Biogeographic Histories and Chronologies of Derived Iguanodontians

Total Page:16

File Type:pdf, Size:1020Kb

Biogeographic Histories and Chronologies of Derived Iguanodontians Asociación Paleontológica Argentina. Publicación Especial 7 ISSN 0328-347X VII International Symposium on Mesozoic Terrestrial Ecosystems: 107-111.Buenos Aires, 30-6-2001 Biogeographic histories and chronologies of derived iguanodontians Jason J. HEADl and Yoshitsugu KOBAYASHp.2 Abstract. The geographic distributions, chronology, and phylogenetic relationships of derived iguan- odontians describe a biogeographic history of active intercontinental dispersal, which is tested via com- parison with eustatic sea level fluctuations. A revised phylogeny of derived iguanodontians does not sup- port a monophyletic Iguanodontidae, and produces a lineage culminating Hadrosauridae that is first recorded in the early Late Cretaceous of both Asia and North America. This distributions suggests dis- persal between Asia and North America during the Late Cretaceous. Biogeographic hypotheses describ- ing isolation of North America during the Early Cretaceous are not supported by sea level data. Dispersal patterns among Late Cretaceous taxa are corroborated by short term regressive phases in sea levels, but no distinction can be made between hypotheses of dispersal in both directions, and repeated immigration of Asian taxa into North America. Keywords. Cretaceous. Biogeography. Dispersa!. Sea levels. Iguanodontia. Hadrosauridae. Introduction Sea level histories can be used as an independent test of biogeographic hypotheses. On a geologic The purpose of this analysis is to incorporate a re- timescale, trans-continental distributions of taxa are vised phylogeny of derived iguanodontian di- contro11edby tectonic processes, induding resultant nosaurs (Hadrosauriformes sensu Sereno, 1999)into sea level fluctuations, which affect areas of emer- a biogeographic and chronological history, and to gence. Eustatic transgressive and regressive events test this history against concurrent sea level fluctua- altemately prohibit and facilitate active dispersal tions. Specifically,we: (1) construct a phylogeny of across seaways and landbridges. A11else being derived iguanodontians; (2) use that phylogeny to equal, pattems of distribution should be correlated augment biogeographic histories, and; (3) test both to sea level changes. First occurrences of hypotheti- previous and new hypotheses of Early and Late cal immigrants should be preceded by short- or long- Cretaceous biogeography by comparison with sea term regressive events, and periods of isolation levels as an indicator of potential for dispersal. should coincide with transgressions. Iguanodontians are Laurasian in origin, with active dispersal and local extinctions driving trans-conti- nental distributions (Brett-Surman, 1979; Norman Materials and methods 1998a). Iguanodontians dispersed into North Africa A phylogeny of derived iguanodontians (figure 1) at least once prior to the mid-Aptian (Taquet and was constructed from 12 taxa and 24 characters (ap- Russell, 1999),but our analysis focuses on Laurasian pendix 1). Critical assumptions of our phylogeny are biogeography. Timing and direction of dispersals are monophyly of Hadrosaurinae and Lambeosaurinae not well resolved for a11higher order taxa, but phy- (Weishampel and Homer, 1990). Claosaurus and logenetic relationships and first occurrences suggest Tanius are poorly known, but their geographic and both an ancestral center of origin and a minimum temporal distributions are significant. They were timing of immigration for a lineage. Currently, how- manua11yplaced in our phylogeny, and their posi- ever, no additional test of dispersal biogeography tions are more tentative than other taxa. The phy- has been proposed. logeny was placed in a geographic and chronological context, and the Cretaceous eustatic sea level curves 'Department of Geological Sciences and Shuler Museum of of Haq et al., 1987(figure 2) were used to test the re- Paleonlology, Soulhern Melhodisl Ul\iv~rsity, Dallas TX 75275, sultant biogeographic hypotheses. We use the USA. 