Role of Classification Society in Arctic Shipping

Total Page:16

File Type:pdf, Size:1020Kb

Role of Classification Society in Arctic Shipping ROLE OF CLASSIFICATION SOCIETY IN ARCTIC SHIPPING Seppo Liukkonen, Station Manager, DNVGL Station Helsinki Abstract The core mission of a classification society is “to protect human lives, property and the environment”. In first place the classification societies are fulfilling this function in marine environment, because the classification business in its current form started within sea transportation and shipping. Since then the function of the classification societies has widened to comprise shipbuilding, different kinds of off- shore activities and also some on-shore activities. When fulfilling their function the classification societies are using their own classification rules as their main, own tool. Additionally, the classification societies are often fulfilling their above-mentioned function by working together with and on behalf of the flag state administrations. Here the so-called IMO instruments such as the SOLAS and MARPOL conventions, for instance, are the main basis of the work. Also, international standards, such as the EN-ISO and IEC standards, for instance, and other national and international regulations, such as the Finnish-Swedish Ice Class Rules and Canadian Arctic Pollution Prevention Regulations, for instance, are used by the classification societies. Basically, the work of the classification societies is to ensure that the object in question, e.g., a ship, an off-shore structure, a quality management system, etc., is in compliance with the above-mentioned relevant rules and regulations. In practice this can be done, e.g., with plan approvals, supervision of manufacturing, surveys, inspections and audits. This presentation gives an overview about the role of the classification societies in ensuring and developing the safe Arctic shipping. The main instruments, which are relevant for the Arctic Shipping and which are available to the classification societies, are described. The philosophy of applying the relevant rules and regulations is discussed. INTRODUCTION The classification societies are non-profit technical expert organizations serving objectively, impartially and neutrally the interests of all concerned with safety at sea. The service of the classification societies is called as “classification” that can be defined as: The system of grading, expressed by characters of classification, used by a classification society to define the degree to which individual ships, machinery/electrical plant, cargo refrigerating installations and offshore installations comply with its rules for classification and construction. The function of classification societies is to compile construction rules based on experience and research, to supervise the construction, materials and workmanship of new ships and offshore installations and to supervise continuously the condition of ships, offshore installations and other classified objects in service. On the basis of this the classification society keeps up a public technical record of ships, offshore installations and other classified objects. The relevant documentation takes the form of a public register that the classification society keeps updated for its ships, offshore installations and other classified objects and the form of classification certificates issued for individual ships, offshore installations and other classified objects. The classification of ships, machinery, refrigerating installations and offshore installations is based on the society's rules for classification and surveys, and on all other rules and regulations issued by the society so far as these are related to classification. The construction rules issued by classification societies are recognized as standards of good engineering practice. When properly applied and implemented, they form a good basis for the maximum safety for the transport of passengers and goods by sea. The main procedure of classification is to confirm the compliance of the classified object with the relevant classification rules. This is done, e.g., by examining and approving drawings and documents, testing of materials and components, supervising construction, carrying out quay-side and sea trials, issuing class certificates, surveying the maintenance of class and confirming the validity of class. For the owner of the ship, offshore installation or other classified object evidence of the class, and hence of the conditions of the classified object, is provided by the class certificate and by other certificates. The classification is based on a voluntary mutual agreement between the classification society and the owner of the ship, offshore installation or other classified object. Thus, principally the classification of a ship, for instance, is not mandatory, but in practice in the international trade it is a “must”. Without classification a ship in the international trade can not get freight and insurances, for instance. By virtue of their wide experience and their neutral and impartial character, classification societies are frequently called upon to perform duties in respect of safety at sea on behalf of governments, i.e., the flag state administrations. Here the work procedures are very much the same as with the classification, but the basis of the work is not the classification rules but the open instruments, such as the international conventions and rules and regulations if IMO, for instance. The work with open IMO instruments on behalf of flag states is often called as statutory, and these statutory documents create an important difference between the classification and statutory work. The classification is based on the classification rules, which are owned by the classification