A Methodology to Select the Electric Propulsion System for Platform Supply Vessels (PSV)
Total Page:16
File Type:pdf, Size:1020Kb
CRISTIAN ANDRÉS MORALES VÁSQUEZ A methodology to select the electric propulsion system for Platform Supply Vessels (PSV) Dissertation submitted to Escola Politécnica da Universidade de São Paulo to obtain the degree of Master of Science in Engineering. São Paulo 2014 CRISTIAN ANDRÉS MORALES VÁSQUEZ A methodology to select the electric propulsion system for Platform Supply Vessels (PSV) Dissertation submitted to Escola Politécnica da Universidade de São Paulo to obtain the degree of Master of Science in Engineering. Concentration Area: Naval Architecture and Ocean Engineering. Advisor: Prof. Dr. Helio Mitio Morishita São Paulo 2014 Este exemplar foi revisado e corrigido em relação à versão original, sob responsabilidade única do autor e com a anuência de seu orientador. São Paulo, 27 de maio de 2014. Assinatura do autor ____________________________ Assinatura do orientador _______________________ Catalogação-na-publicação Morales Vasquez, Cristian Andres A methodology to select the electric propulsion system for Platform Supply Vessels / C.A. Morales Vasquez. – versão corr. -- São Paulo, 2014. 246 p. Dissertação (Mestrado) – Escola Politécnica da Universidade de São Paulo. Departamento de Engenharia Naval e Oceânica. 1.Propulsão 2.Navios I. Universidade de São Paulo. Escola Politécnica. Departamento de Engenharia Naval e Oceânica II.t. This work is especially dedicated to my parents, Tuli Vásquez and Andrés Morales. ACKNOWLEDGMENTS I would like to express my most sincere gratitude to my advisor, Prof. Dr. Helio Mitio Morishita, for giving me the opportunity to develop my Master’s dissertation with his help and guidance, for his teachings about naval architecture and ocean engineering, for his patience and for his excellent support. Thank you very much professor. I would also like to thank Prof. Dr. Hernani Brinati, who taught me about propulsion installations in ships at the beginning of my Master’s program, making the elaboration of the present dissertation possible. I am especially thankful to the team of the IPT and USP involved in the conceptual design of the PSV, Prof. Dr. Thiago Pontin, Dr. James Weiss, Thiago Monteiro and Carla Teodoro. I am also grateful to Rodrigo Martinez for the support and the help with the propulsion and dynamic positioning data; to Prof. Dr. Luiz Vaz from the Federal University of Rio de Janeiro (UFRJ) for helping me with the information about the load inventory of the PSVs; and to WEG Brazil for providing me the information about the main propulsion and thruster motors, as well as the specifications of the variable frequency converter. Thanks to Aguanile (also known as Nilen) for helping me with the English edition and proofreading; to my partners Henry Murcia and Edgard Mulford for two and a half years of companionship, jokes, conversations, parties and pizzas; and to Lania and all the personnel of the PNV for the support and guidance. My deepest appreciation to all those beautiful and good people that I met through the time of my Master’s program and that I cannot mention because, otherwise, the list would never end. I had an amazing time and joyful days during my stay in Brazil. Fond memories of my life here will always be with me. I would like to thank too my family: Andrés Morales, Tuli Vásquez and my sister, Mónica Morales, for the patience, understanding and support. Finally, I would like to express the deepest gratitude to CAPES for the granted scholarship and COTECMAR for the economic support during the Master. ABSTRACT The present work proposes a methodology to define the electric propulsion system for PSVs. This methodology was applied to a case study: the conceptual design of a PSV for operation at the pre-salt fields at Santos basin. First, four different alternatives of electric propulsion systems for the PSV are presented and sized. The first one has induction motors as main propulsion motors, the second one has synchronous motors as main propulsion motors; the third and fourth alternatives are the same as the first and second, respectively, with a batteries bank connected to the main switchboard. Each of the four arrangements was contemplated with two options for Diesel generators: high speed and medium speed generator sets. The mass, volume, fuel consumption, exhaust gases emissions and reference capital costs for each arrangement are estimated and analyzed. Moreover, an economic analysis through the Net Present Value (NPV) is performed. The methodology ends with the Analytic Hierarchy Process (AHP) to support the decision making procedure. Some of the parameters obtained for each arrangement (mass, volume, fuel consumption, exhaust gases and NPV) are used as criteria and sub-criteria for selection. Two