'Fukui Prefectural Dinosaur Museum, 51-11 Terao, Muroko, Westem Interior Seaway as the indicator of potential Katsuyama, Fukui 911-8601 [apan. dispersal and isolation because: (1) transgressive ©Asociación Paleontológica Argentina 0328-347X/01$00.00+50 108 J.J. Head and Y.Kobayashi events including initial completion of the Seaway lguanodon (102Ma) are temporally constrained, and can be cor- related to global sea levels to provide a measure of Ouranosaurus sea level required to isolate dispersal routes, and; (2) it is correlated to a well-sampled terrestrial fauna Fukui form (Jacobs and Winkler, 1998). Altirhinus Phylogeny and biogeography Probactrosaurus Our phylogeny is generally consistent with pub- Eolambia lished studies, with two exceptions: Our study does L...- Protohadros not support a monophyletic Iguanodontidae (Norman, 1998a), and Eolambia forms an unresolved Telmatosaurus trichotomy with Probactrosaurus and more derived L...- taxa, as opposed to being a basal lambeosaurine Gilmoreosaurus (Kirkland, 1998).We have achieved only limited res- L...- olution of the interrelationships among some taxa ------- Claosaurus due, in part, to both the small number of characters used in our analysis and missing data. However, this - ---- Tanius lack of resolution also mirrors controversy among more exhaustive analysis (e.g., Norman 1998a, "--- Bactrosaurus Sereno, 1999). A new taxon, the Fukui form, from [apan (?Berriasian-?Aptian) is significant because it ~L[Hadrosaurinae represents the first occurrence of characteristics pre- Lambeosaurinae viously considered diagnostic of more derived clades (Kobayashi and Azuma, 1999), and because it in- Figure 1. Strict consensus of 13 trees (tree length = 37 steps, Cl. = creases the diversity of Early Cretaceous iguanodon- .70, and R.l. = .65) of ingroup relationships determined via a tians. The low resolution of interrelationships of heuristic search in PAUP 3.1 (Swofford, 1993),exclusive of Tanius Iguanodon, Ouranosaurus, Altirhinus, and the Fukui and Claosaurus (dashed lines). Camptosaurus, Dryosaurus, and Tenontosaurus were used as successive outgroups. form limit biogeographic reconstructions. However, the phylogenetic polytomy of these taxa does not sig- These distributions suggest a biogeographic pat- nificantly alter current biogeographic hypotheses. tern of alternating intervals of dispersal between Norman (1998a) described a history of Laurasiatic North America and Asia from the beginning of the dispersal of Iguanodon prior to the Hauterivian, fol- Late Cretaceous to the Turonian, but the directions of lowed by North American isolation and European- dispersal are not constrained. Intervals of dispersal Asian connection by the Aptian. Isolation of North are separated by periods of endemism and in situ America is considered to have persisted until the lat- evolution. Hypotheses of in situ evolution are sup- est Albian (Kirkland et al., 1997), based on North ported by short phylogenetic distances that are re- American faunal endemicity. stricted to brief periods of time, and geographic con- Systematic relationships of more derived taxa currence shared between Eolambia and Protohadros placed in a chronological and biogeographic frame- (and possibly Claosaurus) and between work represent a progressive transition series culmi- Gilmoreosaurus, Bactrosaurus, and Tanius. nating in Hadrosauridae (sensu Forster, 1997). This Geographic distributions indica te a late Early grade begins with Probactrosaurus