Protecting the Earth from Asteroid Impacts

Total Page:16

File Type:pdf, Size:1020Kb

Protecting the Earth from Asteroid Impacts PROTECTING THE EARTH FROM ASTEROID IMPACTS ANNUAL PROGRESS REPORT 2017 1 Cover: Photo by Ed Lu from the International Space Station This Page: Photo by Ed Lu of islands in the Caribbean, from the International Space Station If you look at the history of our planet over 4.5 billion years, it has been struck by asteroids, large and small, thousands of times. And if you look at what we have the opportunity to do, it is to change the evolution of the entire solar system such that the third planet no longer gets hit by large asteroids. And that’s actually within our capability. ED LU, EXECUTIVE DIRECTOR OF THE ASTEROID INSTITUTE LETTER FROM THE PRESIDENT In October we celebrated the anniversary of B612, which formally incorporated and elected officers fifteen years ago. Five forward-thinking individuals — Ed Lu, Piet Hut, Clark Chapman, Rusty Schweickart, and Geoff Baehr — were part of the organization’s founding. With your support the next fifteen years will be filled with asteroid discovery and global collaborations within the growing field of planetary defense. The vision and hard work of the founding and current board directors have laid the groundwork for us to create the Asteroid Institute earlier this year. The Asteroid Institute is a virtual collaboration rooted in science and technology programs. The Asteroid Institute team is working on hardware, new technologies, and applications that will help us accelerate our knowledge and understanding of asteroids. The Asteroid Institute is building on the Asteroid Decision Analysis and Mapping project (ADAM) Cloud Platform (see pages 14-15). The ADAM project will provide a cloud-based infrastructure for large-scale orbital dynamics and related computations that will enable the science, policy, and business community to better understand and make sense of opportunities and threats coming from the asteroids in the solar system. We continue to explore options to utilize synthetic tracking to increase the rate of asteroid discovery (see page 16). Our partners in the private sector and at CalTech, Southwest Research Institute, and other academic institutions are helping us advance these capabilities. As we have often stated, synthetic tracking technology could complement other telescopes by finding and tracking the large number of asteroids which will be missed by land-based telescopes — such as LSST — and infrared space telescopes such as NASA’s proposed NEOCam. Synthetic tracking technology will allow us to address asteroids less than 140 meters in size by using extremely fast data processing to compensate for the rapid motion of smaller asteroids. 4 LETTER FROM THE PRESIDENT B612’s education and advocacy program accomplishments include our participation in Asteroid Day and its global broadcast. With the financial and in-kind support of corporate sponsors (see page 18), Asteroid Day delivered a 24-hour broadcast of educational asteroid programing around the world. Special thanks also goes to NASA, ESA, JAXA, the Large Synoptic Survey Telescope, as well as the University of Arizona’s Lunar and Planetary Observatory whose participation in the live broadcast expanded the view of the many efforts to discover, observe and track asteroids. But truly, the 1,200+ independently organized events taking place in over 200 countries by regional and local organizers were the heart of Asteroid Day. These coordinators and organizers invested their own time, dedication and passion to create their independent Asteroid Day events. Working with scientists, researchers and teachers in their communities, they shined a light on the experts who locally support the global conversation about asteroids. In the past, this year and into the future, our work is only made possible through the generosity of our supporters and innovators in the field who partner with us. As we move towards the end of 2017, we will continue our strategy of leveraging our supporters’ investments in the best possible way — for the maximum benefit to our field and to the world as a whole. With appreciation to all our supporters around the world we look forward… Danica Remy President B612 Foundation LETTER FROM THE PRESIDENT 5 Photograph of the Dumbarton Bridge and salt ponds, by Ed Lu from the International Space Station ABOUT US B612 is dedicated to protecting Earth from asteroid impacts. We do this through: Science & Technology Driving forward the science and technologies needed to protect the Earth from asteroid impacts. Advocacy & Public Education Educating the general public, the scientific community, and world governments about planetary defense against asteroid impacts. Since the organization’s inception in 2002, our work has been carried out entirely through the support of private donors. What started in 2002 as a visionary idea to develop the technology to deflect an asteroid has grown into a world-renowned organization and scientific institute with a key role in the emerging field of planetary defense. For years, B612, our partners, and a global community of dedicated scientists and researchers have advocated for increased asteroid detection and many victories resulted from those efforts. Asteroid detection is now debated seriously in scientific, governmental, and public conversations. And now that conversation must advance further. 