Potentialités De Stockage Du Carbone Dans Le Système Plante-Sol Des

Total Page:16

File Type:pdf, Size:1020Kb

Potentialités De Stockage Du Carbone Dans Le Système Plante-Sol Des THESE EN CO-TUTELLE Présentée au Centre International dřEtudes Supérieures en Sciences Agronomiques : Doctorat en Science du Sol POTENTIALITES DE STOCKAGE DU CARBONE DANS LE SYSTEME PLANTE-SOL DES PLANTATIONS D’EUCALYPTUS DES HAUTES TERRES MALGACHES Par Herintsitohaina Razakamanarivo Ramarson soutenue le 08 décembre 2009 devant le jury composé de : Roel MERCKX Professeur Rapporteur Université Catholique de Leuven Jean Chrysostôme Professeur Rapporteur RANDRIAMBOAVONJY ESSAgro, Madagascar Lalanirina Gabrielle Professeur Examinateur RAJOELISON ESSAgro, Madagascar Benoît JAILLARD Directeur de recherche Président du jury INRA, Montpellier Marie Antoinette Professeur Directeur de thèse RAZAFINDRAKOTO ESSAgro, Madagascar Alain ALBRECHT Directeur de recherche Directeur de thèse IRD, Madagascar REMERCIEMENTS De nombreuses personnes ont contribué de près ou de loin à la réalisation de cette thèse et je tiens à leur faire part de mes profondes gratitudes ici. Je remercie le Service de Coopération et dřAction Culturelle (SCAC) Ŕ Ambassade de France à Madagascar et le Département Soutien et Formation de lřInstitut de Recherche pour le Développement (DFS-IRD) dřavoir soutenu financièrement la réalisation de cette thèse. Jřadresse mes profondes gratitudes à Monsieur Alain Albrecht, Directeur de Recherche à lřIRD, à qui je dois la direction de cette thèse. Merci de mřavoir accueilli, de mřavoir fait confiance pour mener une thèse ainsi que pour tous les conseils techniques et encadrements scientifiques au laboratoire et sur le terrain durant ces trois années. Je remercie Madame Marie Antoinette Razafindrakoto, Professeur dřEnseignement Supérieur et de Recherche à lřESSAgro, pour avoir accepté dřassurer la codirection de cette thèse et dřavoir partagé ses expériences académiques et connaissances accumulées. Je lui suis reconnaissante du solide soutien moral quřelle mřa apportée. Jřadresse mes vifs remerciements aux membres du jury dřavoir voulu examiner cette thèse malgré leurs multiples occupations. Je tiens donc à exprimer mes vives reconnaissances à Madame Lalanirina Gabrielle Rajoelison, à Monsieur Roel Merckx, à Monsieur Jean Chrysostôme Randriamboavonjy et à Monsieur Benoît Jaillard. Jřadresse mes respectueuses reconnaissances à toutes les personnes qui mřont aidé à démarrer mon projet de thèse il y a trois ans de cela: Monsieur Christian Feller (et la représentation de lřIRD à Madagascar), Monsieur Eric Belvaux et Monsieur Jacques Pollini. Je tiens à témoigner mes sincères reconnaissances à toutes les équipes de mes laboratoires dřaccueil à Antananarivo et à Montpellier (Laboratoire des RadioIsotopes et UMR 210 Ecos & Sols, jadis UR 179 Seqbio). Merci à Madame Lilia Rabeharisoa et Monsieur Jean-Luc Chotte, Directeurs de chaque laboratoire, dřavoir accepté de mřaccueillir et de bénéficier des logistiques et compétences au sein de leur laboratoire. Merci à tous les chercheurs, techniciens et personnel administratif de ces laboratoires qui mřont ouvert leur porte et apporté leurs compétences lorsque je suis venue leur demander leurs aides et leurs recommandations. Un grand merci à Clovis Grinand pour ses aides et assistances lors de ces trois années de thèse. Mes profondes reconnaissances à ceux qui ont contribué à la préparation et réalisation des travaux de terrain, particulièrement: à Monsieur Honoré Randrianjafy et toute lřéquipe du FOFIFA-Forêt pour leur partage sur la connaissance du terrain, aux mairies et aux fidèles mains dřœuvre de Sambaina et de Sadabe pour avoir accepté