societies. Only the classification societies have the entire right to interpret their rules. On the statutory side the statutory documents are the basis of the work and the flag states have the entire and final right to interpret the statutory documents. MAIN CLASSIFICATION SOCIETIES The main internationally recognized classification societies have joined together to form the International Association of Classification Societies (IACS). The members of IACS are: ABS American Bureau of Shipping, USA BV Bureau Veritas, France CCS China Classification Society, P. R. China CRS Croatian Register of Shipping, Croatia DNV GL, Norway GL Germanischer Lloyd, Germany IRS Indian Register of Shipping, India KR Korean Register of Shipping, South Korea LR Lloyd's Register of Shipping, United Kingdom NK Nippon Kaiji Kyokai, Japan PRS Polish Register of Shipping, Poland RINA Registro Italiano Navale, Italy RS Russian Maritime Register of Shipping, Russia. The functions of IACS include the standardization of the rules for construction and survey, acting in an advisory capacity to administrations and collaborating as observer with regard to IMO conventions (SOLAS, Load Line and MARPOL), resolutions and codes. DNV GL Det Norske Veritas, DNV, and Germanischer Lloyd, GL, have merged in September 2013 to form the new DNV GL classification society. The corporate management of DNV GL is located in Norway and the ownership is divided by the Det Norske Veritas foundation and the owner of the Germanischer Lloyd in relation of two third parts and one third part, respectively. The DNV GL has a total of 16 000 employees and is represented in 100 countries. It is the biggest classification society in the world with the share of approximately 23 % of the whole world fleet. After the merger DNV GL still has two classification rule sets, namely the DNV and GL Rules, to work with. However, a common DNV GL Rule set is under development and has, at the moment of this seminar, reached the stage of the “internal hearing”. After the “internal hearing” the new Rules will be sent to the “external hearing” to the essential parties of interest outside DNV GL. After these two hearing processes the new rules will be published to be applicable from the beginning of January 2106. RULES FOR ARCTIC SHIPPING In the Arctic shipping the role of the classification society is basically the same as outside the Arctic. The safety of the shipping is ensured by confirming the compliance with the rules. But here the rules to be used must be relevant for the Arctic environment. Maybe the best known rules for Arctic shipping are the so called Ice Class Rules. In the world there are several ice class rule sets, which can be used for the Arctic shipping, or more comprehensively for the shipping in ice-covered waters and cold environment. In Finland and at the Baltic Sea the essential rule set is the Finnish-Swedish Ice Class Rules. The responsible organizations behind these rules are the Finnish and Swedish Maritime Administrations. But all the main classification societies have implemented these rules into their classification rules and equivalences between the ice class notations of the Finnish-Swedish Ice Class Rules and the ice class notations of classification societies created and agreed. The Table 1 sets out the equivalencies between ice class notations according to the Finnish-Swedish Ice Class Rules and DNV and GL classification Rules. Table 1: Equivalence table between the ice class notations from the Finnish-Swedish Ice Class Rules and the DNV and GL classification Rules. Finnish-Swedish Ice Class Rules DNV GL IA Super 1A1 ICE-1A* 100A5 E4 IA 1A1 ICE-1A 100A5 E3 IB 1A1 ICE-1B 100A5 E2 IC 1A1 ICE-1C 100A5 E1 II 1A1 100A5 E The Finnish Swedish Ice Class Rules have an areal nature. They have been developed for the shipping at the Baltic Sea by local (Finnish and Swedish) maritime administrations
Recommended publications
  • Northern Sea Route Cargo Flows and Infrastructure- Present State And
    Northern Sea Route Cargo Flows and Infrastructure – Present State and Future Potential By Claes Lykke Ragner FNI Report 13/2000 FRIDTJOF NANSENS INSTITUTT THE FRIDTJOF NANSEN INSTITUTE Tittel/Title Sider/Pages Northern Sea Route Cargo Flows and Infrastructure – Present 124 State and Future Potential Publikasjonstype/Publication Type Nummer/Number FNI Report 13/2000 Forfatter(e)/Author(s) ISBN Claes Lykke Ragner 82-7613-400-9 Program/Programme ISSN 0801-2431 Prosjekt/Project Sammendrag/Abstract The report assesses the Northern Sea Route’s commercial potential and economic importance, both as a transit route between Europe and Asia, and as an export route for oil, gas and other natural resources in the Russian Arctic. First, it conducts a survey of past and present Northern Sea Route (NSR) cargo flows. Then follow discussions of the route’s commercial potential as a transit route, as well as of its economic importance and relevance for each of the Russian Arctic regions. These discussions are summarized by estimates of what types and volumes of NSR cargoes that can realistically be expected in the period 2000-2015. This is then followed by a survey of the status quo of the NSR infrastructure (above all the ice-breakers, ice-class cargo vessels and ports), with estimates of its future capacity. Based on the estimated future NSR cargo potential, future NSR infrastructure requirements are calculated and compared with the estimated capacity in order to identify the main, future infrastructure bottlenecks for NSR operations. The information presented in the report is mainly compiled from data and research results that were published through the International Northern Sea Route Programme (INSROP) 1993-99, but considerable updates have been made using recent information, statistics and analyses from various sources.