6 ABOUT US IN THE LAST YEAR Last year we stated several objectives to support our work to advance the field of planetary defense. We are pleased to report we have made progress towards achieving those goals. Advance Cutting-Edge Technologies for Asteroid Detection The first step in opening up a new frontier is to map it. A comprehensive map showing the location of geographic features, resources, and access routes has historically been the key to scientific discovery, economic expansion, and defense. The Asteroid Institute is advancing work to create a predictive dynamical map, which requires two things — multiple observations of We space fliers have seen the cosmic scars the positions of each object over a long period of time, on Earth, and our international collaboration and the ability to calculate the future locations of those in space is an example of how we should objects using the laws of orbital mechanics. apply our joint skills in space technology to Develop Tools for Analyzing and Assessing Asteroid find rogue asteroids and divert them from a Deflection Scenarios collision with Earth. TOM JONES, ASTRONAUT The Asteroid Institute program started the Asteroid Detection Analysis Machine (ADAM) project last year, which will provide cloud-based infrastructure for large-scale orbital dynamics and related computations that will enable the science and business community to identify, track, analyze, understand, and react to opportunities and threats coming from the asteroids in the solar system. ADAM will provide openness and transparency, allowing others to use it as a baseline for comparison and collaboration. Demonstrate the Viability of Synthetic Tracking For the past several years, B612 has supported the development of a technology for tracking asteroids called synthetic tracking, which we believe can revolutionize the discovery of asteroids by allowing us to track millions of asteroids too small to be seen by other means. Synthetic tracking compensates for the blurring effect caused by the motion of asteroids, allowing very long exposure times and the use of small inexpensive telescopes for finding these asteroids. Drive Global Conversation Around Asteroids B612 is proud to be a founding partner of Asteroid Day, a global awareness campaign that teaches people about asteroids. Celebrated annually on June 30th, this year 1,200+ events were organized worldwide and a first-ever Asteroid Day LIVE 24-hour broadcast was held at the program’s new global headquarters in Luxembourg. IN THE LAST YEAR 7 PROGRAM EVOLUTION 2014 2016 2017 2012 2000 2008 2002 2004 2002 2004–2008 2005 2008-2009 B612 founded with the goal of B612 leads the Apophis B612 announces the B612 funds design study at significantly altering the orbit debate. invention of the Gravity JPL showing feasibility of an asteroid in a controlled Tractor in Nature. of the Gravity Tractor. manner. Congress gives NASA the goal of finding 90 percent of asteroids larger than 140 meters, called the George E. Brown Act. 2012 Open letter to NASA about B612 announces the Sentinel B612 moves from a volunteer deflection mission planning Space Telescope project. organization to staffed. and discussions regarding potential impact of asteroid 2011 AG5. 2013 Sentinel project passes its Sentinel project design first major technical review. published in New Space. 2014 B612 releases asteroid impact UN Committee on Peaceful B612 is Founding Sponsor Construction project for video with data from the Uses of Outer Space of Asteroid Day project, a Large Synoptic Survey Nuclear Test Ban Treaty and General Assembly global asteroid-awareness Telescope (LSST) begins. Organization. pass resolution creating campaign. International Asteroid Warning Network. 2015 B612’s “Sentinel to Find B612 hosts Bay Area Asteroid Asteroid Day project holds B612 begins work with 500,000 Near-Earth Day event with California 150 events worldwide. Caltech on synthetic tracking Asteroids,” published in IEEE Academy of Science. research. Spectrum. 2016 NASA announces Planetary B612 issues pre-print B612 begins Asteroid Decision B612 endorses NEOcam + Defense Coordination Office. “Sentinel Performance for Analysis and Mapping project LSST for 100M+ solution and Surveying the Near-Earth
Recommended publications
  • 7Th IAA Planetary Defense Conference – PDC 2021 26
