30 January) Middle plot: Start of Shipping Season (1 July) 3 http://www.ijis.iarc.uaf.edu/en/home/seaice_extent.htm 4 Based on an analysis of Arctic Sea-Ice Monitor satellite image data 5 Right hand plot: Lowest ice extent for 2014 (26 September) Figure 4.2 illustrates that the ice extent does not retreat uniformly from the shoreline of both the Northern Sea Route and North West Passage. In both sea areas there are also a number of shallow or constrained shipping channels that form “choke points” where, depending on the year, ice may remain longer than usual and prevent a passage. A number of the more prominent “choke points” where ice may seasonally prevent a passage from opening are indicated in Figure 4.3: The eastern end of the Northern Sea route is bounded by Novaya Zemlya, effectively providing two entrances, to the South through the Kara Gate or north of the island. Depending on ice conditions in the Kara Sea either one of these routes may be blocked, thus limiting transit of large vessels. Towards the Western end of the Northern Sea route the New Siberian Islands present a limited draft passage South (through the Sannikov Strait) or North of the Islands, where the draft is deeper.
Recommended publications
  • Northern Sea Route Cargo Flows and Infrastructure- Present State And
    Northern Sea Route Cargo Flows and Infrastructure – Present State and Future Potential By Claes Lykke Ragner FNI Report 13/2000 FRIDTJOF NANSENS INSTITUTT THE FRIDTJOF NANSEN INSTITUTE Tittel/Title Sider/Pages Northern Sea Route Cargo Flows and Infrastructure – Present 124 State and Future Potential Publikasjonstype/Publication Type Nummer/Number FNI Report 13/2000 Forfatter(e)/Author(s) ISBN Claes Lykke Ragner 82-7613-400-9 Program/Programme ISSN 0801-2431 Prosjekt/Project Sammendrag/Abstract The report assesses the Northern Sea Route’s commercial potential and economic importance, both as a transit route between Europe and Asia, and as an export route for oil, gas and other natural resources in the Russian Arctic. First, it conducts a survey of past and present Northern Sea Route (NSR) cargo flows. Then follow discussions of the route’s commercial potential as a transit route, as well as of its economic importance and relevance for each of the Russian Arctic regions. These discussions are summarized by estimates of what types and volumes of NSR cargoes that can realistically be expected in the period 2000-2015. This is then followed by a survey of the status quo of the NSR infrastructure (above all the ice-breakers, ice-class cargo vessels and ports), with estimates of its future capacity. Based on the estimated future NSR cargo potential, future NSR infrastructure requirements are calculated and compared with the estimated capacity in order to identify the main, future infrastructure bottlenecks for NSR operations. The information presented in the report is mainly compiled from data and research results that were published through the International Northern Sea Route Programme (INSROP) 1993-99, but considerable updates have been made using recent information, statistics and analyses from various sources.
    [Show full text]
  • Transits of the Northwest Passage to End of the 2019 Navigation Season Atlantic Ocean ↔ Arctic Ocean ↔ Pacific Ocean
    TRANSITS OF THE NORTHWEST PASSAGE TO END OF THE 2019 NAVIGATION SEASON ATLANTIC OCEAN ↔ ARCTIC OCEAN ↔ PACIFIC OCEAN R. K. Headland and colleagues 12 December 2019 Scott Polar Research Institute, University of Cambridge, Lensfield Road, Cambridge, United Kingdom, CB2 1ER. <[email protected]> The earliest traverse of the Northwest Passage was completed in 1853 but used sledges over the sea ice of the central part of Parry Channel. Subsequently the following 314 complete maritime transits of the Northwest Passage have been made to the end of the 2019 navigation season, before winter began and the passage froze. These transits proceed to or from the Atlantic Ocean (Labrador Sea) in or out of the eastern approaches to the Canadian Arctic archipelago (Lancaster Sound or Foxe Basin) then the western approaches (McClure Strait or Amundsen Gulf), across the Beaufort Sea and Chukchi Sea of the Arctic Ocean, through the Bering Strait, from or to the Bering Sea of the Pacific Ocean. The Arctic Circle is crossed near the beginning and the end of all transits except those to or from the central or northern coast of west Greenland. The routes and directions are indicated. Details of submarine transits are not included because only two have been reported (1960 USS Sea Dragon, Capt. George Peabody Steele, westbound on route 1 and 1962 USS Skate, Capt. Joseph Lawrence Skoog, eastbound on route 1). Seven routes have been used for transits of the Northwest Passage with some minor variations (for example through Pond Inlet and Navy Board Inlet) and two composite courses in summers when ice was minimal (transits 149 and 167).
