APPLICATIONS of QUANTITATIVE METHODS and CHAOS THEORY in ICHNOLOGY for ANALYSIS of INVERTEBRATE BEHAVIOR and EVOLUTION by James

Total Page:16

File Type:pdf, Size:1020Kb

APPLICATIONS of QUANTITATIVE METHODS and CHAOS THEORY in ICHNOLOGY for ANALYSIS of INVERTEBRATE BEHAVIOR and EVOLUTION by James APPLICATIONS OF QUANTITATIVE METHODS AND CHAOS THEORY IN ICHNOLOGY FOR ANALYSIS OF INVERTEBRATE BEHAVIOR AND EVOLUTION by James Richard Woodson Lehane A dissertation submitted to the faculty of The University of Utah in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Geology Department of Geology and Geophysics The University of Utah August 2014 Copyright © James Richard Woodson Lehane 2014 All Rights Reserved The University of Utah Graduate School STATEMENT OF DISSERTATION APPROVAL The dissertation of James Richard Woodson Lehane has been approved by the following supervisory committee members: Allan A. Ekdale , Chair May 5th, 2014 Date Approved Randall B. Irmis , Member June 6th, 2014 Date Approved Marjorie A. Chan , Member May 5th, 2014 Date Approved Elena A. Cherkaev , Member June 12th, 2014 Date Approved Leif Tapanila , Member June 6th, 2014 Date Approved and by John M. Bartley , Chair/Dean of the Department/College/School of Geology and Geophysics and by David B. Kieda, Dean of The Graduate School. ABSTRACT Trace fossils are the result of animal behaviors, such as burrowing and feeding, recorded in the rock record. Previous research has been mainly on the systematic description of trace fossils and their paleoenvironmental implications, not how animal behaviors have evolved. This study analyzes behavioral evolution using the quantification of a group of trace fossils, termed graphoglyptids. Graphoglyptids are deep marine trace fossils, typically found preserved as casts on the bottom of turbidite beds. The analytical techniques performed on the graphoglyptids include calculating fractal dimension, branching angles, and tortuosity, among other analyses, for each individual trace fossil and were performed on over 400 trace fossils, ranging from the Cambrian to the modem. These techniques were used to determine various behavioral activities of the trace makers, including feeding and behavioral evolution. Graphoglyptids have been previously identified as representing mining, grazing, farming, and/or trapping. By comparing graphoglyptids to known mining burrows and grazing trails, using fractal analysis, it was possible to rule out mining and grazing behaviors for graphoglyptids. To determine between farming and trapping, a review of all known trapping burrows was required. The hypothesis that graphoglyptids were trappers was based entirely on the hypothesized feeding behaviors of the worm Pciraonis. Close examination of Paraonis burrows indicated that the burrows are not traps. This means that, since Paraonis does not trap prey, graphoglyptids should not be considered traps either. Therefore, graphoglyptids likely represent farming behavior. This study also shows that previous interpretations of graphoglyptid behavioral evolution was far too simple. The results of the morphological analyses indicate that major changes to the behavioral evolution occurred during the Late Cretaceous and the Early Eocene. Previous hypotheses about Late Cretaceous evolutionary influences were validated. However there were additional influences like the Paleocene-Eocene Thermal Maximum that were not overly emphasized before. Finally, of the many theories about the driving force of evolution, chaos theory has often been overlooked. Chaos theory is a powerful tool, such that, by knowing the similarities between chaos theory and evolutionary theory, it may be possible to map out how environmental changes could shift the evolution of a species. iv This dissertation is dedicated to my lovely daughter, who has taught me the valuable lesson that no hardship is too tough, that you can’t press on through it. “For our own species, evolution occurs mostly through our behavior. We innovate new behavior to adapt.” —Michael Crichton, The Lost World (1995) TABLE OF CONTENTS ABSTRACT............................................................................................................. .....iii LIST OF TABLES........................................................................................................x ACKNOWLEDGEMENTS.................................................................................... .....xi Chapters 1. INTRODUCTION AND BACKGROUND................................................... .....1 1.1 Overview..................................................................................................... 1 1.2 Graphoglyptids...................................................................................... .....4 1.3 Sampling..................................................................................................... 11 1.4 Significance of research....................................................................... ..... 20 1.5 Summary of following chapters................................................................22 2. FRACTAL ANALYSIS OF GRAPHOGLYPTID TRACE FOSSILS...................................................................................................27 2.1 Abstract....................................................................................................... 27 2.2 Introduction........................................................................................... ..... 28 2.3 Methods and materials...............................................................................32 2.4 Results.........................................................................................................46 2.5 Discussion............................................................................................. ..... 47 2.6 Conclusion............................................................................................ .....51 3. PITFALLS, TRAPS, AND WEBS IN ICHNOLOGY: TRACES AND TRACE FOSSILS OF AN UNDERSTUDIED BEHAVIORAL STRATEGY............................................................................................................52 3.1 Abstract.......................................................................................................52 3.2 Introducti on........................................................................................... .....53 3.3 Modem trapping traces and their fossil equivalents.......................... .....54 3.4 Possible ancient traps.................................................................................71 3.5 Discussion............................................................................................. .....77 3.6 Conclusion............................................................................................ .....79 4. ANALYTICAL TOOLS FOR QUANTIFYING THE MORPHOLOGY OF INVERTEBRATE TRACE FOSSILS...................................................... .....80 4.1 Abstract.......................................................................................................80 4.2 Introducti on........................................................................................... .....81 4.3 Methodology: Starting out................................................................... .....81 4.4 Morphology dependent methods...............................................................87 4.5 Morphology independent methods...........................................................101 4.6 Materials.....................................................................................................109 4.7 Discussion............................................................................................. .....I ll 5. BEHAVIORAL EVOLUTION OF BENTHIC ORGANISMS REFLECTED IN THE GEOLOGIC RECORD OF GRAPHOGLYPTID TRACE FOSSILS .............................................................119 5.1 Abstract.......................................................................................................119 5.2 Introducti on........................................................................................... .....120 5.3 Basis of analyses........................................................................................122 5.4 Ichnotaxonomy and topology groups.................................................. .....123 5.5 Materials.....................................................................................................134 5.6 Methodology......................................................................................... .....135 5.7 Results.........................................................................................................141 5.8 Discussion............................................................................................. .....163 5.9 Conclusion............................................................................................ .....177 6. EVOLUTION IN CHAOS: THEORETICAL APPROACH OF CHAOS THEORY AS A GUIDING PRINCIPLE FOR UNDERSTANDING PATTERNS IN BIOLOGICAL EVOLUTION.............................................. .....180 6.1 Abstract.......................................................................................................180 6.2 Introducti on........................................................................................... .....181 6.3 Chaos theory......................................................................................... .....182 6.4 Chaos theory in evolution.................................................................... .....185 6.5 Morphospace......................................................................................... .....188 6.6 B ehavi oral evoluti on..................................................................................191 6.7 Discussion............................................................................................
Recommended publications
  • Download Full Article in PDF Format
    A new marine vertebrate assemblage from the Late Neogene Purisima Formation in Central California, part II: Pinnipeds and Cetaceans Robert W. BOESSENECKER Department of Geology, University of Otago, 360 Leith Walk, P.O. Box 56, Dunedin, 9054 (New Zealand) and Department of Earth Sciences, Montana State University 200 Traphagen Hall, Bozeman, MT, 59715 (USA) and University of California Museum of Paleontology 1101 Valley Life Sciences Building, Berkeley, CA, 94720 (USA) [email protected] Boessenecker R. W. 2013. — A new marine vertebrate assemblage from the Late Neogene Purisima Formation in Central California, part II: Pinnipeds and Cetaceans. Geodiversitas 35 (4): 815-940. http://dx.doi.org/g2013n4a5 ABSTRACT e newly discovered Upper Miocene to Upper Pliocene San Gregorio assem- blage of the Purisima Formation in Central California has yielded a diverse collection of 34 marine vertebrate taxa, including eight sharks, two bony fish, three marine birds (described in a previous study), and 21 marine mammals. Pinnipeds include the walrus Dusignathus sp., cf. D. seftoni, the fur seal Cal- lorhinus sp., cf. C. gilmorei, and indeterminate otariid bones. Baleen whales include dwarf mysticetes (Herpetocetus bramblei Whitmore & Barnes, 2008, Herpetocetus sp.), two right whales (cf. Eubalaena sp. 1, cf. Eubalaena sp. 2), at least three balaenopterids (“Balaenoptera” cortesi “var.” portisi Sacco, 1890, cf. Balaenoptera, Balaenopteridae gen. et sp. indet.) and a new species of rorqual (Balaenoptera bertae n. sp.) that exhibits a number of derived features that place it within the genus Balaenoptera. is new species of Balaenoptera is relatively small (estimated 61 cm bizygomatic width) and exhibits a comparatively nar- row vertex, an obliquely (but precipitously) sloping frontal adjacent to vertex, anteriorly directed and short zygomatic processes, and squamosal creases.
