Small Bodies Exploration in the Next 35 Years

Total Page:16

File Type:pdf, Size:1020Kb

Small Bodies Exploration in the Next 35 Years Planetary Science Vision 2050 Workshop 2017 (LPI Contrib. No. 1989) 8041.pdf SMALL BODIES EXPLORATION IN THE NEXT 35 YEARS. T. D. Swindle1 and The SBAG Steering Com- mittee (N. Chabot (APL), B. Barbee (NASA GSFC), J. Bauer (JPL), B. Bierhaus (Lockheed Martin), D. Britt (UCF), J. Castillo-Rogez (JPL), P. Chodas (JPL), L. Feaga (U. Maryland), C. Hartzell (U. Maryland), C. Mercer (NASA Glenn), A. Stickle (APL)), 1LPL, University of Arizona, [email protected]. In the last 35 years, our knowledge of small bodies vations), enabling us to address questions not just of has increased by orders of magnitude, from roughly the origin of the known planets, but also of whether 2000 numbered asteroids to nearly 500,000, from one other large, perhaps even planet-sized, objects exist in known trans-Neptunian object (Pluto) to 2300, from the cold outer reaches of the Solar System. The New ~2000 meteorites to more than 55,000, from no sam- Horizons spacecraft has demonstrated that Pluto is a ples from any specific small body to samples returned much more active body than had been expected, and it from a comet’s coma (Stardust) and an asteroid’s rego- will be flying by another TNO in its extended mission. lith (Hayabusa) with two more spacecraft on their way Centaurs are an as of yet unexplored category of small to return asteroidal samples, from no spacecraft images bodies that exhibit evidence of cometary activity, ring of small bodies other than Martian moons to flyby, systems, and binaries, and may serve as a mid-stage rendezvous, and/or landing missions to a dozen comets sample of the effects of solar exposure on TNOs. and asteroids plus Pluto. What will we achieve in the Whether we send spacecraft to explore the outer reach- next 35 years? A good place to start is to look at the es of the Solar System may depend on development of goals that the Small Bodies Assessment Group (SBAG) effective communications and propulsion systems. has defined for the exploration of small bodies, and Already, we have two spacecraft, Hayabusa-2 and consider where we are poised to make progress. OSIRIS-REx, en route to return samples from (primi- The SBAG Goals Document [1] identifies three tive?) carbonaceous asteroids. The study of that mate- overarching, high-level goals pertaining to the Solar rial, plus refractory and sub-surface cryogenic material System’s small bodies, 1) utilizing the Solar System’s returned from a cometary nucleus, will give us a much small bodies as the scientific probes of the Solar Sys- greater knowledge of what kinds of materials were tem’s formation and evolution, 2) defending planet available to provide volatiles to the terrestrial planets, Earth against the potential hazard that the impact of and how closely the origin of water and/or organic ma- comets or asteroids represents, and 3) taking advantage terial on Earth may be tied to different types of small of the unique properties of the small bodies in the inner bodies that we can study today. In addition, Ceres may Solar System to enable human exploration. be the most accessible ocean world. Science: Small bodies provide unique scientific Increased scrutiny of, and, in particular, sample re- opportunities to investigate the formation of the Solar turn from, from Mars’ moons can address the long- System. They represent remnants of the building blocks standing puzzle of their origin. That question has fun- of the planets and provide insight into the conditions of damental implications for the dynamical environment the earliest history of the Solar System and the factors in the vicinity of Mars, which, in turn, is wrapped up in that gave rise to the origin of life. Small bodies also the origin and evolution of the entire inner Solar Sys- experience a myriad of processes, providing numerous tem. natural science laboratories to gain knowledge into the We are only beginning to study Jupiter’s Trojan as- evolution of the Solar System. The high priority scien- teroids. They are highlighted as a New Frontiers mis- tific objectives identified by SBAG are to understand sion target in the most recent Decadal Survey, with a the census and architecture of small bodies in the Solar history waiting to be deciphered. System, to study small bodies to understand the origin Meteorite investigations have led to dramatic in- of the Solar System and the dynamical evolution of the creases in our understanding of the nature and timing Solar System, to understand the evolution of small bod- of accretion and differentiation of small bodies within ies’ surfaces and interiors, and the relationship to other the early Solar System. Future analytical advances and events and processes in the Solar System, and to de- the continued discovery of rare meteorite types will termine the source, amount, and evolution of volatiles lead to new insights during the next 35 years. The