Educator's Guide
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
SPECIAL Comet Shoemaker-Levy 9 Collides with Jupiter
SL-9/JUPITER ENCOUNTER - SPECIAL Comet Shoemaker-Levy 9 Collides with Jupiter THE CONTINUATION OF A UNIQUE EXPERIENCE R.M. WEST, ESO-Garching After the Storm Six Hectic Days in July eration during the first nights and, as in other places, an extremely rich data The recent demise of comet Shoe ESO was but one of many profes material was secured. It quickly became maker-Levy 9, for simplicity often re sional observatories where observations evident that infrared observations, es ferred to as "SL-9", was indeed spectac had been planned long before the critical pecially imaging with the far-IR instru ular. The dramatic collision of its many period of the "SL-9" event, July 16-22, ment TIMMI at the 3.6-metre telescope, fragments with the giant planet Jupiter 1994. It is now clear that practically all were perfectly feasible also during day during six hectic days in July 1994 will major observatories in the world were in time, and in the end more than 120,000 pass into the annals of astronomy as volved in some way, via their telescopes, images were obtained with this facility. one of the most incredible events ever their scientists or both. The only excep The programmes at most of the other predicted and witnessed by members of tions may have been a few observing La Silla telescopes were also successful, this profession. And never before has a sites at the northernmost latitudes where and many more Gigabytes of data were remote astronomical event been so ac the bright summer nights and the very recorded with them. -
Cross-References ASTEROID IMPACT Definition and Introduction History of Impact Cratering Studies
18 ASTEROID IMPACT Tedesco, E. F., Noah, P. V., Noah, M., and Price, S. D., 2002. The identification and confirmation of impact structures on supplemental IRAS minor planet survey. The Astronomical Earth were developed: (a) crater morphology, (b) geo- 123 – Journal, , 1056 1085. physical anomalies, (c) evidence for shock metamor- Tholen, D. J., and Barucci, M. A., 1989. Asteroid taxonomy. In Binzel, R. P., Gehrels, T., and Matthews, M. S. (eds.), phism, and (d) the presence of meteorites or geochemical Asteroids II. Tucson: University of Arizona Press, pp. 298–315. evidence for traces of the meteoritic projectile – of which Yeomans, D., and Baalke, R., 2009. Near Earth Object Program. only (c) and (d) can provide confirming evidence. Remote Available from World Wide Web: http://neo.jpl.nasa.gov/ sensing, including morphological observations, as well programs. as geophysical studies, cannot provide confirming evi- dence – which requires the study of actual rock samples. Cross-references Impacts influenced the geological and biological evolu- tion of our own planet; the best known example is the link Albedo between the 200-km-diameter Chicxulub impact structure Asteroid Impact Asteroid Impact Mitigation in Mexico and the Cretaceous-Tertiary boundary. Under- Asteroid Impact Prediction standing impact structures, their formation processes, Torino Scale and their consequences should be of interest not only to Earth and planetary scientists, but also to society in general. ASTEROID IMPACT History of impact cratering studies In the geological sciences, it has only recently been recog- Christian Koeberl nized how important the process of impact cratering is on Natural History Museum, Vienna, Austria a planetary scale. -
KAREN J. MEECH February 7, 2019 Astronomer
BIOGRAPHICAL SKETCH – KAREN J. MEECH February 7, 2019 Astronomer Institute for Astronomy Tel: 1-808-956-6828 2680 Woodlawn Drive Fax: 1-808-956-4532 Honolulu, HI 96822-1839 [email protected] PROFESSIONAL PREPARATION Rice University Space Physics B.A. 1981 Massachusetts Institute of Tech. Planetary Astronomy Ph.D. 1987 APPOINTMENTS 2018 – present Graduate Chair 2000 – present Astronomer, Institute for Astronomy, University of Hawaii 1992-2000 Associate Astronomer, Institute for Astronomy, University of Hawaii 1987-1992 Assistant Astronomer, Institute for Astronomy, University of Hawaii 1982-1987 Graduate Research & Teaching Assistant, Massachusetts Inst. Tech. 1981-1982 Research Specialist, AAVSO and Massachusetts Institute of Technology AWARDS 2018 ARCs Scientist of the Year 2015 University of Hawai’i Regent’s