in the Early Cretaceous dispersal of Eolambia into North America, Cretaceous of Asia, and with early-middle Late with subsequent divergence of Protohadros and Cretaceous Eolambia and Protohadros lin North Claosaurus, and a second migration into Asia prior to America, and with a series of Asian hadrosauroids the Turonian, with subsequent divergence of (Godefroit et al., 1998)approximately coeval with the hadrosauroids, followed by Hadrosauridae. The first occurrences of Hadrosauridae in the Turonian of phylogenetic status of Telmatosaurus requires an ad- North America and Asia (Weishampel and Horner, ditional dispersal back into Asia, between the first oc- 1990;Pasch, 1995). Ages of Asian hadrosauriods are currences of Protohadros and Claosaurus. The system- ambiguous, but the first occurrence of atic status of Claosaurus is tentative, however, and the Hadrosauridae minimally constrains divergence necessity of additional dispersal into Asia can only be times (MDTs Weishampel et al., 1993) of successive determined once the relative positions of sister taxa to the base of the Turonian. Telmatosaurus and Claosaurus are resolved. A.P.A. PublicaciónEspecial7,2001 Biogeography of derived iguanodontians 109 Distributions of hadrosaurids indicate Laurasian dis- dispersal routes, resulting in intercontinental faunal persals by the Turonian, followed by migration into similarity. There are six intervals in the Late South America by the Campanian, and Antarctica by Cretaceous when sea levels fall below completion of the Maastrichtian (Brett-Surman, 1977; Case et al., the WIS, presumably reflecting intervals of greater 1998). likelihood for intercontinental dispersal, and fauna s should represent alternating periods of endemicity Comparison with sea levels and immigration. Lowered Early Cretaceous sea levels are inconsis- Long- and short term trends in Cretaceous sea tent with hypotheses of isolation and endemicity levels are described in figure 2. Sea levels increased during the Early Cretaceous. We offer two alternate during the Albian, with a maximum transgressive explanations: (1)
Recommended publications
  • MEET the DINOSAURS! WHAT’S in a NAME? a LOT If You Are a Dinosaur!
    MEET THE DINOSAURS! WHAT’S IN A NAME? A LOT if you are a dinosaur! I will call you Dyoplosaurus! Most dinosaurs get their names from the ancient Greek and Latin languages. And I will call you Mojoceratops! And sometimes they are named after a defining feature on their body. Their names are made up of word parts that describe the dinosaur. The name must be sent to a special group of people called the International Commission on Zoological Nomenclature to be approved! Did You The word DINOSAUR comes from the Greek word meaning terrible lizard and was first said by Know? Sir Richard Owen in 1841. © 2013 Omaha’s Henry Doorly Zoo & Aquarium® | 3 SEE IF YOU CAN FIND OUT THE MEANING OF SOME OF OUR DINOSAUR’S NAMES. Dinosaur names are not just tough to pronounce, they often have meaning. Dinosaur Name MEANING of Dinosaur Name Carnotaurus (KAR-no-TORE-us) Means “flesh-eating bull” Spinosaurus (SPY-nuh-SORE-us) Dyoplosaurus (die-o-pluh-SOR-us) Amargasaurus (ah-MAR-guh-SORE-us) Omeisaurus (Oh-MY-ee-SORE-us) Pachycephalosaurus (pak-ee-SEF-uh-low-SORE-us) Tuojiangosaurus (toh-HWANG-uh-SORE-us) Yangchuanosaurus (Yang-chew-ON-uh-SORE-us) Quetzalcoatlus (KWET-zal-coe-AT-lus) Ouranosaurus (ooh-RAN-uh-SORE-us) Parasaurolophus (PAIR-uh-so-ROL-uh-PHUS) Kosmoceratops (KOZ-mo-SARA-tops) Mojoceratops (moe-joe-SEH-rah-tops) Triceratops (try-SER-uh-TOPS) Tyrannosaurus rex (tuh-RAN-uh-SORE-us) Find the answers by visiting the Resource Library at Carnotaurus A: www.OmahaZoo.com/Education. Search word: Dinosaurs 4 | © 2013 Omaha’s Henry Doorly Zoo & Aquarium® DINO DEFENSE All animals in the wild have to protect themselves.