within small bodies in the Solar System. There are nu- study of more asteroids (both in situ and via sample merous ways in which the science related to small bod- return) will lead to more specific constraints for Earth- ies is likely to advance. based laboratory studies of meteorites. We are likely to achieve much greater knowledge Planetary defense: Some small bodies have orbits of the population of TNOs and the Oort Cloud (which that approach and intersect Earth’s orbit, and thus have should become accessible at least to telescopic obser- the potential to impact Earth, possibly with damaging Planetary Science Vision 2050 Workshop 2017 (LPI Contrib. No. 1989) 8041.pdf consequences to humankind. Planetary defense refers The techniques that will make it possible to identify to the combined activities undertaken to understand the hazardous NEOs for planetary defense purposes will hazards posed by near-Earth objects impacting our also vastly increase the number of known NEOs that planet and develop strategies for avoiding impacts or are potential exploration targets for humans. This is managing their aftermath. In 2005, Congress directed because many of the most hazardous NEOs occupy NASA to detect 90% of all near-Earth objects (NEOs) rather Earth-like orbits, which also makes them the larger than 140 m in diameter by 2020 [2]. Current most accessible objects outside the Earth-Moon sys- surveys are inadequate for achieving this goal, even by tem. NASA monitors the accessibility of the NEAs via 2050. But, a combination of space-based and next- the automated Near-Earth Object Human Space Flight generation ground-based systems could complete the Accessible Targets Study (NHATS) system. At the survey well before 2030, as well as increase the num- time of this writing, 1,894 of the known NEAs have ber of detected NEOs of all sizes by more than an order been identified by the NHATS system as being more of magnitude. Several multi-meter objects are likely to round-trip accessible than Mars, and 70 are more be found days before impacting Earth. Although prob- round-trip accessible than low lunar orbit. ably too small to be hazardous, observing these objects Missions like Hayabusa, Hayabusa-2, OSIRIS-REx, as they impact, and possibly collecting resulting mete- and Rosetta are spending more and more time working orites, will provide unique opportunities to study aster- and taking measurements in the vicinity of asteroids oid strengths and link asteroid classes with meteorite and comets. As a result, we are learning, and will con- physical properties. tinue to learn, about the physics of operations in the In order to develop robust mitigation approaches to vicinity of small bodies. Large increases in knowledge address potential impactor threats, it will be important are likely to occur when humans are actually present. to validate these techniques through demonstration Although SBAG’s human exploration objectives are missions. It is likely that we will launch a Kinetic Im- tied to closing the existing Strategic Knowledge Gaps, pactor demonstration mission in order to assess the there is much intrinsic science about small body envi- importance of ejecta in the momentum transfer of the ronments that astronauts will uncover. mission. Deflection demonstrations of other tech- Phobos and Deimos are easier to access with a niques, such as gravity tractor, ion beam deflection, crewed spacecraft than the surface of Mars, and lack and laser ablation would be appropriate to ensure ro- the planetary protection issues posed by Mars, so they bust operations during an actual emergency scenario. are likely to play key roles in the human exploration of Enabling human exploration: The accessibility of Mars, either for precursor missions or as outposts for NEOs, and in particular, near-Earth asteroids (NEAs), teleoperated activities on the Martian surface. presents opportunities to enable human exploration of At present, exploration missions rely on bringing our Solar System, and the Martian moons represent all needed supplies, from fuel to shielding to building natural outposts in the Mars system. NEAs may contain materials (for space stations) to food (for crewed mis- resources, such as water, that human explorers could sions). There are NEOs that can probably satisfy many utilize, thereby enabling exploration missions that of these needs, and there are now private companies would otherwise require the launch of significantly with the stated goal of mining asteroids. If any of these more material from Earth. In this context, NEAs are companies are successful, it will not only revolutionize inner Solar System destinations in their own right, as travel beyond Earth orbit (for both crewed and robotic well as a proving ground at which we can learn vital spacecraft), but there are also a host of scientifically lessons pertinent to the extension of human exploration interesting properties about the structure and interiors capabilities to more distant destinations.