    [Show full text]
  • 1972 Implementation, Testing, Inspection and Approval Note By
    INTERNATIONAL MARITIME ORGANIZATION 4 ALBERT EMBANKMENT LONDON SE1 7SR E Telephone: 020-7735 7611 Fax: 020-7587 3210 Telex: 23588 IMOLDN G IMO Ref. T3/1.01 CSC/Circ.119 13 December 2000 Original: ENGLISH INTERNATIONAL CONVENTION FOR SAFE CONTAINERS (CSC), 1972 Implementation, testing, inspection and approval Note by the Secretariat 1 The Secretary-General has received, in accordance with article IV(2) of the International Convention for Safe Containers (CSC), 1972, the information set out in the attached annex*. 2 This circular replaces the information provided in CSC/Circ.115, which is hereby revoked. 3 CSC Contracting Parties, which have not yet done so, are invited to submit similar information. 4 To keep the list as up to date as possible, Contracting Parties, which have previously submitted relevant information, are invited to review the list and notify the Secretary-General of any changes required. *** *Annex English only. I:\CIRC\CSC\119.doc CSC/Circ.119 ANNEX ORGANIZATIONS ENTRUSTED TO TEST, INSPECT AND APPROVE CONTAINERS ARGENTINA Implementation Prefectura Naval Argentina Direccion de Policia de Seguridad de la Navigacion Av. E. Madero 235 1106 Buenos Aires República Argentina Telephone: + 54 1 34 1812 Telefax: + 54 1 331 2876 Telex: 18581 PREFEC AR AUSTRALIA Implementation Chief Executive Australian Maritime Safety Authority P.O. Box 1108 Belconnen ACT 2616 Australia Telephone + 61 6 279 5000 Telefax: + 61 6 279 5866 Testing, inspection and approval American Bureau of Shipping Bureau Veritas Det norske Veritas Germanischer Lloyd Lloyd's Register of Shipping Nippon Kaiji Kentei Kyokai and Nippon Kaiji Kyokai I:\CIRC\CSC\119.doc CSC/Circ.119 ANNEX Page 2 BAHAMAS Testing, inspection and approval American Bureau of Shipping Forty-five Broad Street New York, NY 10004 United States of America Germanischer Lloyd P.O.