    7th IAA Planetary Defense Conference – PDC 2021 1 26-30 April 2021, Vienna, Austria IAA-PDC-21-11-37 Precautionary Planetary Defence Aaron C. Boley(1), Michael Byers(2) (1)(2)Outer Space Institute University of British Columbia 325-6224 Agricultural Road Vancouver, BC V6T 1Z1 Canada +1-604-827-2641 [email protected] Keywords: Asteroids, Precautionary Principle, Decision-Making, Active Management visiting the asteroid before the 2029 close approach Introduction: The question of whether to attempt leads us to ask, in a general sense, to what degree deflections during planetary defence emergencies has might restraint be prudent? been subject to considerable decision-making analysis As discussed by Chesley and Farnocchia (2021), if a (Schmidt 2018; SMPAG Ad-Hoc Working Group on Legal mission to an asteroid with a rich set of keyholes, like Issues 2020). Hypothetical situations usually involve a Apophis, goes awry and unintentionally collides with the newly discovered asteroid with a high impact probability asteroid, there is a risk that this will create a future on a set timescale. This paper addresses two further impact emergency. The publicity associated with the complexities: (1) limiting missions to an asteroid due to asteroid’s close approach could also prompt non-state the risk of a human-caused Earth impact; and (2) active actors to launch their own missions as technology management of asteroids to place them in “safe demonstrations and/or profile-raising exercises, much harbours”, even when impact risks are otherwise below like the infamous Tesla launch by SpaceX. “decision to act” thresholds. We use Apophis as a case Adding to these considerations is a potential traffic study, and address the two complexities in turn.
    [Show full text]
  • Planetary Report Report
    The PLANETARYPLANETARY REPORT REPORT Volume XXI Number 2 March/April 2001 Farewell, Mir Inside— The Planetary Society’s Cosmos 1: The First Solar Sail On the Cover: Volume XXI When Mir launched in February 1986, it was a show- Table of Number 2 case of Russian technology. But after 15 years of hard work, the aged space station has ended its run. Contents March/April 2001 This view of Mir over Earth’s blue skies was imaged during a fly-around by the space shuttle Atlantis follow- ing the joint docking activities between the two crews. Image: JSC/NASA Features Farewell to a Cold Warrior: Mir Station Obituary 4 As head of the Space Research Institute of the Soviet Academy of Sciences, Roald Sagdeev was there at the birth of the Mir space station. As an adviser to Soviet leader Mikhail Gorbachev, he watched Mir’s changing role in international space policy. Then, after marrying From Susan Eisenhower, the American president’s granddaughter, he moved to the United States The and saw Mir from a different perspective. A member of The Planetary Society’s Board of Editor Directors, he shares with Society members his memories of the long-lived space station. 8 A Bold New Voyage: he Planetary Society is preparing to The Planetary Society Prepares to Fly a Solar Sail It’s the first time a membership organization has undertaken an actual space mission, and launch its first space mission: the T only The Planetary Society is audacious enough to do it. This is the story of how we plan to Cosmos 1 solar sail.
    [Show full text]
  • Planetary Science Division Status Report
    Planetary Science Division Status Report Jim Green NASA, Planetary Science Division January 26, 2017 Astronomy and Astrophysics Advisory CommiBee Outline • Planetary Science ObjecFves • Missions and Events Overview • Flight Programs: – Discovery – New FronFers – Mars Programs – Outer Planets • Planetary Defense AcFviFes • R&A Overview • Educaon and Outreach AcFviFes • PSD Budget Overview New Horizons exploresPlanetary Science Pluto and the Kuiper Belt Ascertain the content, origin, and evoluFon of the Solar System and the potenFal for life elsewhere! 01/08/2016 As the highest resolution images continue to beam back from New Horizons, the mission is onto exploring Kuiper Belt Objects with the Long Range Reconnaissance Imager (LORRI) camera from unique viewing angles not visible from Earth. New Horizons is also beginning maneuvers to be able to swing close by a Kuiper Belt Object in the next year. Giant IcebergsObjecve 1.5.1 (water blocks) floatingObjecve 1.5.2 in glaciers of Objecve 1.5.3 Objecve 1.5.4 Objecve 1.5.5 hydrogen, mDemonstrate ethane, and other frozenDemonstrate progress gasses on the Demonstrate Sublimation pitsDemonstrate from the surface ofDemonstrate progress Pluto, potentially surface of Pluto.progress in in exploring and progress in showing a geologicallyprogress in improving active surface.in idenFfying and advancing the observing the objects exploring and understanding of the characterizing objects The Newunderstanding of Horizons missionin the Solar System to and the finding locaons origin and evoluFon in the Solar System explorationhow the chemical of Pluto wereunderstand how they voted the where life could of life on Earth to that pose threats to and physical formed and evolve have existed or guide the search for Earth or offer People’sprocesses in the Choice for Breakthrough of thecould exist today life elsewhere resources for human Year forSolar System 2015 by Science Magazine as exploraon operate, interact well as theand evolve top story of 2015 by Discover Magazine.