Recommended publications
  • 7Th IAA Planetary Defense Conference – PDC 2021 26
    7th IAA Planetary Defense Conference – PDC 2021 1 26-30 April 2021, Vienna, Austria IAA-PDC-21-11-37 Precautionary Planetary Defence Aaron C. Boley(1), Michael Byers(2) (1)(2)Outer Space Institute University of British Columbia 325-6224 Agricultural Road Vancouver, BC V6T 1Z1 Canada +1-604-827-2641 [email protected] Keywords: Asteroids, Precautionary Principle, Decision-Making, Active Management visiting the asteroid before the 2029 close approach Introduction: The question of whether to attempt leads us to ask, in a general sense, to what degree deflections during planetary defence emergencies has might restraint be prudent? been subject to considerable decision-making analysis As discussed by Chesley and Farnocchia (2021), if a (Schmidt 2018; SMPAG Ad-Hoc Working Group on Legal mission to an asteroid with a rich set of keyholes, like Issues 2020). Hypothetical situations usually involve a Apophis, goes awry and unintentionally collides with the newly discovered asteroid with a high impact probability asteroid, there is a risk that this will create a future on a set timescale. This paper addresses two further impact emergency. The publicity associated with the complexities: (1) limiting missions to an asteroid due to asteroid’s close approach could also prompt non-state the risk of a human-caused Earth impact; and (2) active actors to launch their own missions as technology management of asteroids to place them in “safe demonstrations and/or profile-raising exercises, much harbours”, even when impact risks are otherwise below like the infamous Tesla launch by SpaceX. “decision to act” thresholds. We use Apophis as a case Adding to these considerations is a potential traffic study, and address the two complexities in turn.
    [Show full text]
  • Planetary Science Division Status Report
    Planetary Science Division Status Report Jim Green NASA, Planetary Science Division January 26, 2017 Astronomy and Astrophysics Advisory CommiBee Outline • Planetary Science ObjecFves • Missions and Events Overview • Flight Programs: – Discovery – New FronFers – Mars Programs – Outer Planets • Planetary Defense AcFviFes • R&A Overview • Educaon and Outreach AcFviFes • PSD Budget Overview New Horizons exploresPlanetary Science Pluto and the Kuiper Belt Ascertain the content, origin, and evoluFon of the Solar System and the potenFal for life elsewhere! 01/08/2016 As the highest resolution images continue to beam back from New Horizons, the mission is onto exploring Kuiper Belt Objects with the Long Range Reconnaissance Imager (LORRI) camera from unique viewing angles not visible from Earth. New Horizons is also beginning maneuvers to be able to swing close by a Kuiper Belt Object in the next year. Giant IcebergsObjecve 1.5.1 (water blocks) floatingObjecve 1.5.2 in glaciers of Objecve 1.5.3 Objecve 1.5.4 Objecve 1.5.5 hydrogen, mDemonstrate ethane, and other frozenDemonstrate progress gasses on the Demonstrate Sublimation pitsDemonstrate from the surface ofDemonstrate progress Pluto, potentially surface of Pluto.progress in in exploring and progress in showing a geologicallyprogress in improving active surface.in idenFfying and advancing the observing the objects exploring and understanding of the characterizing objects The Newunderstanding of Horizons missionin the Solar System to and the finding locaons origin and evoluFon in the Solar System explorationhow the chemical of Pluto wereunderstand how they voted the where life could of life on Earth to that pose threats to and physical formed and evolve have existed or guide the search for Earth or offer People’sprocesses in the Choice for Breakthrough of thecould exist today life elsewhere resources for human Year forSolar System 2015 by Science Magazine as exploraon operate, interact well as theand evolve top story of 2015 by Discover Magazine.