    [Show full text]
  • Safety Considerations and Approval Procedures for the Integration of Fuel Cells on Board of Ships
    SAFETY CONSIDERATIONS AND APPROVAL PROCEDURES FOR THE INTEGRATION OF FUEL CELLS ON BOARD OF SHIPS Vogler, F.1 and Dr. Würsig, G.2 1 Risk Assessment & Mechanical Engineering, Germanischer Lloyd AG, Vorsetzen 35, Hamburg, 20459, Germany, [email protected] 2 Risk Assessment & Mechanical Engineering, Germanischer Lloyd AG, Vorsetzen 35, Hamburg, 20459, Germany, [email protected] ABSTRACT The shipping industry is becoming increasingly visible on the global environmental agenda. Shipping's share of emissions to air is regarded to be significant and public concern lead to ongoing political pressure to reduce shipping emissions. International legislation at the IMO governing the reduction of SOx and NOx emissions from shipping is being enforced, and both the European Union and the USA are planning to introduce additional regional laws to reduce emissions. Therefore new approaches for more environmental friendly and energy efficient energy converter are under discussion. One possible solution will be the use of fuel cell systems for auxiliary power or main propulsion. The presentation summarizes the legal background in international shipping related to the use for gas as ship fuel and fuel cells. The focus of the presentation will be on the safety principles for the use of gas as fuel and fuel cells on board of ships and boats. The examples given show the successful integration of such systems on board of ships. Furthermore a short outlook will be given to the ongoing and planed projects for the use of fuel cells on board of ships. 1.0 EMISSIONS IN SHIPPING 1.1 Emission in Shipping Global warming, acidification and degradation of air quality are environmental impact categories high on the international agenda.
    [Show full text]
  • Structural Challenges Faced by Arctic Ships
    NTIS # PB2011- SSC-461 STRUCTURAL CHALLENGES FACED BY ARCTIC SHIPS This document has been approved For public release and sale; its Distribution is unlimited SHIP STRUCTURE COMMITTEE 2011 Ship Structure Committee RADM P.F. Zukunft RDML Thomas Eccles U. S. Coast Guard Assistant Commandant, Chief Engineer and Deputy Commander Assistant Commandant for Marine Safety, Security For Naval Systems Engineering (SEA05) and Stewardship Co-Chair, Ship Structure Committee Co-Chair, Ship Structure Committee Mr. H. Paul Cojeen Dr. Roger Basu Society of Naval Architects and Marine Engineers Senior Vice President American Bureau of Shipping Mr. Christopher McMahon Mr. Victor Santos Pedro Director, Office of Ship Construction Director Design, Equipment and Boating Safety, Maritime Administration Marine Safety, Transport Canada Mr. Kevin Baetsen Dr. Neil Pegg Director of Engineering Group Leader - Structural Mechanics Military Sealift Command Defence Research & Development Canada - Atlantic Mr. Jeffrey Lantz, Mr. Edward Godfrey Commercial Regulations and Standards for the Director, Structural Integrity and Performance Division Assistant Commandant for Marine Safety, Security and Stewardship Dr. John Pazik Mr. Jeffery Orner Director, Ship Systems and Engineering Research Deputy Assistant Commandant for Engineering and Division Logistics SHIP STRUCTURE SUB-COMMITTEE AMERICAN BUREAU OF SHIPPING (ABS) DEFENCE RESEARCH & DEVELOPMENT CANADA ATLANTIC Mr. Craig Bone Dr. David Stredulinsky Mr. Phil Rynn Mr. John Porter Mr. Tom Ingram MARITIME ADMINISTRATION (MARAD) MILITARY SEALIFT COMMAND (MSC) Mr. Chao Lin Mr. Michael W. Touma Mr. Richard Sonnenschein Mr. Jitesh Kerai NAVY/ONR / NAVSEA/ NSWCCD TRANSPORT CANADA Mr. David Qualley / Dr. Paul Hess Natasa Kozarski Mr. Erik Rasmussen / Dr. Roshdy Barsoum Luc Tremblay Mr. Nat Nappi, Jr. Mr.