    [Show full text]
  • CPY Document
    v^ Official Journal of the Biology Unit of the American Topical Association 10 Vol. 40(4) DINOSAURS ON STAMPS by Michael K. Brett-Surman Ph.D. Dinosaurs are the most popular animals of all time, and the most misunderstood. Dinosaurs did not fly in the air and did not live in the oceans, nor on lake bottoms. Not all large "prehistoric monsters" are dinosaurs. The most famous NON-dinosaurs are plesiosaurs, moso- saurs, pelycosaurs, pterodactyls and ichthyosaurs. Any name ending in 'saurus' is not automatically a dinosaur, for' example, Mastodonto- saurus is neither a mastodon nor a dinosaur - it is an amphibian! Dinosaurs are defined by a combination of skeletal features that cannot readily be seen when the animal is fully restored in a flesh reconstruction. Because of the confusion, this compilation is offered as a checklist for the collector. This topical list compiles all the dinosaurs on stamps where the actual bones are pictured or whole restorations are used. It excludes footprints (as used in the Lesotho stamps), cartoons (as in the 1984 issue from Gambia), silhouettes (Ascension Island # 305) and unoffi- cial issues such as the famous Sinclair Dinosaur stamps. The name "Brontosaurus", which appears on many stamps, is used with quotation marks to denote it as a popular name in contrast to its correct scientific name, Apatosaurus. For those interested in a detailed encyclopedic work about all fossils on stamps, the reader is referred to the forthcoming book, 'Paleontology - a Guide to the Postal Materials Depicting Prehistoric Lifeforms' by Fran Adams et. al. The best book currently in print is a book titled 'Dinosaur Stamps of the World' by Baldwin & Halstead.
    [Show full text]
  • APPLICATIONS of QUANTITATIVE METHODS and CHAOS THEORY in ICHNOLOGY for ANALYSIS of INVERTEBRATE BEHAVIOR and EVOLUTION by James
    APPLICATIONS OF QUANTITATIVE METHODS AND CHAOS THEORY IN ICHNOLOGY FOR ANALYSIS OF INVERTEBRATE BEHAVIOR AND EVOLUTION by James Richard Woodson Lehane A dissertation submitted to the faculty of The University of Utah in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Geology Department of Geology and Geophysics The University of Utah August 2014 Copyright © James Richard Woodson Lehane 2014 All Rights Reserved The University of Utah Graduate School STATEMENT OF DISSERTATION APPROVAL The dissertation of James Richard Woodson Lehane has been approved by the following supervisory committee members: Allan A. Ekdale , Chair May 5th, 2014 Date Approved Randall B. Irmis , Member June 6th, 2014 Date Approved Marjorie A. Chan , Member May 5th, 2014 Date Approved Elena A. Cherkaev , Member June 12th, 2014 Date Approved Leif Tapanila , Member June 6th, 2014 Date Approved and by John M. Bartley , Chair/Dean of the Department/College/School of Geology and Geophysics and by David B. Kieda, Dean of The Graduate School. ABSTRACT Trace fossils are the result of animal behaviors, such as burrowing and feeding, recorded in the rock record. Previous research has been mainly on the systematic description of trace fossils and their paleoenvironmental implications, not how animal behaviors have evolved. This study analyzes behavioral evolution using the quantification of a group of trace fossils, termed graphoglyptids. Graphoglyptids are deep marine trace fossils, typically found preserved as casts on the bottom of turbidite beds. The analytical techniques performed on the graphoglyptids include calculating fractal dimension, branching angles, and tortuosity, among other analyses, for each individual trace fossil and were performed on over 400 trace fossils, ranging from the Cambrian to the modem.
    [Show full text]
  • A New Hadrosauroid Dinosaur from the Early Late Cretaceous of Shanxi Province, China
    A New Hadrosauroid Dinosaur from the Early Late Cretaceous of Shanxi Province, China Run-Fu Wang1, Hai-Lu You2*, Shi-Chao Xu1, Suo-Zhu Wang1,JianYi1, Li-Juan Xie1, Lei Jia1, Ya-Xian Li1 1 Shanxi Museum of Geological and Mineral Science and Technology, Taiyuan, Shanxi Province, People’s Republic of China, 2 Key Laboratory of Vertebrate Evolution and Human Origins of Chinese Academy of Sciences, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing, People’s Republic of China Abstract Background: The origin of hadrosaurid dinosaurs is far from clear, mainly due to the paucity of their early Late Cretaceous close relatives. Compared to numerous Early Cretaceous basal hadrosauroids, which are mainly from Eastern Asia, only six early Late Cretaceous (pre-Campanian) basal hadrosauroids have been found: three from Asia and three from North America. Methodology/Principal Findings: Here we describe a new hadrosauroid dinosaur, Yunganglong datongensis gen. et sp. nov., from the early Late Cretaceous Zhumapu Formation of Shanxi Province in northern China. The new taxon is represented by an associated but disarticulated partial adult skeleton including the caudodorsal part of the skull. Cladistic analysis and comparative studies show that Yunganglong represents one of the most basal Late Cretaceous hadrosauroids and is diagnosed by a unique combination of features in its skull and femur. Conclusions/Significance: The discovery of Yunganglong adds another record of basal Hadrosauroidea in the early Late Cretaceous, and helps to elucidate the origin and evolution of Hadrosauridae. Citation: Wang R-F, You H-L, Xu S-C, Wang S-Z, Yi J, et al.