scenarios are evaluated, the first scenario gives more importance to the financial component of the design; the second scenario sets the exhaust gases emissions as the more significant parameter. The results were different, the arrangements 1 and 2 with medium speed Diesel generator sets appear as the most suitable option from the economical point of view; whereas the arrangements with batteries and high speed Diesel gensets are the best options to reduce the exhaust emissions. Keywords: Ship electric propulsion systems. Platform Supply Vessels. Batteries bank. Electric propulsion arrangements. Propulsion systems for PSVs. RESUMO O presente trabalho propôs uma metodologia para definir o sistema de propulsão elétrica para PSVs. A metodologia foi aplicada para um caso estudo: o projeto conceitual de um PSV para operar nos campos do pré-sal na Bacia de Santos. Primeiramente, as quatro diferentes alternativas de sistemas de propulsão elétrica para PSV são apresentadas e dimensionadas. A primeira alternativa tem motores de indução como motores de propulsão principal, a segunda alternativa tem motores síncronos como motores de propulsão principal; a terceira e quarta alternativas são as mesmas que a primeira e a segunda, respectivamente, com um banco de baterias conectado ao quadro principal. Cada um dos quatro arranjos foi considerado com duas opções para Diesel geradores: Diesel geradores de alta e média rotação. A massa, volumem, consumo de combustível, emissão de gases e os custos capitais de referência para cada arranjo são estimados e analisados. Adicionalmente, uma análise económica usando o Valor Presente Líquido (VPL) é feita. A metodologia finaliza com o Analytic Hierarchy Process (AHP) para apoiar o processo de escolha de alternativa. Alguns dos parâmetros obtidos para cada arranjo (massa, volumem, consumo de combustível, gases poluentes e o VPL) são utilizados como critérios de seleção. Dois cenários são avaliados, o primeiro cenário dá maior importância à parte financeira do projeto, o segundo cenário estabelece as emissões de gases poluentes como o parâmetro mais significativo. Os resultados foram diferentes, os arranjos 1 e 2 com Diesel geradores de média rotação se apresentam como a opção mais adequada desde o ponto de vista econômico; enquanto os arranjos com baterias e Diesel geradores de alta rotação são a melhor opção para reduzir as emissões de gases poluentes Palavras-chave: Propulsão elétrica de navios. Barco de Apoio a Plataformas. Banco de baterias. Arranjos de propulsão elétrica. Sistemas de propulsão para PSVs. LIST OF FIGURES Figure 1.1 – A Typical PSV (ARCOVERDE, 2013). .................................................. 26 Figure 2.1 – Electric Propulsion General Arrangement. ............................................ 31 Figure 2.2 – Typical SFOC Comparison for High and Medium Speed Diesel Engines for generating sets operating at fixed speed. ............................................................. 37 Figure 2.3 – Engine Operational Region or Engine Schematic Layout Diagram (MAN DIESEL & TURBO, 2012a). ....................................................................................... 37 Figure 2.4 – Typical SFOC Map of Diesel Engine As a Function of Rotational Speed and Shaft Power (MAN DIESEL & TURBO, 2013a). ................................................. 38 Figure 2.5 – Comparison of SFOC for Similar Power Fixed Speed Diesel Engine at Rated Speed and Variable Speed Diesel Engine (SIEMENS, 2011a). ...................... 39 Figure 2.6 – Wound Rotor Synchronous Generator Mass vs. Rated Power for Various Rotational Speeds for Power Generation at 50Hz (HAU, 2006). ............................... 42 Figure 2.7 – Efficiency Curves of a Typical Round Rotor Synchronous Generator as a Function of Output Load and Power Factor (CUMMINS POWER GENERATION, 2008). ........................................................................................................................ 42 Figure 2.8 – Uncontrolled diode rectifiers: a) 6-pulse rectifier, b) 12-pulse rectifier and c) 24-pulse rectifier. ................................................................................................... 52 Figure 2.9 – Typical Schematic of a Variable Frequency Drive (SIEMENS, 2011b). 54 Figure 2.10 – Typical Efficiency Curves of Voltage Source Inverter (GONG, et al., 2012) ......................................................................................................................... 55 Figure 2.11 – Guide for Selection of Induction and Synchronous Motors as a Function of the Pole Number and Demanded Power (ABB, 2011)........................................... 57 Figure 2.12 – Typical Efficiency Curves for Standard 3HP Induction Motor with 60Hz Rated Frequency for Various Supply Frequencies (BENHADADDI, et al., 2012). ..... 59 Figure 2.13 – Typical