    [Show full text]
  • Modern Day Pioneering and Its Safety in the Floating Ice Offshore
    Modern Day Pioneering and its Safety in the Floating Ice Offshore Arno J. Keinonen AKAC INC. Victoria, B.C. Canada [email protected] Evan H. Martin AKAC INC. Victoria, B.C. Canada [email protected] ABSTRACT al. (2006a), Keinonen et al. (2006b), Keinonen et al. (2000), Pilkington et al. (2006a), Pilkington et al. (2006b), Reed (2006), Tambovsky et al. Floating ice offshore pioneering has been performed since the mid (2006), Wright (1999), and Wright (2000). 1970s. This paper presents the key lessons learned from 5 such operations of wide geographic as well as operational range. The intent FLOATING STATIONARY OPERATIONS IN PACK ICE is to present the safety related lessons from these operations for the OFFSHORE benefit of the future safety of similar operations. Beaufort Sea Drillships KEY WORDS: ice offshore operations; station keeping in ice; ice management; safety in ice. When four open water drillships, upgraded to an ice class and winterized, entered the Beaufort Sea mid seventies, together with INTRODUCTION several ice class supply vessels, the operators had an expectation of having an open water season of a few months each year to be able to Several early pioneers going to the Arctic went all out, all thinking that explore for oil and gas (Keinonen and Martin, 2010). The operation they were well prepared, yet some were clearly not prepared for what itself was expected to be a seasonal summer operation only and not to could happen. Some became heroes while others left their names on interact with ice. pages of history books for not completing their missions, at times paying the ultimate price, losing their lives, equipment and leaving The first pioneering lesson was that the so-called summer season had behind a low level, local pollution to the environment.
    [Show full text]
  • Coatings and Cold Hard Truths | International Paint
    Ice Class Vessels Coatings and cold hard truths The sophisticated ships destined to recover hard to reach resources under ice-covered polar seas have required new thinking on design and construction. No matter how profound that thinking has been, however, owner preference for the protective coating Intershield® 163 Inerta 160 has remained a constant. Despite the challenges posed the Arctic Circle promises to yield around 22% of the world’s oil and gas still known to be available. hile the wider harshest of environments. natural gas liquids. newbuilding market Despite the challenges posed by their More than a fifth of Russian territory for ships may only now recovery, the Arctic Circle promises to lies north of the polar circle. The W be showing any signs of yield around 22% of the world’s oil and nation’s Arctic and sub-Arctic regions recovery, few can doubt that sustained gas still known to be available, in the account for 90% of its gas reserves and high oil and gas prices dictate the shape of up to an estimated 90 billion over 20% of its crude oil. Accordingly, future need for increasing numbers barrels of oil, 1,670 trillion cubic feet Russian gas giant Gazprom, for of vessels capable of operating in the of natural gas, and 44 billion barrels of example, has gone on record as saying 1 Ice Class Vessels that field development offshore Russia to 2020 alone will drive orders for over 10 production platforms, over 50 ice class tankers and other specialised ships, and at least 23 liquefied natural gas carriers.
    [Show full text]
  • International Association of Classification Societies
    International Association of Classifi cation Societies Roy Nersesian and Subrina Mahmood I. Introduction Th e International Association of Classifi cation Societies (IACS), headquar- tered in London, is made up of ten classifi cation societies: Lloyds Register (LR), American Bureau of Shipping (ABS), Bureau Veritas (BV), China Clas- sifi cation Society (CCS), Det Norske Veritas (DNV), Germanischer Lloyd (GL), Korean Register (KR), Nippon Kaiji Kyokai (NK), Registro Italiano Navale (RINA), and the Russian Maritime Register of Shipping (RS), as well as the Indian Register of Shipping (IRS) as an associate member. According to the Maritime International Secretariet Services (www.marisec.org), there are 47,700 vessels in the world trading fl eet made up principally of general cargo vessels, bulk carriers, container ships, tankers, and passenger vessels. If vessels smaller than 100 gross tons are included (too small to venture on the high seas or participate in international trade), the world fl eet numbers close to 100,000. Most of the world’s trading vessels – nearly 41,000 in 2008 – are registered with classifi cation society members of the IACS. Th e remaining vessels are covered by non-IASC member classifi cation societies. Classifi cation societies develop and implement technical standards for ships and fl oating off shore oil production and storage facilities. Th ese societies set rules to ensure the structural strength and integrity of the ship’s hull and its internal structure, cargo holds, bridge superstructure as well as the functional aspects and reliability of propulsion, steering systems, power generation, cargo handling, ship control, communication, navigation, emer- gency and other auxiliary systems.