    [Show full text]
  • A Study of the Twin Fin Concept for Cruise Ship Applications
    Centre for Naval Architecture A Study of the Twin Fin Concept for Cruise Ship Applications Frida Nyström [email protected] Master of Science Thesis KTH Stockholm, Sweden June 2015 Abstract The aim with this thesis is to investigate if the Twin Fin concept can be a beneficial propulsion system for large cruise ships, about 300 m long. The Twin Fin concept is a new propulsion system, launched in 2014 by Caterpillar Propulsion [1]. The concept is diesel-electric and has two fins, containing a gearbox and an electric motor, immersed in water [2]. Previous investigations have shown the concept to have several advantages compared to other propulsion systems . A seismic vessel, Polarcus, has been retrofitted with the Twin Fin concept and it has been proved to have both operating and cost benefits compared to its previous arrangement with azimuth thrusters [3]. Diesel-electric propulsion is common for cruise ships, which would make the Twin Fin concept a possible propulsion solution for them. It’s of interest to investigate if the concept can be as beneficial for large cruise ship as it has shown to be for other vessel types. To investigate this the whole concept is considered. A cruise ship hull and fins are modeled with computer-aided design (CAD) using CAESES/FRIENDSHIP- Framework (CAESES/FFW), starting building up a procedure for customization of fin design into ship layout. Tracking of the operation of similar cruise ships is performed with automatic identification system (AIS) in order to create an operational profile for the model cruise ship. A propeller is designed for the model cruise ship, using a Caterpillar Propulsion in-house software.
    [Show full text]
  • Veth Rudder Propellers Toturn Yourworld the Power
    VETH RUDDER PROPELLERS TO TURN YOUR WORLD YOUR TURN TO THE POWER POWER THE BY About Veth Propulsion Veth Propulsion, by Twin Disc, is a customer-oriented Dutch thruster manufacturer. A family-owned company, established in Papendrecht in the Netherlands in 1951, and international player which is leading in quality, service, innovation and sustainability. Veth Propulsion develops and produces various types of Your requirements are our starting point to entering into a Z-drives, including retractable thrusters, Hybrid Drives, Swing relationship. Due of the wide range of products, combined Outs and deck mounted units. You can find the Veth Rudder with the expertise of our staff and our innovative designs, you propeller everywhere, from inland marine to tug and offshore can always expect a total concept. vessels. The type of Z-drive that best suits your needs, depends on factors such as the type of vessel you have and the desired You can also choose to have the drive line delivered with your maneuverability. It revolves around what you consider to be rudder propeller or thruster. As a leading Scania and Sisu Diesel important! dealer, Veth Propulsion delivers new and remanufactured propulsion engines (variable speed) and generator engines You can expect a personal and down-to-earth approach and a (set and variable speed). reliable image and brand awareness in several marine markets. Your sailing profile and specific needs form the basis for our Relying on our expertise and decades of experience, we can bespoke solutions including rudder propellers, bow thrusters, give you advice on the most suitable solution and possibilities.
    [Show full text]
  • Arctic Marine Transport Workshop 28-30 September 2004
    Arctic Marine Transport Workshop 28-30 September 2004 Institute of the North • U.S. Arctic Research Commission • International Arctic Science Committee Arctic Ocean Marine Routes This map is a general portrayal of the major Arctic marine routes shown from the perspective of Bering Strait looking northward. The official Northern Sea Route encompasses all routes across the Russian Arctic coastal seas from Kara Gate (at the southern tip of Novaya Zemlya) to Bering Strait. The Northwest Passage is the name given to the marine routes between the Atlantic and Pacific oceans along the northern coast of North America that span the straits and sounds of the Canadian Arctic Archipelago. Three historic polar voyages in the Central Arctic Ocean are indicated: the first surface shop voyage to the North Pole by the Soviet nuclear icebreaker Arktika in August 1977; the tourist voyage of the Soviet nuclear icebreaker Sovetsky Soyuz across the Arctic Ocean in August 1991; and, the historic scientific (Arctic) transect by the polar icebreakers Polar Sea (U.S.) and Louis S. St-Laurent (Canada) during July and August 1994. Shown is the ice edge for 16 September 2004 (near the minimum extent of Arctic sea ice for 2004) as determined by satellite passive microwave sensors. Noted are ice-free coastal seas along the entire Russian Arctic and a large, ice-free area that extends 300 nautical miles north of the Alaskan coast. The ice edge is also shown to have retreated to a position north of Svalbard. The front cover shows the summer minimum extent of Arctic sea ice on 16 September 2002.