    [Show full text]
  • A Phylogenetic Analysis of the Basal Ornithischia (Reptilia, Dinosauria)
    A PHYLOGENETIC ANALYSIS OF THE BASAL ORNITHISCHIA (REPTILIA, DINOSAURIA) Marc Richard Spencer A Thesis Submitted to the Graduate College of Bowling Green State University in partial fulfillment of the requirements of the degree of MASTER OF SCIENCE December 2007 Committee: Margaret M. Yacobucci, Advisor Don C. Steinker Daniel M. Pavuk © 2007 Marc Richard Spencer All Rights Reserved iii ABSTRACT Margaret M. Yacobucci, Advisor The placement of Lesothosaurus diagnosticus and the Heterodontosauridae within the Ornithischia has been problematic. Historically, Lesothosaurus has been regarded as a basal ornithischian dinosaur, the sister taxon to the Genasauria. Recent phylogenetic analyses, however, have placed Lesothosaurus as a more derived ornithischian within the Genasauria. The Fabrosauridae, of which Lesothosaurus was considered a member, has never been phylogenetically corroborated and has been considered a paraphyletic assemblage. Prior to recent phylogenetic analyses, the problematic Heterodontosauridae was placed within the Ornithopoda as the sister taxon to the Euornithopoda. The heterodontosaurids have also been considered as the basal member of the Cerapoda (Ornithopoda + Marginocephalia), the sister taxon to the Marginocephalia, and as the sister taxon to the Genasauria. To reevaluate the placement of these taxa, along with other basal ornithischians and more derived subclades, a phylogenetic analysis of 19 taxonomic units, including two outgroup taxa, was performed. Analysis of 97 characters and their associated character states culled, modified, and/or rescored from published literature based on published descriptions, produced four most parsimonious trees. Consistency and retention indices were calculated and a bootstrap analysis was performed to determine the relative support for the resultant phylogeny. The Ornithischia was recovered with Pisanosaurus as its basalmost member.
    [Show full text]
  • A Revised Taxonomy of the Iguanodont Dinosaur Genera and Species
    ARTICLE IN PRESS + MODEL Cretaceous Research xx (2007) 1e25 www.elsevier.com/locate/CretRes A revised taxonomy of the iguanodont dinosaur genera and species Gregory S. Paul 3109 North Calvert Station, Side Apartment, Baltimore, MD 21218-3807, USA Received 20 April 2006; accepted in revised form 27 April 2007 Abstract Criteria for designating dinosaur genera are inconsistent; some very similar species are highly split at the generic level, other anatomically disparate species are united at the same rank. Since the mid-1800s the classic genus Iguanodon has become a taxonomic grab-bag containing species spanning most of the Early Cretaceous of the northern hemisphere. Recently the genus was radically redesignated when the type was shifted from nondiagnostic English Valanginian teeth to a complete skull and skeleton of the heavily built, semi-quadrupedal I. bernissartensis from much younger Belgian sediments, even though the latter is very different in form from the gracile skeletal remains described by Mantell. Currently, iguanodont remains from Europe are usually assigned to either robust I. bernissartensis or gracile I. atherfieldensis, regardless of lo- cation or stage. A stratigraphic analysis is combined with a character census that shows the European iguanodonts are markedly more morpho- logically divergent than other dinosaur genera, and some appear phylogenetically more derived than others. Two new genera and a new species have been or are named for the gracile iguanodonts of the Wealden Supergroup; strongly bipedal Mantellisaurus atherfieldensis Paul (2006. Turning the old into the new: a separate genus for the gracile iguanodont from the Wealden of England. In: Carpenter, K. (Ed.), Horns and Beaks: Ceratopsian and Ornithopod Dinosaurs.