de nous accueillir, à Modeste Rakotondramanana et à Fidy Raharison pour mřavoir aidé durant les travaux de terrain Je remercie les étudiants que jřai encadré lorsquřils étaient en préparation de leur mémoire dřingéniorat, de Master et de DEA pour la confiance quřils mřont accordé et dřavoir réussi à obtenir leur diplôme: Mademoiselle Sarobidy Rakotonarivo, Monsieur Haja Ravelojaona et Monsieur Ando Razakavololona. Je ne saurai me taire pour adresser mes reconnaissances envers mes ainés, amis, thésards et stagiaires, particulièrement : Tantely Razafimbelo, Michel Rabenarivo, Andry Andriamananjara, Hery Razafimahatratra, Hery Ramahefason, Hanitry Niony, Bodo Rabary, … et tous ceux qui mřont témoignée leur sympathie et amitié. Mes pensées vont aussi à mes parents, à ma belle mère et en mémoire de mon cher beau-père ainsi quřà ceux que je chéris: mes frères et sœurs, mes beaux frères et mes belles sœurs, mes nièces et neveux … pour tous ces moments partagés, petits ou grands, heureux ou moins. Enfin, un grand merci du fond du cœur à mon très cher époux pour son amour sincère, sa patience, sa confiance, son soutien, ses encouragements … quřil trouve ici le témoignage de mon amour. Merci mon Dieu pour toutes ces grâces ! LISTE DES ABBREVIATIONS ∆C : Différence de stocks de carbone ABG : Aboveground ACP : Analyse en composante principale (PCA) Al : Aluminium ANOVA : Analyse de la variance BLG : Belowground BRT : Boosted regression tree C : Carbone Caérien : Stock de carbone aérien (Cabg) CCNUCC : Convention Cadre des Nations Unies sur les Changements Climatiques CDM : Clean Development Mechanism CdP : Conférence des Parties CEC : Capacité dřéchange cationique CH4 : Méthane CHP : Circonférence à hauteur de poitrine du rejet (CBH) Cir : Circonférence à la base des souches CIRAD : Coopération Internationale en recherche Agronomique pour le Développement cm : Centimètre cm3 : Centimètre cube CO2 : Dioxyde de carbone CR1 : Commune Rurale CR2 : Coarse root Cracinaire : Stock de carbone racinaire (Cblg) Csol : Stock de carbone du sol (SOC) Ctot : Stocke de carbone total CV : Coefficient of Variation Da : Densité apparente du sol DBH : Diameter at breast height DSF-IRD : Département Soutien et Formation des Communautés du Sud-Institution de Recherche pour le Développement ESSAgro-Forêts : Ecole Supérieure des Sciences Agronomiques-Département Eaux&Forêts Fe : Fer FOFIFA-Forês : Foibe Fikarohana momba ny Fambolena, department des Forêts FR : Fine root g : gramme G : Surface terrière, basal area GES : Gaz à effet de serre Gg : Gigagramme Gt : Gigatonne H : Hauteur des rejets ha : Hectare HTC : Hautes Terres Centrales INRA : Institut National de la recherche Agronomique IPCC : InterGovernemental Panel on Climate Change kg : Kilogramme km : Kilomètre LRI : Laboratoire des RadioIsotopes m : Mètre MDP : Mécanisme pour le Développement Propre Mg : Mégagramme mg : Milligramme MIRS : Mid infrared spectroscopy (Spectrométrie en moyen infrarouge) MLM : Multiple linear regression model MNT : Modèle numérique de terrain (DEM) MOS : Matière Organique du Sol MR : Medium root N2O : Protoxyde dřazote NhaCir : Interaction entre la taille des souches et leur densité Ø : Diamètre O2 : Oxygène Ol, Of, Oh : Couches de la litière (de lřannée, fragmentée, humifiée) PC : Principal component PK : Protocole de Kyoto R : S : Root shoot ratio REDD : La réduction des émissions liées à la déforestation et à la dégradation des forêts (Reducing Emissions from Deforestation and Degradation) RMSE : Root mean square error RPD : Residual of prediction deviation SIG : Système dřinformation géographique (GIS) SM : Simple linear regression model SRF : Short rotation forestry UTCF : Utilisation