    [Show full text]
  • DYNAMIC POSITIONING CONFERENCE October 10-11, 2017
    Author’s Name Name of the Paper Session DYNAMIC POSITIONING CONFERENCE October 10-11, 2017 Thrusters Influence of Thruster Response Time on DP Capability by Time-Domain Simulations D. Jürgens, M. Palm Voith Turbo, Heidenheim, Germany D. Jürgens, M. Palm Influence of Thruster Response Time on DP Capability Abstract Due to their simplicity static approaches are a commonly used method of assessing the DP capability of offshore vessels. These static approaches are essentially based on a balance of forces and moments caused by environmental conditions, as well as the thruster forces. The ensuing DP plots usually come up with unrealistically high application limits regarding admissible environmental conditions for a given operation. This phenomenon is due to the fact that important influencing factors are being neglected. One example is the assumption that the vessel is at rest and another one is the fact that the responsiveness of thrusters is not considered. With the Voith-Schneider-Propeller an alternative propulsion system for DP applications is available. It differs from conventional azimuth thrusters primarily because of its faster thrust variation and thrust change over zero position. Since static approaches completely ignore this factor, this paper intends to quantify the influences of the response time of a thruster on the wind envelope with the help of time-domain DP simulations and the ensuing capability plots. For this purpose comprehensive simulations have been carried out for an offshore support vessel while varying the dynamic thruster characteristics. Relevant assessments show that the response time has a significant influence on the DP capability and thus the operational window.
    [Show full text]
  • Construction of a Hardware-In-The-Loop Simulator for Azipod Control System Testing
    Markus Nylund Construction of a hardware-in-the-loop simulator for Azipod control system testing Thesis submitted for examination for the degree of Master of Science in Technology. Espoo 03.08.2016 Thesis supervisor: Prof. Seppo Ovaska Thesis advisor: D.Sc. (Tech.) Juha Orivuori Aalto-universitetet, PL 11000, 00076 AALTO www.aalto.fi Sammandrag av diplomarbete Författare Markus T. V. Nylund Titel Construction of a hardware-in-the-loop simulator for Azipod control system testing Examensprogram Utbildningsprogrammet för elektronik och elektroteknik Huvud-/biämne Elektronik med tillämpningar Kod S3007 Övervakare Prof. Seppo Ovaska Handledare TkD Juha Orivuori Datum 03.08.2016 Sidantal 9+90 Språk engelska Sammandrag Syftet med detta diplomarbete är att konstruera en simulator för Azipod® roderpropellern. Azipod® är ett varumärke av en roderpropeller med en elmotor som driver propellern. Hela roderenheten är belägen utanför fartygets skrov och det är möjligt att rotera roderpropellern obegränsat runt sin axel. Unikt för roderpropellrar är att drivkraften kan göras fullständigt elektriskt samt att roderpropellern är en dragande propeller till skillnad från tryckande konventionella propellrar. Dessa egenskaper ökar på ett fartygs energieffektivitet. Målet med arbetet är att bygga en (Azipod®) roderpropellersimulator och en tillhörande styrenhet som liknar fartygs styrenheter. Fokus för arbetet ligger på propulsionsstyrenheten. Simulatorn skall fungera liknande som den kommersiella produkten, men med mindre hårdvara. Fartygs styrkonsolpaneler samt alla nödvändiga mätinstrument virtualiseras. Ett extra program skapas för att möjliggöra stimulans för systemet för de virtualiserade mätinstrumenten. Detta program körs från en godtycklig dator som är uppkopplad till simulator nätverket. Simulering av Azipod® roderpropellern utförs av två sammankopplade motorer. Den ena motorn representerar en Azipod® rodermotor och den andra motorn belastar propulsionsmotorn.