    [Show full text]
  • Enhanced Gravity Tractor Technique for Planetary Defense
    4th IAA Planetary Defense Conference – PDC 2015 13-17 April 2015, Frascati, Roma, Italy IAA-PDC-15-04-11 ENHANCED GRAVITY TRACTOR TECHNIQUE FOR PLANETARY DEFENSE Daniel D. Mazanek(1), David M. Reeves(2), Joshua B. Hopkins(3), Darren W. Wade(4), Marco Tantardini(5), and Haijun Shen(6) (1)NASA Langley Research Center, Mail Stop 462, 1 North Dryden Street, Hampton, VA, 23681, USA, 1-757-864-1739, (2) NASA Langley Research Center, Mail Stop 462, 1 North Dryden Street, Hampton, VA, 23681, USA, 1-757-864-9256, (3)Lockheed Martin Space Systems Company, Mail Stop H3005, PO Box 179, Denver, CO 80201, USA, 1-303- 971-7928, (4)Lockheed Martin Space Systems Company, Mail Stop S8110, PO Box 179, Denver, CO 80201, USA, 1-303-977-4671, (5)Independent, via Tibaldi 5, Cremona, Italy, +393381003736, (6)Analytical Mechanics Associates, Inc., 21 Enterprise Parkway, Suite 300, Hampton, VA 23666, USA, 1-757-865-0000, Keywords: enhanced gravity tractor, in-situ mass augmentation, asteroid and comet deflection, planetary defense, low-thrust, high-efficiency propulsion, gravitational attraction, robotic mass collection Abstract Given sufficient warning time, Earth-impacting asteroids and comets can be deflected with a variety of different “slow push/pull” techniques. The gravity tractor is one technique that uses the gravitational attraction of a rendezvous spacecraft to the impactor and a low-thrust, high-efficiency propulsion system to provide a gradual velocity change and alter its trajectory. An innovation to this technique, known as the Enhanced Gravity Tractor (EGT), uses mass collected in-situ to augment the mass of the spacecraft, thereby greatly increasing the gravitational force between the objects.
    [Show full text]
  • Deflecting a Hazardous Near-Earth Object 1St IAA Planetary Defense
    Deflecting a Hazardous Near-Earth Object 1st IAA Planetary Defense Conference: Protecting Earth from Asteroids 27-30 April 2009 Granada, Spain D.K. Yeomans(1), S. Bhaskaran(1), S.B. Broschart(1), S.R. Chesley(1), P.W. Chodas(1), T. H. Sweetser(1), R. Schweickart(2) (1)JPL/Caltech 4800 Oak Grove Drive Pasadena, CA 91109, USA [email protected] ( 2)B612 Foundation 760 Fifth St. East Sonoma, CA 95476, USA [email protected] INTRODUCTION This short report on Near-Earth Object (NEO) hazard mitigation strategies was developed in response to a request for information by the U.S. National Research Council’s Space Sciences Board on December 17, 2008 and for the Planetary Defense Conference that took place 27-30 April 2009 in Granada Spain. Although we present example simulations for specific techniques that could be employed to deflect an Earth threatening NEO, our primary goal is to discuss some of the general principles and techniques that would be germane to all NEO deflection scenarios. This report summarizes work that was carried out in early 2009 and extends an earlier, more detailed study carried out in late 2008 [1]. STUDY OVERVIEW Because of the wide range of possible sizes, trajectories and warning times for Earth threatening NEOs, there will be a corresponding range in the levels of challenge in providing an appropriate mitigation response. Unless there are decades of warning time, hazardous NEOs larger than a few hundred meters in diameter may require large energies to deflect or fragment. In these cases, nuclear explosions, either stand- off or surface blasts, might provide a suitable response.