Medal for Research Excellence 2013 Director’s Research Excellence Award 2011 NASA Group Achievement Award for the EPOXI Project Team 2011 NASA Group Achievement Award for EPOXI & Stardust-NExT Missions 2009 William Tylor Olcott Distinguished Service Award of the American Association of Variable Star Observers 2006-8 National Academy of Science/Kavli Foundation Fellow 2005 NASA Group Achievement Award for the Stardust Flight Team 1996 Asteroid 4367 named Meech 1994 American Astronomical Society / DPS Harold C. Urey Prize 1988 Annie Jump Cannon Award 1981 Heaps Physics Prize RESEARCH FIELD AND ACTIVITIES • Developed a Discovery mission concept to explore the origin of Earth’s water. • Co-Investigator on the Deep Impact, Stardust-NeXT and EPOXI missions, leading the Earth-based observing campaigns for all three. • Leads the UH Astrobiology Research interdisciplinary program, overseeing ~30 postdocs and coordinating the research with ~20 local faculty and international partners. -
Mars Express Orbiter Radio Science
MaRS: Mars Express Orbiter Radio Science M. Pätzold1, F.M. Neubauer1, L. Carone1, A. Hagermann1, C. Stanzel1, B. Häusler2, S. Remus2, J. Selle2, D. Hagl2, D.P. Hinson3, R.A. Simpson3, G.L. Tyler3, S.W. Asmar4, W.I. Axford5, T. Hagfors5, J.-P. Barriot6, J.-C. Cerisier7, T. Imamura8, K.-I. Oyama8, P. Janle9, G. Kirchengast10 & V. Dehant11 1Institut für Geophysik und Meteorologie, Universität zu Köln, D-50923 Köln, Germany Email: [email protected] 2Institut für Raumfahrttechnik, Universität der Bundeswehr München, D-85577 Neubiberg, Germany 3Space, Telecommunication and Radio Science Laboratory, Dept. of Electrical Engineering, Stanford University, Stanford, CA 95305, USA 4Jet Propulsion Laboratory, 4800 Oak Grove Drive, Pasadena, CA 91009, USA 5Max-Planck-Instuitut für Aeronomie, D-37189 Katlenburg-Lindau, Germany 6Observatoire Midi Pyrenees, F-31401 Toulouse, France 7Centre d’etude des Environnements Terrestre et Planetaires (CETP), F-94107 Saint-Maur, France 8Institute of Space & Astronautical Science (ISAS), Sagamihara, Japan 9Institut für Geowissenschaften, Abteilung Geophysik, Universität zu Kiel, D-24118 Kiel, Germany 10Institut für Meteorologie und Geophysik, Karl-Franzens-Universität Graz, A-8010 Graz, Austria 11Observatoire Royal de Belgique, B-1180 Bruxelles, Belgium The Mars Express Orbiter Radio Science (MaRS) experiment will employ radio occultation to (i) sound the neutral martian atmosphere to derive vertical density, pressure and temperature profiles as functions of height to resolutions better than 100 m, (ii) sound -
Detecting and Avoiding Killer Asteroids
Target Earth! Detecting and Avoiding Killer Asteroids by Trudy E. Bell (Copyright 2013 Trudy E. Bell) ARTH HAD NO warning. When a mountain- above 2000°C and triggering earthquakes and volcanoes sized asteroid struck at tens of kilometers (miles) around the globe. per second, supersonic shock waves radiated Ocean water suctioned from the shoreline and geysered outward through the planet, shock-heating rocks kilometers up into the air; relentless tsunamis surged e inland. At ground zero, nearly half the asteroid’s kinetic energy instantly turned to heat, vaporizing the projectile and forming a mammoth impact crater within minutes. It also vaporized vast volumes of Earth’s sedimentary rocks, releasing huge amounts of carbon dioxide and sulfur di- oxide into the atmosphere, along with heavy dust from both celestial and terrestrial rock. High-altitude At least 300,000 asteroids larger than 30 meters revolve around the sun in orbits that cross Earth’s. Most are not yet discovered. One may have Earth’s name written on it. What are engineers doing to guard our planet from destruction? winds swiftly spread dust and gases worldwide, blackening skies from equator to poles. For months, profound darkness blanketed the planet and global temperatures dropped, followed by intense warming and torrents of acid rain. From single-celled ocean plank- ton to the land’s grandest trees, pho- tosynthesizing plants died. Herbivores starved to death, as did the carnivores that fed upon them. Within about three years—the time it took for the mingled rock dust from asteroid and Earth to fall out of the atmosphere onto the ground—70 percent of species and entire genera on Earth perished forever in a worldwide mass extinction. -