des terres, du changement dřaffectation des terres et de la foresterie δ13C : ratio des isotopes stables du carbone 13C et 12C RESUME Les écosystèmes forestiers jouent un rôle important dans lřatténuation de la concentration du gaz carbonique (gaz à effet de serre) en raison des fortes quantités de carbone (C) stockées dans leur végétation et le sol .Cette capacité peut être toutefois affecté par différents facteurs, comme le type de forêt, le type dřespèces végétales, lřâge et le mode de gestion. Aussi, la caractérisation de cette fonction de stockage de C de ces écosystèmes forestiers est-elle primordiale. Dans ce contexte, le stockage de C dans les compartiments végétaux (aérien, racinaire et litière) et du sol des plantations dřeucalyptus (E) à courte durée de rotation (5 ans) a été étudié sur les Hautes Terres de Madagascar ; ce sont des plantations destinées à la production de bois dřénergie et de charbon de bois. Diverses situations sont étudiées : une chronoséquence de plantation dřeucalyptus (âge des souches de 17 à 111 ans, n = 41), des systèmes sous rotation culture/jachère (CJ, n = 6) et des systèmes sous système originel (pseudo-steppe et savane, B ; n = 7). Des mesures destructives de la biomasse aérienne et racinaire ont été réalisées dans ces situations ; un effort particulier a été porté sur la mesure de la biomasse racinaire de lřeucalyptus via la méthode du polygone de Voronoï. Des équations allométriques reliant la quantité de biomasse (aérienne et racinaire) de ces taillis dřeucalyptus aux variables dendrométriques (circonférence des souches, surface terrière des rejets) ont été développées. Lřapplication de ces équations et la caractérisation du stock de C du sol (0-30 cm) ont montré que les plantations dřeucalyptus présentent un stock total de C élevé en comparaison aux autres modes dřusage des terres : 150, 8 ± 25,3 Mg C ha-1 vs 112 ±15 pour B et 72,3±9,9 Mg C ha-1 pour CJ. Ceci est en raison de la contribution importante du système racinaire (21,22 Mg C ha-1 dans la souche et 20,38 Mg C ha-1 dans les racines à Ø > 2 mm) et du sol (de lřordre de 84,8 Mg C ha-1). Lřanalyse des relations entre les valeurs de stocks de C dans les différents compartiments de lřeucalyptus mesurés et les variables dendrométriques/spatiales effectuée dans cette étude a montré quřil nřy a pas de corrélations significatives
Recommended publications
  • Dien Mit Zukunft Meyer-Stoll, Phil.-Hist
    Druckerei C.H . Beck Medien mit Zukunft Meyer-Stoll, Phil.-hist. Abh. 136 ..................................... Revision, 20.12.2010 BAYERISCHE AKADEMIE DER WISSENSCHAFTEN PHILOSOPHISCH-HISTORISCHE KLASSE ABHANDLUNGEN . NEUE FOLGE, HEFT 136 Revision Cornelia Meyer-Stoll Die Maß- und Gewichtsreformen in Deutschland im 19. Jahrhundert unter besonderer Berücksichtigung der Rolle Carl August Steinheils und der Bayerischen Akademie der Wissenschaften Vorgelegt von Knut Borchardt in der Sitzung vom 7. Mai 2010 MÜNCHEN 2010 VERLAG DER BAYERISCHEN AKADEMIE DER WISSENSCHAFTEN IN KOMMISSION BEIM VERLAG C. H. BECK MÜNCHEN Druckerei C.H . Beck Medien mit Zukunft Meyer-Stoll, Phil.-hist. Abh. 136 ..................................... Revision, 20.12.2010 ISSN 0005–710X ISBN 978 3 7696 0124 4 © Bayerische Akademie der Wissenschaften, München 2010 Gesamtherstellung: Druckerei C. H. Beck, Nördlingen Gedruckt auf säurefreiem, alterungsbeständigem Papier (hergestellt aus chlorfrei gebleichtem Zellstoff) Printed in Germany Druckerei C.H . Beck Medien mit Zukunft Meyer-Stoll, Phil.-hist. Abh. 136 ..................................... Revision, 21.12.2010 Ludwig Thiersch: Carl August Ritter von Steinheil (1801–1870) Bayerische Akademie der Wissenschaften Revision Druckerei C.H . Beck Medien mit Zukunft Meyer-Stoll, Phil.-hist. Abh. 136 ..................................... Revision, 21.12.2010 Druckerei C. H . Beck Medien mit Zukunft .................Meyer-Stoll, Phil.-hist..................... Abh. 136 Revision, 17.12.2010