    [Show full text]
  • Asteroid Deflection Using a Solar-Sailed Electromagnetic Gravity Tractor
    International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056 Volume: 07 Issue: 06 | June 2020 www.irjet.net p-ISSN: 2395-0072 Asteroid Deflection using a Solar-Sailed Electromagnetic Gravity Tractor Parvati Rajesh Student, Department of Mechanical Engineering, Presidency University, Itgalpur, Rajanakunte, Yelahanka, Bengaluru, Karnataka, Pin Code- 560064, India ---------------------------------------------------------------------***--------------------------------------------------------------------- Abstract – An asteroid threat is one of the topics in science which gets less coverage. If an asteroid as small as 200m were to collide with earth, that would annihilate modern infrastructure and cause significant losses in biodiversity. One such theoretical solution developed to prevent this from occurring is a Gravity Tractor. A Gravity Tractor is a theoretical spacecraft which aims to alter the trajectory of an asteroid which is on the course to collide with earth. Although there have been numerous anticipated designs and alterations in this subject matter, this paper intends to suggest an idea of a gravity tractor integrated with a solar sail for solar- electric propulsion coupled with a feature of electromagnetism to exert a stronger attraction force on the asteroid if it is made out of a metallic core. Figure 1 Key Words: Asteroid, Gravity tractor, Threat Assuming the asteroid shown in the figure above is at mitigation, asteroid collision, space craft, least a 100 light years away and has been detected by Gravitational towing, Near Earth Objects, planetary defenses of various space agencies ,other electromagnetic spacecraft private industries or any other means, if a tractor is sent on time and the deflection is made at a safe 1. INTRODUCTION distance, a small deflection (α) will cause a significant amount of change in course for the asteroid to he idea of a spacecraft for altering the course of an completely omit earth.
    [Show full text]
  • 1950 Da, 205, 269 1979 Va, 230 1991 Ry16, 183 1992 Kd, 61 1992
    Cambridge University Press 978-1-107-09684-4 — Asteroids Thomas H. Burbine Index More Information 356 Index 1950 DA, 205, 269 single scattering, 142, 143, 144, 145 1979 VA, 230 visual Bond, 7 1991 RY16, 183 visual geometric, 7, 27, 28, 163, 185, 189, 190, 1992 KD, 61 191, 192, 192, 253 1992 QB1, 233, 234 Alexandra, 59 1993 FW, 234 altitude, 49 1994 JR1, 239, 275 Alvarez, Luis, 258 1999 JU3, 61 Alvarez, Walter, 258 1999 RL95, 183 amino acid, 81 1999 RQ36, 61 ammonia, 223, 301 2000 DP107, 274, 304 amoeboid olivine aggregate, 83 2000 GD65, 205 Amor, 251 2001 QR322, 232 Amor group, 251 2003 EH1, 107 Anacostia, 179 2007 PA8, 207 Anand, Viswanathan, 62 2008 TC3, 264, 265 Angelina, 175 2010 JL88, 205 angrite, 87, 101, 110, 126, 168 2010 TK7, 231 Annefrank, 274, 275, 289 2011 QF99, 232 Antarctic Search for Meteorites (ANSMET), 71 2012 DA14, 108 Antarctica, 69–71 2012 VP113, 233, 244 aphelion, 30, 251 2013 TX68, 64 APL, 275, 292 2014 AA, 264, 265 Apohele group, 251 2014 RC, 205 Apollo, 179, 180, 251 Apollo group, 230, 251 absorption band, 135–6, 137–40, 145–50, Apollo mission, 129, 262, 299 163, 184 Apophis, 20, 269, 270 acapulcoite/ lodranite, 87, 90, 103, 110, 168, 285 Aquitania, 179 Achilles, 232 Arecibo Observatory, 206 achondrite, 84, 86, 116, 187 Aristarchus, 29 primitive, 84, 86, 103–4, 287 Asporina, 177 Adamcarolla, 62 asteroid chronology function, 262 Adeona family, 198 Asteroid Zoo, 54 Aeternitas, 177 Astraea, 53 Agnia family, 170, 198 Astronautica, 61 AKARI satellite, 192 Aten, 251 alabandite, 76, 101 Aten group, 251 Alauda family, 198 Atira, 251 albedo, 7, 21, 27, 185–6 Atira group, 251 Bond, 7, 8, 9, 28, 189 atmosphere, 1, 3, 8, 43, 66, 68, 265 geometric, 7 A- type, 163, 165, 167, 169, 170, 177–8, 192 356 © in this web service Cambridge University Press www.cambridge.org Cambridge University Press 978-1-107-09684-4 — Asteroids Thomas H.