    [Show full text]
  • Notes on British Dinosaurs. Part I: Hypsilophodon
    Dr. Francis Baron Nopcsa—British Dinosaurs. 203 II.—NOTES ON BRITISH DINOSAURS. PAET I: ffrpsiLOPHODOK. By Dr. FRANCIS BARON NOPCSA. (WITH A PAGE-ILLUSTRATION.) URING a recent stay in London the kindness of Dr. A. S. Woodward enabled me to study some of the splendid Dinosaurian remainD s in the British Museum. Having principally occupied myself till now with Ornithopodous Dinosaurs, first of all Hypsilophodon attracted my attention, and my expectation that this type would prove to be the clue for the- understanding of all the other Orthopoda has been perfectly fulfilled. Hypsilophodon was described and figured at various times by Owen, Huxley, and Hulke; a restoration of this animal was given by Marsh in the GEOLOGICAL MAGAZINE for 1896 (p. 6, Fig. 2), and the complete bibliographical list concerning this Dinosaur is compiled in my paper "Synopsis und Abstammung der Dinosaurier" (Foldtani Xozlony, 1901, Budapest). In consequence of our more recent knowledge of Dinosaurs in general I managed to detect some new points of remarkable interest. Mandible. What Hulke, in describing the Hypsilophodon skull, No. 110, supposed to be the parietal, frontal, and post-frontal bones (Phil. Trans., 1882, pi. lxxi, fig. 1, pa., fr., ps.f.), turned out to be the outer view of a complete right mandibular ramus, so that the parietal changes into an articular, the frontal becomes the dentary, and the post-frontal the coronoid bone. This piece (p. 207, Fig. 4) is, in fact, the finest mandibulum of Hypsilophodon I have seen in the whole collection, and as such worthy to be refigured. The general outline of the mandibulum, with its strongly ab- breviated post-coronoidal part and its blunt processus coronoideum, reminds one somewhat of the under jaw of Placodus gigas, though it differs of course in nearly every detail, being built up after the Iguanodon type.
    [Show full text]
  • The Dinosaurs Transylvanian Province in Hungary
    COMMUNICATIONS OF THE YEARBOOK OF THE ROYAL HUNGARIAN GEOLOGICAL IMPERIAL INSTITUTE ================================================================== VOL. XXIII, NUMBER 1. ================================================================== THE DINOSAURS OF THE TRANSYLVANIAN PROVINCE IN HUNGARY. BY Dr. FRANZ BARON NOPCSA. WITH PLATES I-IV AND 3 FIGURES IN THE TEXT. Published by The Royal Hungarian Geological Imperial Institute which is subject to The Royal Hungarian Agricultural Ministry BUDAPEST. BOOK-PUBLISHER OF THE FRANKLIN ASSOCIATION. 1915. THE DINOSAURS OF THE TRANSYLVANIAN PROVINCE IN HUNGARY. BY Dr. FRANZ BARON NOPCSA. WITH PLATES I-IV AND 3 FIGURES IN THE TEXT. Mit. a. d. Jahrb. d. kgl. ungar. Geolog. Reichsanst. XXIII. Bd. 1 heft I. Introduction. Since it appears doubtful when my monographic description of the dinosaurs of Transylvania1 that formed my so-to-speak preparatory works to my current dinosaur studies can be completed, due on one hand to outside circumstances, but on the other hand to the new arrangement of the vertebrate material in the kgl. ungar. geologischen Reichsanstalt accomplished by Dr. KORMOS, the necessity emerged of also exhibiting some of the dinosaur material located here, so that L. v. LÓCZY left the revision to me; I view the occasion, already briefly anticipating my final work at this point, to give diagnoses of the dinosaurs from the Transylvanian Cretaceous known up to now made possible from a systematic division of the current material, as well as to discuss their biology. The reptile remains known from the Danian of Transylvania will be mentioned only incidentally. Concerning the literature, I believe in refraining from more exact citations, since this work presents only a preliminary note.