    [Show full text]
  • For Immediate Release
    FOR IMMEDIATE RELEASE ASTRONAUTS, EXPERTS, AND SPACE AGENCIES DISCUSS ASTEROIDS, OPPORTUNITIES, AND RISKS ON ASTEROID DAY, 30 JUNE LUXEMBOURG, 22 June 2020 /PRNewswire/ -- The Asteroid Foundation returns with Asteroid Day LIVE ​ ​ ​ Digital from Luxembourg. This year, the event is a fully digital celebration of asteroid science and exploration. Panel discussions and one-on-one interviews with astronauts and world experts will be broadcast on 30 June 2020. Each year Asteroid Day presents the public with a snap-shot of cutting-edge asteroid research from the largest ​ telescopes on Earth to some of the most ambitious space missions. Topics of discussion this year include the ​ acceleration in the rate of our asteroid discoveries and why it is set to accelerate even faster, the imminent arrival of samples from asteroid Ryugu and Bennu, the exciting preparations for the joint US-Europe mission to binary asteroid Didymos, and much more. Asteroids are the leftover remnants of the birth of the planets in the Solar System, and many are the shattered fragments of these diminutive proto-planets that never made it to maturity. “Asteroid exploration missions tell ​ us about the birth of our own planet and reveal how asteroids can serve astronauts as stepping stones to Mars,” says Tom Jones, PhD, veteran astronaut and planetary scientist, and Asteroid Day Expert Panel ​ member. Each asteroid is an individual with its own story to tell. And that’s what Asteroid Day is all about: bringing those stories to the widest audience possible. “Space and science have been an endless source of inspiration ​ for SES! This is one of the reasons why we and our partners continue to do extraordinary things in space to deliver amazing experiences everywhere on earth,” says Ruy Pinto, Chief Technology Officer at SES.
    [Show full text]
  • Arxiv:2001.00125V1 [Astro-Ph.EP] 1 Jan 2020
    Draft version January 3, 2020 Typeset using LATEX default style in AASTeX61 SIZE AND SHAPE CONSTRAINTS OF (486958) ARROKOTH FROM STELLAR OCCULTATIONS Marc W. Buie,1 Simon B. Porter,1 et al. 1Southwest Research Institute 1050 Walnut St., Suite 300, Boulder, CO 80302 USA To be submitted to Astronomical Journal, Version 1.1, 2019/12/30 ABSTRACT We present the results from four stellar occultations by (486958) Arrokoth, the flyby target of the New Horizons extended mission. Three of the four efforts led to positive detections of the body, and all constrained the presence of rings and other debris, finding none. Twenty-five mobile stations were deployed for 2017 June 3 and augmented by fixed telescopes. There were no positive detections from this effort. The event on 2017 July 10 was observed by SOFIA with one very short chord. Twenty-four deployed stations on 2017 July 17 resulted in five chords that clearly showed a complicated shape consistent with a contact binary with rough dimensions of 20 by 30 km for the overall outline. A visible albedo of 10% was derived from these data. Twenty-two systems were deployed for the fourth event on 2018 Aug 4 and resulted in two chords. The combination of the occultation data and the flyby results provides a significant refinement of the rotation period, now estimated to be 15.9380 ± 0.0005 hours. The occultation data also provided high-precision astrometric constraints on the position of the object that were crucial for supporting the navigation for the New Horizons flyby. This work demonstrates an effective method for obtaining detailed size and shape information and probing for rings and dust on distant Kuiper Belt objects as well as being an important source of positional data that can aid in spacecraft navigation that is particularly useful for small and distant bodies.