    [Show full text]
  • Astrodynamic Fundamentals for Deflecting Hazardous Near-Earth Objects
    IAC-09-C1.3.1 Astrodynamic Fundamentals for Deflecting Hazardous Near-Earth Objects∗ Bong Wie† Asteroid Deflection Research Center Iowa State University, Ames, IA 50011, United States [email protected] Abstract mate change caused by this asteroid impact may have caused the dinosaur extinction. On June 30, 1908, an The John V. Breakwell Memorial Lecture for the As- asteroid or comet estimated at 30 to 50 m in diameter trodynamics Symposium of the 60th International As- exploded in the skies above Tunguska, Siberia. Known tronautical Congress (IAC) presents a tutorial overview as the Tunguska Event, the explosion flattened trees and of the astrodynamical problem of deflecting a near-Earth killed other vegetation over a 500,000-acre area with an object (NEO) that is on a collision course toward Earth. energy level equivalent to about 500 Hiroshima nuclear This lecture focuses on the astrodynamic fundamentals bombs. of such a technically challenging, complex engineering In the early 1990s, scientists around the world initi- problem. Although various deflection technologies have ated studies to prevent NEOs from striking Earth [1]. been proposed during the past two decades, there is no However, it is now 2009, and there is no consensus on consensus on how to reliably deflect them in a timely how to reliably deflect them in a timely manner even manner. Consequently, now is the time to develop prac- though various mitigation approaches have been inves- tically viable technologies that can be used to mitigate tigated during the past two decades [1-8]. Consequently, threats from NEOs while also advancing space explo- now is the time for initiating a concerted R&D effort for ration.
    [Show full text]
  • Abstract Template for SFFMT 2013
    4th IAA Planetary Defense Conference – PDC 2015 13-17 April 2015, Frascati, Roma, Italy IAA-PDC-15-04-25 NEOShield Kinetic Impactor Demonstration Mission Michael Kersten(1), Albert Falke(1), Kilian Engel(1), Ulrich Johann(1), Line Drube(2), Alan Harris(2), and the NEOShield Consortia (1) Airbus DS GmbH, Claude-Dornier-Straße, 88090 Immenstaad, +49 7545 8 2535, [email protected] (2) German Aerospace Center, Rutherfordstr. 2, 12489 Berlin, +49 (0) 3067055-0 Keywords: NEOShield, Impactor, Demonstration Mission, NEO, Planetary Defense Introduction This paper outlines a near-term mission concept developed under the NEOShield Project, for the demonstration of deflection capability of Potentially Hazardous Objects (PHOs). Potentially Hazardous Objects are a subclass of NEOs consisting mostly of asteroids (Potentially Hazardous Asteroids) that have the potential to make close approaches to the earth whilst featuring a size large enough to cause significant regional damage in the event of an impact. The following figure depicts the orbits of the presently known PHOs. It is currently (as of 2012) expected that only 20 - 30 percent of all existing PHOs are already known. This gives an indication that NEOs, in particular PHOs, are likely to pose a real threat to earth on a longer time scale. Figure 1: Plot of the orbits of all presently known Potentially Hazardous Asteroids (PHAs), i.e. over 1400 as of early 2013. PHAs are asteroids with a size of at least 140 m and with orbits passing the earth orbit within 7.5 million kilometres. The earth orbit is shown by a bold black nearly circular ellipse.