    [Show full text]
  • Maße & Gewichte
    Maße & Gewichte Die Geschichte der Maße und Gewichte Inhaltsverzeichnis 0.1 Geschichte der Maße und Gewichte .................................. 1 0.1.1 Überblick ........................................... 1 0.1.2 Längeneinheiten ....................................... 1 0.1.3 Gewichtseinheiten ...................................... 1 0.1.4 Beispiel der Vielfalt ..................................... 1 0.1.5 Einheiten für Zeit und Winkel ................................ 2 0.1.6 Angelsächsische Maßeinheiten ................................ 2 0.1.7 Das metrische System .................................... 3 0.1.8 Typografische Maßeinheiten ................................. 3 0.1.9 Listen von historischen Maßen und Gewichten ........................ 3 0.1.10 Gebräuchliche Masseeinheiten ................................ 4 0.1.11 Siehe auch .......................................... 4 0.1.12 Literatur ........................................... 4 0.1.13 Weblinks ........................................... 4 0.1.14 Einzelnachweise ....................................... 5 1 Die Anfänge des Messens in der Frühzeit des Menschen 6 1.1 Kognitive Archäologie ......................................... 6 1.1.1 Entstehung .......................................... 6 1.1.2 Kognitive Archäologie heute ................................. 6 1.1.3 Kognitive Archäologie im deutschsprachigen Raum ..................... 7 1.1.4 Kognitive Archäologie in der Diskussion ........................... 7 1.1.5 Literatur ........................................... 7 1.1.6
    [Show full text]
  • A History of the National Bureau of Standards
    APPENDIX A FERDINAND RUDOLPH HASSLER First Superintendent of the Coast Survey and of Weights and Measures When Professor Stratton arrived at the Office of Weights and Measures on B Street in Washington in the spring of 1898 to survey its equipment and operations, he found there in the person of Louis A. Fischer, the adjuster, a link with Ferdinand Rudolph Hassler, the first Superintendent of Weights and Measures in the Federal Government. It was in the atmosphere of the office over which Hassler had presided, Stratton said, with its sacred traditions concerning standards, its unsurpassed instrument shop, its world-known experts in the construction and comparison of standards, and especially in the most precise measurement of length and mass, that the boy Fischer, scarcely over 16, found himself when he entered the employ of Govern- ment in a minor capacity [about the year 18801. * * Scarcely 40 years had passed since the end of Hassler's services and the beginning of Fischer's. His first instructors were the direct disciples of Hassler and he knew and talked with those who had come in personal contact with the first superintendent.1 Fischer's reminiscences concerning the early historyof the Weights and Measures office, gathered from his association with the successors of Hassler, were never recorded, to Stratton's regret, and the only biography of Hassler, by Florian Cajori, professor of mathematics at the University of California, centers on his career in the Coast Survey gathered from his association with the successors of Hassler, were never recorded, to in the history of science in the Federal Government, is the principal source of the present sketch.2 1 Stratton, "Address Memorializing Louis Albert Fischer, 1864.—1921," 15th Annual Con.