    [Show full text]
  • Astronomy Educator Profiles
    Astronomy Educator Profiles Alexis Ann Acohido graduated of the University of Hawaii at Manoa in 2015, where she obtained her Bachelor’s of Science in mathematics. Born and raised on Oahu, she moved to Hawai‘i island last year and is currently part of the Public Information and Outreach department at Gemini Observatory in Hilo, Hawai‘i. In 2013, she was part of the Akamai Workforce Initiative and interned at the Institute for Astronomy on Maui where she worked on parallax ranging methods for point source objects. Alexis Ann Acohido Gemini Observatory Contact: [email protected] Christian Andersen is the Operations Manager at the Pacific International Space Center for Exploration Systems (PISCES), and leads the agency’s additive manufacturing & construction projects at its Laser Lava Lab. Andersen started his career conducting research in inertial confinement fusion at Lawrence Livermore National Laboratory, Ecole Polytechnique, and Rutherford Appleton Laboratories. As Operations Manager, he’s worked on a variety of PISCES projects in transitioning aerospace technologies to terrestrial applications and analogue field testing. Andersen is also a Lecturer and Affiliate Faculty in the Physics & Astronomy Department at the University of Hawaii at Hilo, and the Vice- Chair of the Space Resources Technical Committee for the AIAA (American Institute of Aeronautics and Astronautics). He holds a B.S. in Physics from San Jose State University and a M.S. in Engineering from Christian Andersen U.C. Davis. PISCES Contact: [email protected] Virginia Aragon-Barnes had a passion for science and a natural curiosity about how and why things worked from a very early age.
    [Show full text]
  • Enhanced Gravity Tractor Technique for Planetary Defense
    4th IAA Planetary Defense Conference – PDC 2015 13-17 April 2015, Frascati, Roma, Italy IAA-PDC-15-04-11 ENHANCED GRAVITY TRACTOR TECHNIQUE FOR PLANETARY DEFENSE Daniel D. Mazanek(1), David M. Reeves(2), Joshua B. Hopkins(3), Darren W. Wade(4), Marco Tantardini(5), and Haijun Shen(6) (1)NASA Langley Research Center, Mail Stop 462, 1 North Dryden Street, Hampton, VA, 23681, USA, 1-757-864-1739, (2) NASA Langley Research Center, Mail Stop 462, 1 North Dryden Street, Hampton, VA, 23681, USA, 1-757-864-9256, (3)Lockheed Martin Space Systems Company, Mail Stop H3005, PO Box 179, Denver, CO 80201, USA, 1-303- 971-7928, (4)Lockheed Martin Space Systems Company, Mail Stop S8110, PO Box 179, Denver, CO 80201, USA, 1-303-977-4671, (5)Independent, via Tibaldi 5, Cremona, Italy, +393381003736, (6)Analytical Mechanics Associates, Inc., 21 Enterprise Parkway, Suite 300, Hampton, VA 23666, USA, 1-757-865-0000, Keywords: enhanced gravity tractor, in-situ mass augmentation, asteroid and comet deflection, planetary defense, low-thrust, high-efficiency propulsion, gravitational attraction, robotic mass collection Abstract Given sufficient warning time, Earth-impacting asteroids and comets can be deflected with a variety of different “slow push/pull” techniques. The gravity tractor is one technique that uses the gravitational attraction of a rendezvous spacecraft to the impactor and a low-thrust, high-efficiency propulsion system to provide a gradual velocity change and alter its trajectory. An innovation to this technique, known as the Enhanced Gravity Tractor (EGT), uses mass collected in-situ to augment the mass of the spacecraft, thereby greatly increasing the gravitational force between the objects.