    [Show full text]
  • Planetary Defense Conference 2013 Flagstaff, USA IAA-PDC2013-04-18
    Planetary Defense Conference 2013 Flagstaff, USA IAA-PDC2013-04-18 Performance and Derived Requirements of a Gravity Tractor serving as a Precursor to a Kinetic Impactor within the NEOShield Study Framework Julie Bellerose(1), Cyrus Foster(2), David Morrison(3) , Belgacem Jaroux(4) , and David Mauro(2) (1) Jet Propulsion Laboratory, Pasadena CA, [email protected] (2)SGT / NASA Ames Research Center, Moffett Field CA, [email protected], [email protected] (3)The SETI Institute, Carl Sagan Center, Mountain View CA, [email protected] (4)NASA Ames Research Center, Moffett Field CA, [email protected] Keywords: gravity tractor, small spacecraft, NEOShield, near-Earth asteroids Abstract Independent studies and competitions over the last decade have provided a wealth of methods for deflecting near-Earth Objects (NEO)s on Earth close approaches or from direct impacting trajectories. This paper provides an in-depth analysis of the deflection achieved by a gravity tractor acting on a “most likely PHA” recently studied through the NEOShield study. Topics investigated include the choice of propulsion system, scalability to NEOs in the range between 50 m to 200 m in diameter for spacecraft between 1000 kg and 12 000 kg, and discussion of mission scenarios and related operations. As a gravity tractor/kinetic impactor concept is also being investigated within the NEOShield study, we look at the measurements’ and operations’ requirements imposed on the gravity tractor serving as a precursor to an impactor spacecraft. We present a case study for a small spacecraft at the NEOs of interest for the NEOShield, and discuss the performance, trades and challenges involved in performing close proximity operations in such low gravity environments.
    [Show full text]
  • Dynamics of Tethered Asteroid Systems to Support Planetary Defense
    Eur. Phys. J. Special Topics 229, 1463{1477 (2020) c EDP Sciences, Springer-Verlag GmbH Germany, THE EUROPEAN part of Springer Nature, 2020 PHYSICAL JOURNAL https://doi.org/10.1140/epjst/e2020-900183-y SPECIAL TOPICS Regular Article Dynamics of tethered asteroid systems to support planetary defense Flaviane C.F. Venditti1;a, Luis O. Marchi2, Arun K. Misra3, Diogo M. Sanchez2, and Antonio F.B.A. Prado2 1 NASA Solar System Exploration Research Virtual Institute (SSERVI) and Planetary Radar Department, Arecibo Observatory, University of Central Florida, Arecibo, PR, USA 2 Division of Space Mechanics and Control, National Institute for Space Research, Sao Jose dos Campos, SP, Brazil 3 Mechanical Engineering Department, McGill University, Montreal, QC, Canada Received 28 August 2019 / Received in final form 23 November 2019 Published online 29 May 2020 Abstract. Every year near-Earth object (NEO) surveys discover hun- dreds of new asteroids, including the potentially hazardous asteroids (PHA). The possibility of impact with the Earth is one of the main motivations to track and study these objects. This paper presents a tether assisted methodology to deflect a PHA by connecting a smaller asteroid, altering the center of mass of the system, and consequently, moving the PHA to a safer orbit. Some of the advantages of this method are that it does not result in fragmentation, which could lead to another problem, and also the flexibility to change the configuration of the system to optimize the deflection according to the warning time. The dynamics of the PHA-tether-asteroid system is analyzed, and the amount of orbit change is determined for several initial conditions.