    [Show full text]
  • Stephen Mihm Associate Professor of History University of Georgia 7 November 2014
    THE STANDARDS OF THE STATE: WEIGHTS, MEASURES, AND NATION MAKING IN THE EARLY AMERICAN REPUBLIC Stephen Mihm Associate Professor of History University of Georgia 7 November 2014 “State Formations: Histories and Cultures of Statehood” Center for Historical Research at the Ohio State University Do Not Cite or Quote without Permission In January 1830, a committee appointed by the Delaware House of Representatives filed a report to the larger General Assembly. The committee, created in response to a petition praying that the Delaware state government do something to establish “uniform weights and measures,” deemed it “inexpedient to make any legislative enactment upon this subject.” Their argument for inaction, laid out in great detail, reveals something about the fault lines of federalism at this time. “Congress alone can remedy the evils under which we labor, for want of a uniform standard,” they observed: Article I, Section 8 of the United States Constitution explicitly gave Congress the power to “fix the standard of weights and measures.” But Congress, while possessor of this prerogative, had declined to act, despite entreaties to do so. The committee ruefully reported that while “a great variety of useful and curious learning has been developed” as Congress grappled with the problem, “no law has yet been enacted by that body, to fix that standard.” The individual states, the committee reported, had acted, despite the questionable constitutionality of doing so. Each established their own weights and measures, driven by whatever their “particular circumstances seemed to require.” As a consequence, observed the committee, “scarcely any two States agree in their standards of weights and measures.” A small state like Delaware, overshadowed by the large commercial cities of Baltimore and Philadelphia, followed at least two – and likely many more – sets of standards, all of them at variance with each other.
    [Show full text]
  • Metrication Leaders Guide 2009
    Metrication Leaders Guide This resource book will help make your inevitable upgrade to the metric system easy, smooth, cheap, and fast. Pat Naughtin 2009 2 of 89 Make your upgrade to the metric system easy, smooth, cheap, and fast Decision making for metrication leaders !! " ! # $ Appendices % & % ! !! ' ! ( )% ' !* " " + , -&..)--/& , - ,$ # ! ,, 0 * + # ( http://metricationmatters.com [email protected] 3 of 89 Make your upgrade to the metric system easy, smooth, cheap, and fast. Deciding on a metrication program confirms that you are a metrication leader – not a follower. You have the courage to stand aside from the crowd, decide what you think is best for yourself and for others, and you are prepared to differ from other people in your class, your work group, your company, or your industry. As a metrication leader, you will soon discover three things: 1 Metrication is technically a simple process. 2 Metrication doesn't take long if you pursue a planned and timed program. 3 Metrication can provoke deeply felt anti-metrication emotions in people who have had no measurement experience with metric measures, or people who have difficulty with change. The first two encourage confidence – it's simple and it won't take long – but the third factor can give you an intense feeling of isolation when you first begin your metrication program. You feel you are learning a new language (you are – a new measuring language), while people around you not only refuse to learn this language, but will do what they can to prevent you from growing and from making progressive developments in your life. The purpose of this book is to give you some supporting arguments to use in your metrication process.
    [Show full text]
  • Instruction Sur Les Poids Et Mesures Républicaines : Déduites De La
    - I.t>-n :^.J\* m#^> CJ^i^r^ , INSTRUCTION s U R L E s POIDS ET MESURES RÉPUBLICAINES, DÉDUITES DE LA GRANDEUR DELATERRE, UNIEORMES POUR TOUTE LA RÉPUBLIQUE, JLi sur les calculs relatifs à leur dwision décimale /. Parla Commission temporaire des Poids et Mesures répuJ^licaines En exécution des décrets de la Convention nationaLe. A PARIS, DE l'i m P R I m E R I E pu DÉPÔT DES LOIS., Place de la B_éunion. Ad IP. de la E.é]:i;bliqiie , une et indivisible. ,2 ^^\ ^ Oot^' TABLE ; Des articles conlenus dans cette Instruction. Uî s G b U P. S PRÉLIMINAIRE ZX, PREMIÈRE PARTIE. Système des Mesures déduites de la grandeur de la Terre pag. i 1 ]N"OTIONS PRELIMINAIRES SUR LES MESIjRE;S, ibid, I. Des mesures linéaires 6. Détermination de Vunité des Mesures li- néaires. g. Nouvelle dii^isLon de la circonférence du Cercle .,.,.... ij. avantages des nouvelles Mesures lo. Expérience du Pendule 22. Nouvelle dii^ision de la durée du jour, . 28. Description de Vétalon du mètre et des principales mesures usuelles de longueur. 29, II. Des mesures agraires 3j. IIL Des mesures de capacité 33. IV. Des poids. ........ .^ ^3. Détermination de l'unité de Poids .... 44. Divisions et sousdii^isions de Vuniié de Foids. A^^ a i] iV Table. V, Des monnoies» ...'..... .'. ". pag, !>4, SECONDE PAP.TIE, CalcLiL leLatlf à La divisioa déci^ maie des Mesures déduites de La grandeur de La Terre 55, HOTIOKS PRÉLIMINAIRES ibid. Table des abréi^iaiions des noms de Me- sures et de Poids ôy. I, De la manière d'exprimer en chiffres LES RÉSULTATS DES OPÉRATIONS SUR LES nouvelles MESURES .