    [Show full text]
  • Deflecting a Hazardous Near-Earth Object 1St IAA Planetary Defense
    Deflecting a Hazardous Near-Earth Object 1st IAA Planetary Defense Conference: Protecting Earth from Asteroids 27-30 April 2009 Granada, Spain D.K. Yeomans(1), S. Bhaskaran(1), S.B. Broschart(1), S.R. Chesley(1), P.W. Chodas(1), T. H. Sweetser(1), R. Schweickart(2) (1)JPL/Caltech 4800 Oak Grove Drive Pasadena, CA 91109, USA [email protected] ( 2)B612 Foundation 760 Fifth St. East Sonoma, CA 95476, USA [email protected] INTRODUCTION This short report on Near-Earth Object (NEO) hazard mitigation strategies was developed in response to a request for information by the U.S. National Research Council’s Space Sciences Board on December 17, 2008 and for the Planetary Defense Conference that took place 27-30 April 2009 in Granada Spain. Although we present example simulations for specific techniques that could be employed to deflect an Earth threatening NEO, our primary goal is to discuss some of the general principles and techniques that would be germane to all NEO deflection scenarios. This report summarizes work that was carried out in early 2009 and extends an earlier, more detailed study carried out in late 2008 [1]. STUDY OVERVIEW Because of the wide range of possible sizes, trajectories and warning times for Earth threatening NEOs, there will be a corresponding range in the levels of challenge in providing an appropriate mitigation response. Unless there are decades of warning time, hazardous NEOs larger than a few hundred meters in diameter may require large energies to deflect or fragment. In these cases, nuclear explosions, either stand- off or surface blasts, might provide a suitable response.
    [Show full text]
  • Publication in the Bulletin
    Lunar and Planetary Information Bulletin July 2019 • Issue 157 Contents Featured Story From the Desk of Lori Glaze News From Space Meeting Highlights Spotlight on Education In Memoriam Milestones New and Noteworthy Calendar Featured Story Featured Story A Personal Journey to Ultima Thule: New Horizons in the Kuiper Belt As the New Horizons science team gathered in Laurel, Paul Schenk, Brian May, Joel Parker, and Andy Chaikin discuss a possible shape model for Ultima Thule, January 1, 2019. Credit: E. Whitman. Maryland, during the last week of 2018, many of us reflected back on a similar gathering three-and-a-half years earlier. In the summer of 2015, we all came together on a voyage of exploration to the planet Pluto and its moons. At that time, we didn’t know very much about our target, and this time we knew even less about “Ultima Thule,” a small, lonely 30-kilometer- wide object known as 2014 MU69 that was orbiting the Sun almost half a billion kilometers beyond Pluto. Unlike what we knew about Pluto, we did not even know Ultima Thule’s surface composition, its shape, or even the length of its day. We knew Ultima Thule was much smaller than — and hence would be a very different beast from — Pluto. So as the New Horizons team arrived at the Applied Physics Laboratory (APL) in Laurel, Maryland, to watch and enjoy the encounter sequence play out, we were completely in the dark. The only clues we had were stellar occultation observations of Ultima Thule from Argentina in 2017 that indicated it was elongate and might have either two separate or contacting lobes.
    [Show full text]
  • New Horizons Ultima Thule Flyby Events
    New Horizons Ultima Thule Flyby Events – Dec 31, 2018 – Jan 3, 2019 Event Date/Time Communications Event Speaker 31 Dec 12:00 PM K‐Center Opens at Noon Guest Ops team 1:00 Welcome Adrian Hill and VIP Welcome 1:05 The New Horizons Mission Alan Stern 1:25 What is the Kuiper Belt and what are Kuiper Belt Hal Weaver Objects 1:30 What We Know About MU69 – Ultima Thule Cathy Olkin 1:35 The Flyby of MU69 – Ultima Thule John Spencer NYE press 2:00 – 3:00 Daily media update on Webcast Mike Buckley; panel: Alan Stern, Helene Winters, John Spencer, Fred Pelletier. 3:15 ‐ 3:45 Flyby Ask Me Anything Webcast Moderator Adrian Hill; Panelists: Kelsi Singer; Alex Parker; Gabe Rogers 3:45 – 3:50 Song ‐ Acoustic Craig Werth – move to dining area 3:50 ‐ 4:45 Exploration for Kids Janet Ivey of Janet’s Planet ‐ dining area 4:45‐4:50 Closeout Afternoon 5:00 Doors Close for 2 hours – dinner break 7:00 PM K center reopens Kick off. 8:00 Welcome Adrian Hill and VIPs 8:10 Solar System Archaeology Ken Lacovara 8:15 NASA’s Study of Ancient Bodies. Small bodies mission panel. OSIRIS‐REx (Barnouin), Lucy (Levison), Psyche (Elkins), NH (Stern) *NASA Rep 9:00 Short break Transition to Guest ops. 9:15 Craig Werth Video Craig Werth 9:20 Doing Geology by Looking Up; Doing Walter Alvarez Astronomy by Looking Down 9:35 Pluto Flyby: Summer of 2015 Hal Weaver 9:50 Pluto and the Human Imagination David Grinspoon 10:10 Break 10:20 Meet the New Horizons Team Alan Stern and Helene Winters 10:30 Finding MU69 – Ultima Thule Marc Buie 10:45 MU69: What we expect to learn Panel: Silvia Protopapa, Hal Weaver, Cathy Olkin, John Spencer 11:00 The Eyes and Ears of New Horizons Kelsi Singer, Kirby Runyon.