Impact of the Coronavirus Pandemic (COVID-19) Lockdown on Mental Health and Well-Being in the United Arab Emirates
ORIGINAL RESEARCH published: 16 March 2021 doi: 10.3389/fpsyt.2021.633230 Impact of the Coronavirus Pandemic (COVID-19) Lockdown on Mental Health and Well-Being in the United Arab Emirates Leila Cheikh Ismail 1,2,3, Maysm N. Mohamad 4, Mo’ath F. Bataineh 5, Abir Ajab 1,3, Amina M. Al-Marzouqi 3,6, Amjad H. Jarrar 4, Dima O. Abu Jamous 3, Habiba I. Ali 4, Haleama Al Sabbah 7, Hayder Hasan 1,3, Lily Stojanovska 4,8, Mona Hashim 1,3, Reyad R. Shaker Obaid 1,3, Sheima T. Saleh 1,3, Tareq M. Osaili 1,3,9 and Ayesha S. Al Dhaheri 4* 1 Department of Clinical Nutrition and Dietetics, College of Health Sciences, University of Sharjah, Sharjah, United Arab Emirates, 2 Nuffield Department of Women’s & Reproductive Health, University of Oxford, Oxford, United Kingdom, 3 Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates, 4 Department of Edited by: Nutrition and Health, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Daniel Bressington, Emirates, 5 Department of Sport Rehabilitation, Faculty of Physical Education and Sport Sciences, The Hashemite University, Charles Darwin University, Australia Zarqa, Jordan, 6 Department of Health Services Administration, College of Health Sciences, Research Institute for Medical 7 Reviewed by: and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates, College of Natural and Health Sciences, Zayed University, Dubai, United Arab Emirates, 8 Institute for Health and Sport, Victoria University, Melbourne, VIC, Australia, Gianluca Serafini, 9 Department of Nutrition and Food Technology, Faculty of Agriculture, Jordan University of Science and Technology, San Martino Hospital (IRCCS), Italy Irbid, Jordan Andrea Aguglia, University of Genoa, Italy Andrea Amerio, United Arab Emirates (UAE) has taken unprecedented precautionary measures including University of Genoa, Italy complete lockdowns against COVID-19 to control its spread and ensure the well-being *Correspondence: Ayesha S. -
Asteroid Impact, Not Volcanism, Caused the End-Cretaceous Dinosaur Extinction
Asteroid impact, not volcanism, caused the end-Cretaceous dinosaur extinction Alfio Alessandro Chiarenzaa,b,1,2, Alexander Farnsworthc,1, Philip D. Mannionb, Daniel J. Luntc, Paul J. Valdesc, Joanna V. Morgana, and Peter A. Allisona aDepartment of Earth Science and Engineering, Imperial College London, South Kensington, SW7 2AZ London, United Kingdom; bDepartment of Earth Sciences, University College London, WC1E 6BT London, United Kingdom; and cSchool of Geographical Sciences, University of Bristol, BS8 1TH Bristol, United Kingdom Edited by Nils Chr. Stenseth, University of Oslo, Oslo, Norway, and approved May 21, 2020 (received for review April 1, 2020) The Cretaceous/Paleogene mass extinction, 66 Ma, included the (17). However, the timing and size of each eruptive event are demise of non-avian dinosaurs. Intense debate has focused on the highly contentious in relation to the mass extinction event (8–10). relative roles of Deccan volcanism and the Chicxulub asteroid im- An asteroid, ∼10 km in diameter, impacted at Chicxulub, in pact as kill mechanisms for this event. Here, we combine fossil- the present-day Gulf of Mexico, 66 Ma (4, 18, 19), leaving a crater occurrence data with paleoclimate and habitat suitability models ∼180 to 200 km in diameter (Fig. 1A). This impactor struck car- to evaluate dinosaur habitability in the wake of various asteroid bonate and sulfate-rich sediments, leading to the ejection and impact and Deccan volcanism scenarios. Asteroid impact models global dispersal of large quantities of dust, ash, sulfur, and other generate a prolonged cold winter that suppresses potential global aerosols into the atmosphere (4, 18–20). These atmospheric dinosaur habitats. -
For Immediate Release