    [Show full text]
  • Asteroids, Dwarf Planets, and Two Weeks in a Box
    Asteroids, Dwarf Planets, and Two Weeks in a Box Kristen John, Ph.D. Postdoctoral Research Fellow NASA Johnson Space Center July 1st, 2015 Kristen’s SSGF Experience • 2009-2013 • Properties of Materials Under Extreme Conditions • Practicum: LLNL (2011) – Bruce Remington & Hye-Sook Park – Omega Laser (LLE) – Strength of Ta, Fe Grad School • Aerospace Engineering • Ph.D. Caltech, 2014 M.S. Caltech, 2010 B.S. UT-Austin, 2008 • Advisor: G. “Ravi” Ravichandran A Year in the Life of a Post-doc • The Path to NPP • A Day in the Life of a Post-doc? An Engineer Among Scientists (in a science group among engineers) NPP JSC Advisors: Paul Abell & Lee Graham ARM AIDA surface properties, proximity operations Asteroid Impact & Deflection Assessment (AIDA) AIDA = AIM & DART Asteroid Impact Mission Double Asteroid Redirection Test (ESA) (NASA/APL) Asteroid rendezvous spacecraft An asteroid impactor • Test ability to perform a spacecraft impact on a potentially hazardous near- Earth asteroid • Measure and characterize the deflection caused by the impact Asteroid Redirect Mission (ARM) 2008 EV5 – C-Type 1. Visit an asteroid 2. Redirect its trajectoryType 3. Bring boulder off the surface back to lunar orbit “Gravity Tractor" planetary defense technique on a hazardous-size asteroid Leverages the mass of the spacecraft to impart a gravitational force on the asteroid, slowly altering Capture Arms & Microspine SEP & Gravity Tractor the asteroid’s trajectory Investigating Ceres What are Where are asteroids? asteroids? rocky, airless, small, Near-Earth, irregular bodies Main Belt, Trojans, KBO’s Dwarf Planet Dwarf Planet Requirements 1. Orbits the sun. 2. Has enough mass to assume a nearly round shape.
    [Show full text]
  • Mankind Beyond Earth, Ties the Story Together and Extends It to Further Exploration of the Piantadosi Explains Why Space Exploration, a Claude A
    0.94091” continued from the front flap “Finally, a give-it-to-me-straight “A whole generation has grown up with tales of the glory of man’s PIANTADOSI account of why space exploration excursion into space, and this fact-filled and stimulating book SEEKING TO REENERGIZE AMERICANS’ Bonestell was an award-winning pioneer of astronomical art and has been dubbed the “Father of Modern Space Art.” A crater on Mars and the asteroid 3129 Bonestell are named after him. after named are 3129 Bonestell asteroid the and Mars on A crater Art.” Space Modern of “Father the dubbed been has art and astronomical of pioneer award-winning an was Bonestell jacket image: © chesley bonestell, © chesley image: jacket matters. In Mankind Beyond Earth, ties the story together and extends it to further exploration of the Piantadosi explains why space exploration, a Claude A. Piantadosi folds together Moon again and Mars.” passion for the space program, the value of captivating story of ambition, invention, and science, politics, and culture to further exploration of the Moon, and the impor- discovery, is also increasingly difficult and why BRUCE D. BUTLER, University of Texas Medical School MANKIND demonstrate why a civilization tance of human beings on the final frontier, space experts always seem to disagree. He argues at Houston without a spacefaring future is Claude A. Piantadosi presents a rich history that the future of the space program requires MANKIND of American space exploration and its major doomed to extinction.” “Mankind Beyond Earth offers a wide-ranging analysis of the merging the practicalities of exploration with achievements.
    [Show full text]