    [Show full text]
  • Final Report European Maritime Safety Agency (EMSA) Study on Standards and Rules for Bunkering of Gas-Fuelled Ships
    Final report European Maritime Safety Agency (EMSA) Study on Standards and Rules for Bunkering of Gas-Fuelled Ships Final report European Maritime Safety Agency (EMSA) - Study on Standards and Rules for bunkering of gas-fuelled Ships Report No. 2012.005 Version 1.1/2013-02-15 Disclaimer The content of the report represents the views of Germanischer Lloyd only and should not be taken as indicative of the official view of the European Maritime Safety Agency, or of any other EU institution or Member State. Report No. CL-T-SM 2012.005 Date 2013-02-15 Contents 1 Executive Summary 7 2 Introduction 9 2.1 Objective 9 2.2 Methodological Approach 9 2.3 Limitations to the Study 10 3 Classification of the Bunkering Process 11 3.1 Overview of possible LNG Bunkering Operations 11 3.2 Elements of the LNG Supply for the LNG bunker operations identified 14 3.3 Categorisation of the relevant rule framework of possible LNG supply chains 16 4 Relevant Standardisation Bodies 18 4.1 International Bodies 18 4.1.1 International Maritime Organisation (IMO) 18 4.1.2 International Organisation for Standardisation (ISO) 19 4.1.3 International Electrotechnical Commission (IEC) 21 4.1.4 Society of International Gas Tanker & Terminal Operators (SIGTTO) 21 4.1.5 Oil Companies International Marine Forum (OCIMF) 22 4.1.6 Intergovernmental Organisation for International Carriage by Rail (OTIF) 22 4.2 European bodies 23 4.2.1 European Commission (EC) 23 4.2.2 European Committee for Standardisation (CEN) 24 4.2.3 United Nations Economic Commission for Europe (UNECE) 26 4.2.4
    [Show full text]
  • Detentionlist 01 2016
    SHORT GUIDANCE TO THE MONTHLY LIST OF DETENTIONS OF THE PARIS MOU • INFORMATION IN THE LIST The monthly list of detentions of the Paris MOU contains information about ships which were detained in the Paris MOU region during the month under review. An alphabetical index on ship’s name and an index on IMO number are provided with the list. The information listed for each ship is conform Annex 4 Publication of Information related to Detentions and Inspections. (As referred to in Section 5.2 of the Memorandum) http://www.parismou.org/Organization/2010.12.27/Memorandum_of_Understanding.htm Some of these items require an explanation: RO related deficiencies: a ‘Yes’ in this column indicates that one or more of the deficiencies mentioned under ‘Reasons for detention’ are the responsibility of the Recognized Organization which has issued the relevant certificate(s). This is not necessarily the Recognized Organization mentioned in the list (see below)! Port and date of release from detention: details of detentions are entered in the information system of the Paris MOU after the ship has been released. Therefore, the details on a detention of a ship detained in September but released in October are only available in October. Recognized Organization: the Recognized Organization mentioned is not necessarily the party issuing the certificates relevant for all deficiencies which were reasons for detention. ‘Ship allowed to sail to nearest repair yard for repairs’: in general, a ship is not released from detention before all necessary repairs have been made. However, sometimes it is not possible to repair all defects at the place of detention.
    [Show full text]
  • Shipping Made in Hamburg
    Shipping made in Hamburg The history of the Hapag-Lloyd AG THE HISTORY OF THE HAPAG-LLOYD AG Historical Context By the middle of the 19th Century the industrial revolution has caused the disap- pearance of many crafts in Europe, fewer and fewer workers are now required. In a first process of globalization transport links are developing at great speed. For the first time, railways are enabling even ordinary citizens to move their place of residen- ce, while the first steamships are being tested in overseas trades. A great wave of emigration to the United States is just starting. “Speak up! Why are you moving away?” asks the poet Ferdinand Freiligrath in the ballad “The emigrants” that became something of a hymn for a German national mo- vement. The answer is simple: Because they can no longer stand life at home. Until 1918, stress and political repression cause millions of Europeans, among them many Germans, especially, to make off for the New World to look for new opportunities, a new life. Germany is splintered into backward princedoms under absolute rule. Mass poverty prevails and the lower orders are emigrating in swarms. That suits the rulers only too well, since a ticket to America produces a solution to all social problems. Any troublemaker can be sent across the big pond. The residents of entire almshouses are collectively despatched on voyage. New York is soon complaining about hordes of German beggars. The dangers of emigration are just as unlimited as the hoped-for opportunities in the USA. Most of the emigrants are literally without any experience, have never left their place of birth, and before the paradise they dream of, comes a hell.