FOR IMMEDIATE RELEASE ASTRONAUTS, EXPERTS, AND SPACE AGENCIES DISCUSS ASTEROIDS, OPPORTUNITIES, AND RISKS ON ASTEROID DAY, 30 JUNE LUXEMBOURG, 22 June 2020 /PRNewswire/ -- The Asteroid Foundation returns with Asteroid Day LIVE Digital from Luxembourg. This year, the event is a fully digital celebration of asteroid science and exploration. Panel discussions and one-on-one interviews with astronauts and world experts will be broadcast on 30 June 2020. Each year Asteroid Day presents the public with a snap-shot of cutting-edge asteroid research from the largest telescopes on Earth to some of the most ambitious space missions. Topics of discussion this year include the acceleration in the rate of our asteroid discoveries and why it is set to accelerate even faster, the imminent arrival of samples from asteroid Ryugu and Bennu, the exciting preparations for the joint US-Europe mission to binary asteroid Didymos, and much more. Asteroids are the leftover remnants of the birth of the planets in the Solar System, and many are the shattered fragments of these diminutive proto-planets that never made it to maturity. “Asteroid exploration missions tell us about the birth of our own planet and reveal how asteroids can serve astronauts as stepping stones to Mars,” says Tom Jones, PhD, veteran astronaut and planetary scientist, and Asteroid Day Expert Panel member. Each asteroid is an individual with its own story to tell. And that’s what Asteroid Day is all about: bringing those stories to the widest audience possible. “Space and science have been an endless source of inspiration for SES! This is one of the reasons why we and our partners continue to do extraordinary things in space to deliver amazing experiences everywhere on earth,” says Ruy Pinto, Chief Technology Officer at SES. -
NASA's Planetary Defense Coordination Office
National Aeronautics and Space Administration NASA’s Planetary Defense Coordination Office NASA Infrared Near-Earth Pan-STARRS Comet ISON Goldstone Radar Near-Earth Telescope Facility Asteroid Eros Observatory Asteroid Bennu www.nasa.gov What are near-Earth objects and why do we need sanctioned by the International Astronomical Union What is NASA doing to prepare for planetary to study them? and supported by the NEO Observations Program. defense? Near-Earth objects (NEOs) are asteroids and comets NASA-funded surveys have found 98 percent of the NASA has a Planetary Defense Coordination Office that have been nudged by the gravitational attraction known catalog of over 20,000 near-Earth objects (only (PDCO) located at NASA Headquarters in Washington, of nearby planets into orbits that allow them to enter a little more than 100 of these objects are comets). D.C. Its responsibilities include: Earth’s neighborhood. Like the planets, all asteroids These surveys are currently finding NEOs at a rate of • Ensuring the early detection of potentially hazardous and comets orbit the Sun. They are remnants of the about 1,800 per year. The current objective of the NEO objects (PHOs) – asteroids and comets whose orbits formation of planetary bodies in our solar system. Observations Program is to find, track, and catalog at are predicted to bring them within 5 million miles least 90 percent of the estimated population of NEOs (8 million kilometers) of Earth; and of a size large Our solar system contains far more asteroids than that are equal to or greater than 140 meters in size in enough to reach Earth’s surface – that is, greater comets, and thus far more near-Earth asteroids than coming years and to characterize a subset of those than around 30 to 50 meters; near-Earth comets. -
Early Observations of the Interstellar Comet 2I/Borisov
geosciences Article Early Observations of the Interstellar Comet 2I/Borisov Chien-Hsiu Lee NSF’s National Optical-Infrared Astronomy Research Laboratory, Tucson, AZ 85719, USA; [email protected]; Tel.: +1-520-318-8368 Received: 26 November 2019; Accepted: 11 December 2019; Published: 17 December 2019 Abstract: 2I/Borisov is the second ever interstellar object (ISO). It is very different from the first ISO ’Oumuamua by showing cometary activities, and hence provides a unique opportunity to study comets that are formed around other stars. Here we present early imaging and spectroscopic follow-ups to study its properties, which reveal an (up to) 5.9 km comet with an extended coma and a short tail. Our spectroscopic data do not reveal any emission lines between 4000–9000 Angstrom; nevertheless, we are able to put an upper limit on the flux of the C2 emission line, suggesting modest cometary activities at early epochs. These properties are similar to comets in the solar system, and suggest that 2I/Borisov—while from another star—is not too different from its solar siblings. Keywords: comets: general; comets: individual (2I/Borisov); solar