    [Show full text]
  • Asteroid Deflection Using a Solar-Sailed Electromagnetic Gravity Tractor
    International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056 Volume: 07 Issue: 06 | June 2020 www.irjet.net p-ISSN: 2395-0072 Asteroid Deflection using a Solar-Sailed Electromagnetic Gravity Tractor Parvati Rajesh Student, Department of Mechanical Engineering, Presidency University, Itgalpur, Rajanakunte, Yelahanka, Bengaluru, Karnataka, Pin Code- 560064, India ---------------------------------------------------------------------***--------------------------------------------------------------------- Abstract – An asteroid threat is one of the topics in science which gets less coverage. If an asteroid as small as 200m were to collide with earth, that would annihilate modern infrastructure and cause significant losses in biodiversity. One such theoretical solution developed to prevent this from occurring is a Gravity Tractor. A Gravity Tractor is a theoretical spacecraft which aims to alter the trajectory of an asteroid which is on the course to collide with earth. Although there have been numerous anticipated designs and alterations in this subject matter, this paper intends to suggest an idea of a gravity tractor integrated with a solar sail for solar- electric propulsion coupled with a feature of electromagnetism to exert a stronger attraction force on the asteroid if it is made out of a metallic core. Figure 1 Key Words: Asteroid, Gravity tractor, Threat Assuming the asteroid shown in the figure above is at mitigation, asteroid collision, space craft, least a 100 light years away and has been detected by Gravitational towing, Near Earth Objects, planetary defenses of various space agencies ,other electromagnetic spacecraft private industries or any other means, if a tractor is sent on time and the deflection is made at a safe 1. INTRODUCTION distance, a small deflection (α) will cause a significant amount of change in course for the asteroid to he idea of a spacecraft for altering the course of an completely omit earth.
    [Show full text]
  • Comparative Kbology: Using Surface Spectra of Triton
    COMPARATIVE KBOLOGY: USING SURFACE SPECTRA OF TRITON, PLUTO, AND CHARON TO INVESTIGATE ATMOSPHERIC, SURFACE, AND INTERIOR PROCESSES ON KUIPER BELT OBJECTS by BRYAN JASON HOLLER B.S., Astronomy (High Honors), University of Maryland, College Park, 2012 B.S., Physics, University of Maryland, College Park, 2012 M.S., Astronomy, University of Colorado, 2015 A thesis submitted to the Faculty of the Graduate School of the University of Colorado in partial fulfillment of the requirement for the degree of Doctor of Philosophy Department of Astrophysical and Planetary Sciences 2016 This thesis entitled: Comparative KBOlogy: Using spectra of Triton, Pluto, and Charon to investigate atmospheric, surface, and interior processes on KBOs written by Bryan Jason Holler has been approved for the Department of Astrophysical and Planetary Sciences Dr. Leslie Young Dr. Fran Bagenal Date The final copy of this thesis has been examined by the signatories, and we find that both the content and the form meet acceptable presentation standards of scholarly work in the above mentioned discipline. ii ABSTRACT Holler, Bryan Jason (Ph.D., Astrophysical and Planetary Sciences) Comparative KBOlogy: Using spectra of Triton, Pluto, and Charon to investigate atmospheric, surface, and interior processes on KBOs Thesis directed by Dr. Leslie Young This thesis presents analyses of the surface compositions of the icy outer Solar System objects Triton, Pluto, and Charon. Pluto and its satellite Charon are Kuiper Belt Objects (KBOs) while Triton, the largest of Neptune’s satellites, is a former member of the KBO population. Near-infrared spectra of Triton and Pluto were obtained over the previous 10+ years with the SpeX instrument at the IRTF and of Charon in Summer 2015 with the OSIRIS instrument at Keck.
    [Show full text]