    [Show full text]
  • Plan Rozwoju Miejscowości Łukowica
    Zał ącznik nr 1 PPLLAANN RROOZZWWOOJJUU MMIIEEJJSSCCOOWWOOŚŚCCII ŁŁUUKKOOWWIICCAA PLAN ROZWOJU MIEJSCOWOŚCI ŁUKOWICA ___________________________________________________________________________ SPIS TRE ŚCI 1. Charakterystyka Gminy Łukowica………………………………………... 3 2. Charakterystyka miejscowo ści – sołectwa Łukowica…………………….. 8 3. Inwentaryzacja zasobów słu Ŝą ca uj ęciu stanu rzeczywistego…………….. 9 Gospodarka………………………………………………………………... 9 Rolnictwo………………………………………………………………….. 11 Edukacja…………………………………………………………………… 12 Kultura…………………………………………………………………….. 13 Sport i turystyka…………………………………………………………… 14 Infrastruktura techniczna………………………………………………….. 15 Energetyka i telekomunikacja……………………………………………... 16 Ochrona zdrowia, przeciwpo Ŝarowa, bezpiecze ństwo publiczne…………. 16 4. Ocena mocnych i słabych stron sołectwa Łukowica……………………… 17 5. Zdefiniowanie priorytetów rozwoju miejscowo ści Łukowica…………….. 19 6. Opis planowanego przedsi ęwzi ęcia w ramach SPO……….……………… 21 7. Szacunkowy koszt planowanego przedsi ęwzi ęcia…..……………………. 22 8. Harmonogram planowanego przedsi ęwzi ęcia….…………………………. 24 9 Opis planowanego przedsi ęwzi ęcia w ramach SPO II.…………………… 25 10 Szacunkowy koszt planowanego przedsi ęwzi ęcia II…...…………………. 26 11 Harmonogram planowanego przedsi ęwzi ęcia II….………………………. 28 2 PLAN ROZWOJU MIEJSCOWOŚCI ŁUKOWICA ___________________________________________________________________________ 1. Charakterystyka Gminy Łukowica Gmina Łukowica w obecnych granicach administracyjnych powstała w wyniku wprowadzenia reformy administracyjnej w kraju polegaj
    [Show full text]
  • Complete 230 Fellranger Tick List A
    THE LAKE DISTRICT FELLS – PAGE 1 A-F CICERONE Fell name Height Volume Date completed Fell name Height Volume Date completed Allen Crags 784m/2572ft Borrowdale Brock Crags 561m/1841ft Mardale and the Far East Angletarn Pikes 567m/1860ft Mardale and the Far East Broom Fell 511m/1676ft Keswick and the North Ard Crags 581m/1906ft Buttermere Buckbarrow (Corney Fell) 549m/1801ft Coniston Armboth Fell 479m/1572ft Borrowdale Buckbarrow (Wast Water) 430m/1411ft Wasdale Arnison Crag 434m/1424ft Patterdale Calf Crag 537m/1762ft Langdale Arthur’s Pike 533m/1749ft Mardale and the Far East Carl Side 746m/2448ft Keswick and the North Bakestall 673m/2208ft Keswick and the North Carrock Fell 662m/2172ft Keswick and the North Bannerdale Crags 683m/2241ft Keswick and the North Castle Crag 290m/951ft Borrowdale Barf 468m/1535ft Keswick and the North Catbells 451m/1480ft Borrowdale Barrow 456m/1496ft Buttermere Catstycam 890m/2920ft Patterdale Base Brown 646m/2119ft Borrowdale Caudale Moor 764m/2507ft Mardale and the Far East Beda Fell 509m/1670ft Mardale and the Far East Causey Pike 637m/2090ft Buttermere Bell Crags 558m/1831ft Borrowdale Caw 529m/1736ft Coniston Binsey 447m/1467ft Keswick and the North Caw Fell 697m/2287ft Wasdale Birkhouse Moor 718m/2356ft Patterdale Clough Head 726m/2386ft Patterdale Birks 622m/2241ft Patterdale Cold Pike 701m/2300ft Langdale Black Combe 600m/1969ft Coniston Coniston Old Man 803m/2635ft Coniston Black Fell 323m/1060ft Coniston Crag Fell 523m/1716ft Wasdale Blake Fell 573m/1880ft Buttermere Crag Hill 839m/2753ft Buttermere
    [Show full text]
  • Evolution of White and Megatooth Sharks, and Evidence for Early Predation on Seals, Sirenians, and Whales
    Vol.5, No.11, 1203-1218 (2013) Natural Science http://dx.doi.org/10.4236/ns.2013.511148 Evolution of white and megatooth sharks, and evidence for early predation on seals, sirenians, and whales Cajus G. Diedrich Paleologic, Petra Bezruce 96, Zdice, Czech Republic; [email protected], www.paleologic.eu Received 6 April 2013; revised 6 May 2013; accepted 13 May 2013 Copyright © 2013 Cajus G. Diedrich. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. ABSTRACT ments were generally first attributed to “white shark Carcharodon carcharias (Linné, 1758) ancestors”. Con- The early white shark Carcharodon Smith, 1838 troversy has subsequently arisen whether they should be with the fossil Carcharodon auriculatus (Blain- ascribed to the megatooth shark (“Carcharocles”—he- ville, 1818) and the extinct megatooth shark Oto- rein Otodus), or to the white shark (Carcharodon) line- dus Agassiz, 1843 with species Otodus sokolovi age [1]. This controversy is partly a result of non-sys- (Jaeckel, 1895) were both present in the Euro- tematic excavation of single serrated similar looking pean proto North Sea Basin about 47.8 - 41.3 m.y. teeth from many localities around the world, and from ago (Lutetian, early Middle Eocene), as well as in horizons of different ages. DNA studies have at least the Tethys realm around the Afican-Eurasian resolved the general position of the extant form of Car- shallow marine habitats. Both top predators deve- charodon carcharias, placing it between the Isurus and loped to be polyphyletic, with possible two dif- Lamna genera [2,3], without taking into account a revi- ferent lamnid shark ancestors within the Early sion and including of extinct fossil species such as Oto- Paleocene to Early Eocene timespan with Car- dus.