system: formation 1. Introduction 2I/Borisov was first seen by Gennady Borisov on 30 August 2019. As more observations were conducted in the next few days, there was growing evidence that this might be an interstellar object (ISO), especially its large orbital eccentricity. However, the first astrometric measurements do not have enough timespan and are not of same quality, hence the high eccentricity is yet to be confirmed. This had all changed by 11 September; where more than 100 astrometric measurements over 12 days, Ref [1] pinned down the orbit elements of 2I/Borisov, with an eccentricity of 3.15 ± 0.13, hence confirming the interstellar nature. -
Tunguska-1908 and Similar Events in Light of the New Explosive Cosmogony of Minor Bodies
Tunguska-1908 and similar events in light of the New Explosive Cosmogony of minor bodies E.M.Drobyshevski Ioffe Physical-Technical Institute, Russian Academy of Sciences, 194021 St-Petersburg, Russia E-mail: [email protected] Abstract. It is shown that the well-known Tunguska-1908 phenomenon (TP) problems (the fast transfer of the momentum and of the kinetic energy of the meteoroid W ~ 10-50 Mt TNT to air, with its heating to T > 104 K at an altitude of 5÷10 km, the final turn of the smoothly sloping, δ ≈ 0÷20o to horizon, trajectory of the body through ~10o to the West, the pattern and area of the tree-fall and trees’ scorching by heat radiation, etc.) allow a fairly straightforward solution within the paradigm of New Explosive Cosmogony (NEC) of minor bodies, as opposed to other approaches. The NEC considers the short- period (SP) cometary nuclei, to which the Tunguska meteoroid belonged, to be fragments produced in explosions of massive icy envelopes of Ganymede-type bodies saturated by products of bulk electrolysis of ices to the form of a 2H2+O2 solid solution. The nearly tangent entry into the Earth’s atmosphere with V ~ 20 km/s of such a nucleus, ~200÷500 m in size and ~(5÷50)×1012 g in mass, also saturated by 12 2H2+O2, initiated detonation of its part with a mass of ~10 g at an altitude of 5÷10 km. This resulted in o o deflection of this fraction trajectory by 5 ÷10 , and fast expansion with Vt ≈ 2 km/s of the products of its detonation brought about their fast slowing down by the air, heating of the latter to T > 104 K and a phenomenon of moving high-altitude explosion, with the resultant scorching and fall of trees in a butterfly pattern. -
Planetary Defence Activities Beyond NASA and ESA
Planetary Defence Activities Beyond NASA and ESA Brent W. Barbee 1. Introduction The collision of a significant asteroid or comet with Earth represents a singular natural disaster for a myriad of reasons, including: its extraterrestrial origin; the fact that it is perhaps the only natural disaster that is preventable in many cases, given sufficient preparation and warning; its scope, which ranges from damaging a city to an extinction-level event; and the duality of asteroids and comets themselves---they are grave potential threats, but are also tantalising scientific clues to our ancient past and resources with which we may one day build a prosperous spacefaring future. Accordingly, the problems of developing the means to interact with asteroids and comets for purposes of defence, scientific study, exploration, and resource utilisation have grown in importance over the past several decades. Since the 1980s, more and more asteroids and comets (especially the former) have been discovered, radically changing our picture of the solar system. At the beginning of the year 1980, approximately 9,000 asteroids were known to exist. By the beginning of 2001, that number had risen to approximately 125,000 thanks to the Earth-based telescopic survey efforts of the era, particularly the emergence of modern automated telescopic search systems, pioneered by the Massachusetts Institute of Technology’s (MIT’s) LINEAR system in the mid-to-late 1990s.1 Today, in late 2019, about 840,000 asteroids have been discovered,2 with more and more being found every week, month, and year. Of those, approximately 21,400 are categorised as near-Earth asteroids (NEAs), 2,000 of which are categorised as Potentially Hazardous Asteroids (PHAs)3 and 2,749 of which are categorised as potentially accessible.4 The hazards posed to us by asteroids affect people everywhere around the world.