    [Show full text]
  • From the Early Cretaceous of Morella, Spain
    RESEARCH ARTICLE A New Sail-Backed Styracosternan (Dinosauria: Ornithopoda) from the Early Cretaceous of Morella, Spain José Miguel Gasulla1☯, Fernando Escaso2☯*, Iván Narváez2, Francisco Ortega2, José Luis Sanz1 1 Unidad de Paleontología, Universidad Autónoma de Madrid, Cantoblanco, Madrid, Spain, 2 Grupo de Biología Evolutiva, Universidad Nacional de Educación a Distancia, Madrid, Spain ☯ These authors contributed equally to this work. * [email protected] Abstract A new styracosternan ornithopod genus and species is here described based on a partial postcranial skeleton and an associated dentary tooth of a single specimen from the Arcillas de Morella Formation (Early Cretaceous, late Barremian) at the Morella locality, (Castellón, Spain). Morelladon beltrani gen. et sp. nov. is diagnosed by eight autapomorphic features. The set of autapomorphies includes: very elongated and vertical neural spines of the dorsal vertebrae, midline keel on ventral surface of the second to fourth sacral vertebrae restricted OPEN ACCESS to the anterior half of the centrum, a posterodorsally inclined medial ridge on the postace- Citation: Gasulla JM, Escaso F, Narváez I, Ortega F, tabular process of the ilium that meets its dorsal margin and distal end of the straight ischial Sanz JL (2015) A New Sail-Backed Styracosternan shaft laterally expanded, among others. Phylogenetic analyses reveal that the new Iberian (Dinosauria: Ornithopoda) from the Early Cretaceous of Morella, Spain. PLoS ONE 10(12): e0144167. form is more closely related to its synchronic and sympatric contemporary European taxa doi:10.1371/journal.pone.0144167 Iguanodon bernissartensis and Mantellisaurus atherfieldensis, known from Western Editor: Leon Claessens, College of the Holy Cross, Europe, than to other Early Cretaceous Iberian styracosternans (Delapparentia turolensis UNITED STATES and Proa valdearinnoensis).
    [Show full text]
  • Phylogeny and Biogeography of Iguanodontian Dinosaurs, with Implications from Ontogeny and an Examination of the Function of the Fused Carpal-Digit I Complex
    Phylogeny and Biogeography of Iguanodontian Dinosaurs, with Implications from Ontogeny and an Examination of the Function of the Fused Carpal-Digit I Complex By Karen E. Poole B.A. in Geology, May 2004, University of Pennsylvania M.A. in Earth and Planetary Sciences, August 2008, Washington University in St. Louis A Dissertation submitted to The Faculty of The Columbian College of Arts and Sciences of The George Washington University in partial fulfillment of the requirements for the degree of Doctor of Philosophy August 31, 2015 Dissertation Directed by Catherine Forster Professor of Biology The Columbian College of Arts and Sciences of The George Washington University certifies that Karen Poole has passed the Final Examination for the degree of Doctor of Philosophy as of August 10th, 2015. This is the final and approved form of the dissertation. Phylogeny and Biogeography of Iguanodontian Dinosaurs, with Implications from Ontogeny and an Examination of the Function of the Fused Carpal-Digit I Complex Karen E. Poole Dissertation Research Committee: Catherine A. Forster, Professor of Biology, Dissertation Director James M. Clark, Ronald Weintraub Professor of Biology, Committee Member R. Alexander Pyron, Robert F. Griggs Assistant Professor of Biology, Committee Member ii © Copyright 2015 by Karen Poole All rights reserved iii Dedication To Joseph Theis, for his unending support, and for always reminding me what matters most in life. To my parents, who have always encouraged me to pursue my dreams, even those they didn’t understand. iv Acknowledgements First, a heartfelt thank you is due to my advisor, Cathy Forster, for giving me free reign in this dissertation, but always providing valuable commentary on any piece of writing I sent her, no matter how messy.