    [Show full text]
  • Evolution of Class
    Cover NOVEMBER MarPro:MTR May Cover V2.qxd 11/8/2011 11:16 AM Page 1 Maritime Professional 4Q 2011 www.MaritimeProfessional.com Evolution of Class AS CLASS DEVELOPS TO SERVICE AN EVER-CHANGING MARITIME INDUSTRY, EVEN DARWIN WOULD BE PROUD MP#1 C2 C3 & C4:MN#5 C2 C3 & C4.qxd 2/23/2011 4:51 PM Page 1 MP #4 (1-17):MP Layouts 11/9/2011 9:12 AM Page 1 MP #4 (1-17):MP Layouts 11/9/2011 9:17 AM Page 2 4th Quarter 2011 Maritime Volume 1 Number 4 Professional 4Q 2011 www.MaritimeProfessional.com 30 The Evolution of Class Modern class: Defined by change; Shaped by Competence. By Greg Trauthwein Plus “Class Insights” • DNV (p. 38) • Lloyd’s Register (p. 41) • ClassNK (p. 44) • RINA (p. 47) 14 Rising from the Ashes ... of Virtual Shipbuilding ... American Phoenix is not your father’s Jones Act product carrier. By Robert Kunkel 18 ABS Nautical Systems Karen Hughey, the President and COO of ABS Nautical Systems discusses “Class of the Future” via the NS5 Enterprise suite of software solutions. By Greg Trauthwein 26 Modern Ship Registry Bill Gallagher, President, International Registries, Inc. (IRI) helps to raises the bar on safety and compliance. By Joseph Keefe 50 Best Designs BWT Platform Presents Unique Challenges for Naval Architects. By Joseph Keefe ON THE COVER Charles Darwin probably had ocean commerce in mind when he thought up the concept of “survival of the fittest.” Even he probably couldn’t envision what today’s modern classification societies have evolved to become.
    [Show full text]
  • Ice Class Strengthening of Existing Reefer Vessels Trading in the Baltic Sea - a Comparative Study of Ice Classifications 1D and 1C
    Kungliga Tekniska Högskolan Centre for Naval Architecture Bachelor Thesis in Mechanical Engineering SA118X Ice Class Strengthening of Existing Reefer Vessels Trading in the Baltic Sea - A comparative study of ice classifications 1D and 1C Authors Dennis Bremberg ([email protected]) Sara Högdahl ([email protected]) Supervisor Ivan Stenius Date 2016-05-02 Abstract This bachelor thesis strives to perspicuously answer what an ice strengthening of two different existing reefer vessels might mean for operations in the Baltic Sea and illustrate what factors a shipping company needs to consider when initiating such a project. The main purpose is to provide an information basis facilitating the communication between different parties in the shipping industry. The existing specialized reefer fleet is old and few new ships are being built or commissioned. At the same time, there is an increasing demand of shipping perishables to St. Petersburg, inciting the strengthening of existing ships to meet market demands. The methodology used in this report is a compilation of selective literature research (primarily providing qualitative, secondary data) and a comparative study in which the secondary data is applied on the reefer classes Crown and Family. While other classification societies are mentioned, this report focuses on Lloyd’s Register and the ice classes 1D and 1C, suitable for very light and light ice conditions and sailing in convoy with icebreaker assistance. Although ice class 1C is designated for tougher ice conditions than 1D, they share many strengthening requirements. Most substantially, the requirements for 1C concerning the forward region and steering arrangements, stipulated by the Swedish Maritime Administration (Swedish: Sjöfartsverket), are also applicable to 1D.
    [Show full text]