    [Show full text]
  • Optimal Thrust Allocation Methods for Dynamic Positioning of Ships
    Delft University of Technology Faculty of Electrical Engineering, Mathematics and Computer Science Delft Institute of Applied Mathematics Optimal Thrust Allocation Methods for Dynamic Positioning of Ships A thesis submitted to the Delft Institute of Applied Mathematics in partial fulfillment of the requirements for the degree MASTER OF SCIENCE in APPLIED MATHEMATICS by CHRISTIAAN DE WIT Delft, the Netherlands July 2009 Copyright © 2009 by Christiaan de Wit. All rights reserved. MSc THESIS APPLIED MATHEMATICS “Optimal Thrust Allocation Methods for Dynamic Positioning of Ships” CHRISTIAAN DE WIT Delft University of Technology Daily supervisor Responsible professor Dr. J.W. van der Woude Prof. dr. K.I. Aardal Other thesis committee members M. Gachet, Ingenieur ENSTA Dr. R.J. Fokkink July 2009 Delft, the Netherlands Optimal Thrust Allocation Methods for Dynamic Positioning of Ships Christiaan de Wit July 2009 Environment from Abstract The first Dynamic Positioning (DP) systems emerged in the 1960’s from the need for deep water drilling by the offshore oil and gas industry, as conventional mooring systems, like a jack-up barge or an anchored rig, can only be used in shallow waters. GustoMSC has been developing DP drill ships since the early 1970’s and it is still one of their core businesses. DP systems automatically control the position and heading of a ship subjected to environmental and external forces, using its own actuators. The thrust allocator of a DP system is responsible for the thrust distribution over the actuators of the ship. Apart from minimizing the power consumption an ideal thrust allocator can also take other aspects into account, such as forbidden/spoil zones and thruster relations.
    [Show full text]
  • Canada's Sovereignty Over the Northwest Passage
    Michigan Journal of International Law Volume 10 Issue 2 1989 Canada's Sovereignty Over the Northwest Passage Donat Pharand University of Ottawa Follow this and additional works at: https://repository.law.umich.edu/mjil Part of the International Law Commons, and the Law of the Sea Commons Recommended Citation Donat Pharand, Canada's Sovereignty Over the Northwest Passage, 10 MICH. J. INT'L L. 653 (1989). Available at: https://repository.law.umich.edu/mjil/vol10/iss2/10 This Article is brought to you for free and open access by the Michigan Journal of International Law at University of Michigan Law School Scholarship Repository. It has been accepted for inclusion in Michigan Journal of International Law by an authorized editor of University of Michigan Law School Scholarship Repository. For more information, please contact [email protected]. CANADA'S SOVEREIGNTY OVER THE NORTHWEST PASSAGE Donat Pharand* In 1968, when this writer published "Innocent Passage in the Arc- tic,"' Canada had yet to assert its sovereignty over the Northwest Pas- sage. It has since done so by establishing, in 1985, straight baselines around the whole of its Arctic Archipelago. In August of that year, the U. S. Coast Guard vessel PolarSea made a transit of the North- west Passage on its voyage from Thule, Greenland, to the Chukchi Sea (see Route 1 on Figure 1). Having been notified of the impending transit, Canada informed the United States that it considered all the waters of the Canadian Arctic Archipelago as historic internal waters and that a request for authorization to transit the Northwest Passage would be necessary.