    [Show full text]
  • Changes of Forests in Czechoslovakia
    Changes of Forests In Czechoslovakia V. PERINA Ministry of Agriculture, Prague, Czechoslovakia In the territory of Central Europe, and, consequently, because it did not take into consideration the biological in Czechoslovakia, there has occurred in the last two requirements of individual tree species. centuries a substantial change in the species composition A substantialchangeoftreespeciescomposition of the forests.This change was caused by an economic- occurred in the territory of Bohemia, situated, from the historical situation in this country. In the areas of relatively phytogeographical point of view, in the Hercynian range. dense population the timber consumption increasedpro- At the present time, the Norway spruce here covers over portionally with the development of industry, so that the 62,5%, and the Scotch pine over 19,7% of the total high timber resources in the forests were successively reduced. forest area. The broadleaved species cover only 13,2% Artificial regeneration was not regulated, and natural of the area. In the eastern part of Czechoslovakia, i.e., regeneration was, in those times, hindered to a great in Slovakia, which belongs to the Carpathian range, and degree by grazing. where industry was not developed to such a great extent Timber scarcity and the unfavorable state of forests as in Bohemia and timber consumption was less important, were such that various ways for the improvement of no substantial change of species composition occurred. forestry were sought, in order to ensure a sufficient quan- Here, high forests are composed primarily of broadleaved tity of timber. One of those ways was, especially at the species (54,8%), whereas conifers occupy only 45,2% close of the 18th and in the 19th century, the establish- of the area.
    [Show full text]
  • What Is Metrication?
    What is metrication? Pat Naughtin Metrication is the process of upgrading from any of the many and various old pre-metric measurement methods to the modern metric system, which is technically known as The International System of Units (SI). Metrication began in France in the 1790s and then spread rapidly to all other nations in the world. Gradually, through the 1800s, the metric system replaced all of the numerous old historical weighing and measuring methods. By 1900, almost all nations had passed laws that accepted the metric system for use in trade, and during the late 1800s this usually translated into widespread use of the metric system by the public. The metric system is now used by all of the world's people in all nations. The philosopher, Condorcet, proved to be correct when, in 1791, he described the original metric system as: For all people; for all time. As examples, the USA has allowed metric measuring units since 1866, and the UK since 1873. Liberia and Myanmar are the only nations that have not yet passed specific metric laws but the metric system is used in both of those countries every day. Only in France, Japan, the United Kingdom, and the United States of America has there been any significant opposition to metrication, the main objections being based on history, tradition, aesthetics, economic conjecture, and a personal distaste for foreign ideas. In France and Japan the opposition faded as soon as people regularly used the metric system. This left only two nations, the UK and the USA, with citizens who have difficulty accepting the reality of worldwide metrication.