    [Show full text]
  • Inferring Body Mass in Extinct Terrestrial Vertebrates and the Evolution of Body Size in a Model-Clade of Dinosaurs (Ornithopoda)
    Inferring Body Mass in Extinct Terrestrial Vertebrates and the Evolution of Body Size in a Model-Clade of Dinosaurs (Ornithopoda) by Nicolás Ernesto José Campione Ruben A thesis submitted in conformity with the requirements for the degree of Doctor of Philosophy Ecology and Evolutionary Biology University of Toronto © Copyright by Nicolás Ernesto José Campione Ruben 2013 Inferring body mass in extinct terrestrial vertebrates and the evolution of body size in a model-clade of dinosaurs (Ornithopoda) Nicolás E. J. Campione Ruben Doctor of Philosophy Ecology and Evolutionary Biology University of Toronto 2013 Abstract Organismal body size correlates with almost all aspects of ecology and physiology. As a result, the ability to infer body size in the fossil record offers an opportunity to interpret extinct species within a biological, rather than simply a systematic, context. Various methods have been proposed by which to estimate body mass (the standard measure of body size) that center on two main approaches: volumetric reconstructions and extant scaling. The latter are particularly contentious when applied to extinct terrestrial vertebrates, particularly stem-based taxa for which living relatives are difficult to constrain, such as non-avian dinosaurs and non-therapsid synapsids, resulting in the use of volumetric models that are highly influenced by researcher bias. However, criticisms of scaling models have not been tested within a comprehensive extant dataset. Based on limb measurements of 200 mammals and 47 reptiles, linear models were generated between limb measurements (length and circumference) and body mass to test the hypotheses that phylogenetic history, limb posture, and gait drive the relationship between stylopodial circumference and body mass as critics suggest.
    [Show full text]
  • A Re-Appraisal Ofaralosaurus Tuberiferus (Dinosauria, Hadrosauridae) from the Late Cretaceous of Kazakhstan
    bulletin de l'institut royal des sciences naturelles de belgique sciences de la terre. 74-suppl.: 139-154, 2004 bulletin van het koninklijk belgisch instituut voor natuurwetenschappen aardwetenschappen, 74-suppl.: 139-154, 2004 A re-appraisal ofAralosaurus tuberiferus (Dinosauria, Hadrosauridae) from the Late Cretaceous of Kazakhstan by Pascal GODEFROIT, Vladimir ALIFANOV & Yuri BOLOTSKY Godefroit, P., Alifanov V. & Y. Bolotsky, 2004. - A re-appraisal of sauridae than to Iguanodon (Weishampel & Horner, Aralosaurus tuberiferus (Dinosauria, Hadrosauridae) from the Late Cretaceous of Kazakhstan. Bulletin de l'Institut royal des Sciences 1990; Sereno, 1998). They were the most successful naturelles de Belgique, Sciences de la Terre, 74 supplement: 139- herbivorous dinosaurs in Laurasia during the closing 154, 1 pl., 7 figs, Bruxelles - Brussel, December 15, 2004. - ISSN stages of the Cretaceous. During the Campanian and 0374-6291. Maastrichtian, they were the primary constituents of many terrestrial vertebrate faunas. In western North Abstract America, hundreds of fragmentary to complete hadro¬ saurid specimens have been collected, including remains Aralosaurus tuberiferus Rozhdestvensky, 1968 (Dinosauria: Hadro¬ of eggs, embryos, hatchlings and juvéniles. They were sauridae) is based on a fragmentary skull from the Beleutinskaya Svita apparently spread world-wide: besides North America, (?Turonian, Late Cretaceous) from the Sakh-Sakh locality of central fossils have also been discovered in Central America, Kazakhstan. Redescription of the type material reveals that it is a valid South taxon, characterised by a hollow nasal crest-like structure located far in America, Europe, Asia (Weishampel & Horner, front of the orbits and by a well-developed curved crest on the maxilla 1990) and apparently even in Antarctica (Rich et al., that borders laterally the caudal part of the premaxillary shelf.
    [Show full text]