    [Show full text]
  • The Problem of Propeller Design for High Ice Class Transportation Ships А.V
    Fifth International Symposium on Marine Propulsors smp’17, Espoo, Finland, June 2017 The problem of propeller design for high ice class transportation ships А.V. Pustoshny, G.K. Darchiev, I.G. Frolova. Krylov State Research Centre, St. Petersburg, Russia ABSTRACT Some of these problems were expected to be solved by Development of large-capacity merchant vessels of so-called DAS (double acting ship) concept invented in high ice classes for Arctic has raised a range of Finland. According to this concept the vessels challenges for propeller designers. Usual propeller equipped with electric podded propulsors should sail design approaches are often not applicable for high ice- bow-first in open water and stern-first in ice. However, class merchant vessels. from the Russian experience with 3 series of heavy- tonnage merchant DAS of different types it is seen that In particular, the requirements regarding vibration the concept evolves not exactly as it was initially levels related to propeller cavitation, which are envisaged by its inventors. In deviation from the traditionally specified for merchant ships, cannot be original declarations of inventors high ice class DAS directly implemented in case of propellers designed for are built without bow bulb to enable both bow- and operation in ice because general measures to reduce stern-first operation in ice, the vessels require cavitation like skew or tip unloading prove to be either additional strengthening of stern (according to not feasible or limited by the requirement to ensure presently discussed Lloyd’s opinion stern and safe propeller operation in ice conditions. The propulsor should be one ice class higher) and special measures against cavitation are also restricted by maneuvering tactics in ice.
    [Show full text]
  • Fuel and Economic Efficiency of an Ice-Going Vessel on the Northern Sea Route
    Janne Esa Fuel and economic efficiency of an ice-going vessel on the Northern Sea Route School of Engineering Thesis submitted for examination for the degree of Master of Science in Technology. Espoo 25.5.2015 Thesis supervisor: Professor Pentti Kujala Thesis advisor: Lauri Kuuliala, M.Sc. (Tech.) aalto university abstract of the school of engineering master’s thesis Author: Janne Esa Title: Fuel and economic efficiency of an ice-going vessel on the Northern Sea Route Date: 25.5.2015 Language: English Number of pages: 9+90 Department of Applied Mechanics Major: Marine Technology Code: K3005 Supervisor: Professor Pentti Kujala Advisor: Lauri Kuuliala, M.Sc. (Tech.) In this thesis fuel and economic efficiency of an ice-going vessel were studied. The study was carried out for a double acting ship (DAS) and an ice-bow vessel operating year-around on the Northern Sea Route (NSR). For comparison these efficiencies were investigated for an open water vessel operating on the Suez Canal route (SCR) and a vessel using the NSR during operable months, i.e., from July until December and rest of the year using the SCR. These are the months permitted by current NSR regulations. The fuel consumption of the vessel was studied with the transit-simulation. For DAS and the ice-bow ship first the speed was solved in different ice conditions. For open water and assisted ships the power demand was calculated. DAS and ice-bow ship were assumed to use full power in ice and the speeds in open water and ice channel were assumed to be constant.
    [Show full text]
  • Arctic Offshore Development Concepts – History and Evolution
    Arctic Offshore Development Concepts – History and Evolution By Roger Pilkington and Frank Bercha Presented by Roger Pilkington At the SNAME AS Luncheon: March 19, 2014 Presentation • Systems and structures used in Beaufort Sea from 1970 to 1990 • Some concepts for Beaufort Development 1980s • Production systems currently in use in Arctic • Some interesting new concepts Rough Timetable • 1960s Panarctic drilled on Arctic Islands • In late 1960s Land sales in Beaufort Sea • Esso acquired land from 0 to ~15m Water Depth • Gulf acquired land from about 15 to about 30 m WD • Dome acquired land from about 30 to about 60m WD • From 1972s and 1989, Esso built sand and spray ice islands • ~1974 Canadian Government brought in Arctic drilling incentives • 1976 to about 1980 Dome brought 4 drillships, 8 support boats, super tanker, and floating dry dock into Arctic. 1980 Kigoriak. Rough Timetable (Cont) • 1981 Dome built Tarsuit Island • 1982 Dome brought SSDC into Arctic • 1983 Esso brought in Caisson Retained Island (CRI) to operate in deeper waters • 1983 Gulf brought Kulluk barge, Molikpaq GBS and 4 support vessels into Arctic • 1984 oil price went down and Government ended drilling incentives • All activity stopped in about 1994 Dome Gulf Esso The 3 Major Ice Zones in Arctic Esso ‐ Nipterk Ice Island Made from flooding ice with water from large pumps Shallow water only Esso sand and gravel island construction in summer and also winter by hauling sand and gravel in trucks over ice Artificial Islands • Ice islands – typically 0 to 3m • Sand and
    [Show full text]