    [Show full text]
  • Not Made to Measure
    Made in Britain: Not made to measure. Ronnie Cohen © 2011 Ronnie Cohen. All rights reserved. 1 Table of Contents Foreword...............................................................................................................................................5 Introduction..........................................................................................................................................6 Central Role of Measurement in Daily Life.........................................................................................7 Why Measurement Matters..................................................................................................................8 Quest for Honest Measurements since Ancient Times.........................................................................9 Measurement Facts: Did you know that....?.......................................................................................10 Description of the British Imperial System........................................................................................11 Introduction to the British Imperial System..............................................................................11 Units of Length..........................................................................................................................11 Units of Area.............................................................................................................................11 Units of Volume........................................................................................................................12
    [Show full text]
  • Metrication Is SUCCESSFUL
    Metrication is SUCCESSFUL Metrication is SUCCESSFUL because it is: Simple The modern metric system, formally known as the International System of Units (SI), is the simplest and easiest-to-use system of measurement ever devised. In fact the metric system is the only system of measurement ever devised. All previous measuring methods were just a hodge-podge of randomly generated local measures. Unique The metric system is unique. Never before, has there been a method of measurement that has all the positive benefits as SI. Coherent The metric system uses the same decimal nature as our number system, and it uses the same mathematical rules and symbols that we use for the mathematic of numbers Capable The metric system is capable of measuring anything in any trade, profession, or other human activity. The metric system has no limitations. For example, you might measure the distance from here to the door in metres, the distance from between your home and your work in kilometres, the width of your little finger nail in millimetres, the diameter of the hairs on your head in micrometres, and the size of one of your cells in nanometres. Why stop there? With the SI prefixes, there is more than enough flexibility to measure from the size of sub-atomic particles – the diameter of an electron is about 6 femtometres – to the size of the whole Universe – the diameter of the Universe, as observed by the world's best telescopes, is about 250 yottametres. Equitable The key argument for using the metric system is that it is fair to all concerned.
    [Show full text]
  • Essence of the Metric System
    Outline of the metric system - Wikipedia https://en.wikipedia.org/wiki/Outline_of_the_metric_system From Wikipedia, the free encyclopedia The following outline is provided as an overview of and topical guide to the metric system: Metric system – various loosely related systems of measurement that trace their origin to the decimal system of measurement introduced in France during the French Revolution. 1 Nature of the metric system 2 Metric units of measure 3 History of the metric system 4 Politics of the metric system 5 Future of the metric system 6 Metric system organizations 7 Metric system publications 8 Persons influential in the metric system 9 See also "The metric system is for all people for all 10 References time." (Condorcet 1791) Four objects used in 11 External links making measurements in everyday situations that have metric calibrations are shown: a tape measure calibrated in centimetres, a thermometer calibrated in degrees Celsius, a kilogram mass, and an electrical multimeter The metric system can be described as all of the following: which measures volts, amps and ohms. System – set of interacting or interdependent components forming an integrated whole. System of measurement – set of units which can be used to specify anything which can be measured. Historically, systems of measurement were initially defined and regulated to support trade and internal commerce. Units were arbitrarily defined by fiat (see statutory law) by the ruling entities and were not necessarily well inter-related or self-consistent. When later analyzed and scientifically, some quantities were designated as fundamental units, meaning all other needed units of measure could be derived from them.
    [Show full text]
  • Outlines of the Evolution of Weights and Measures and the Metric System
    OUTLINES OF THE EVOLUTION OF WEIGHTS AND MEASUEES AND THE METRIC SYSTEM OUTLINES OF THE EVOLUTION OF WEIGHTS AND MEASURES AND THE METRIC SYSTEM BY WILLIAM HALLOCK Ph.D. PROFESSOR OF PHYSIOS IN COLUMBIA UNIVERSITY IN THE CITY OF NEW YORK AND HERBERT T. WADE EDITOR FOR PHYSICS AND APPLIED SCIENCE, ' THK NEW INTERNATIONAL ENCYCLOPAEDIA THE MACMILLAN COMPANY LONDON : MACMILLAN AND CO. LTD. 1906 ac 2b SEP 8 <i ;\ OFT 9239G3 GLASGOW I PRINTED AT THE UNIVERSITY BY ROBERT MACLEHOSE AND CO. LTD. PREFACE. In the following pages it has been the aim of the authors to present in simple and non-technical language, so far as possible, a comprehensive view of the evolution of the science of metrology as it is now understood. Inasmuch as the introduction of the Metric System into the United States and Great Britain is a topic of more or less general interest at the present time, it has seemed that a work designed both for the student of science and for the general reader, in which this system is discussed in its relation to other systems of weights and measures past and present, would fill a certain need. While there are many works on metrology that treat at considerable length the historic and scientific sides of the subject, as well as the economic and archaeological questions involved, and a large number of books and pamphlets dealing with the teaching of the Metric System, besides those supplying tables and formulas for converting from one system to the other, yet there is apparently a distinct lack of works, which in small compass discuss the subject comprehensively from its many points of view.
    [Show full text]