    [Show full text]
  • RAPORT O STANIE GMINY LASKOWA Za 2018 Rok
    GMINA LASKOWA RAPORT O STANIE GMINY LASKOWA za 2018 rok Laskowa, maj 2019 r 1 I. Wstęp Obowiązek sporządzenia raportu o stanie gminy wynika z art. 28aa ustawy o samorządzie gminnym. Raport obejmuje podsumowanie działalności Wójta Gminy Laskowa w roku 2018 r. II. Informacje ogólne 1. Ogólna charakterystyka gminy Gmina wiejska Laskowa przynależy administracyjnie do powiatu limanowskiego, będącego częścią województwa małopolskiego. Obszar gminy wynosi 7 253,59 ha, co stanowi 7,62% powierzchni powiatu limanowskiego. Siedzibą władz gminnych jest miejscowość Laskowa położona w zachodniej części obszaru gminy. Gminę stanowi 9 sołectw: Laskowa, Jaworzna, Kamionka Mała, Kobyłczyna, Krosna, Sechna, Strzeszyce, Ujanowice i Żmiąca. Odległości z Laskowej do: Krakowa (70 km), Nowego Sącza (30 km), Rabki (40 km), Bochni (35km), Zakopanego (90 km). Region, w którym położona jest Gmina Laskowa, ma charakter wybitnie rolniczy o dużych predyspozycjach dla rekreacji. Obszar gminy rozciąga się w środkowej, krajobrazowo najciekawszej i najpiękniejszej części doliny rzeki Łososiny. Położenie, warunki klimatyczne, środowisko przyrodnicze i przede wszystkim brak przemysłu to niewątpliwie najważniejsze walory tego regionu. Turystów urzekają piękne krajobrazy oraz liczne miejsca gwarantujące spokojny służący zdrowiu wypoczynek. W gminie przybywa coraz więcej miejsc noclegowych podwyższa się standard świadczonych usług turystycznych, szczególnie w dziedzinie agroturystyki. Położenie gminy jest niezbyt dogodne względem większych ośrodków takich jak: Kraków - stwarza gorsze możliwości korzystania z infrastruktury społecznej o znaczeniu ponadlokalnym i regionalnym, zwłaszcza w zakresie szkolnictwa średniego i wyższego, specjalistycznych placówek służby zdrowia, szerszej oferty kulturalnej. Rolnictwo – mające w gminie dogodne przyrodnicze warunki, ale charakteryzujące się małym areałem gospodarstw i dużym udziałem działek rolnych. Atrakcyjny krajobraz, flora i fauna obszaru stanowią szansę przyciągnięcia turystów aglomeracji miejskich oraz turystów zagranicznych.
    [Show full text]
  • A Review of the Fossil Seabirds from the Tertiary of the North Pacific
    Paleobiology,18(4), 1992, pp. 401-424 A review of the fossil seabirds fromthe Tertiaryof the North Pacific: plate tectonics,paleoceanography, and faunal change Kenneth I. Warheit Abstract.-Ecologists attempt to explain species diversitywithin Recent seabird communities in termsof Recent oceanographic and ecological phenomena. However, many of the principal ocean- ographic processes that are thoughtto structureRecent seabird systemsare functionsof geological processes operating at many temporal and spatial scales. For example, major oceanic currents,such as the North Pacific Gyre, are functionsof the relative positions of continentsand Antarcticgla- ciation,whereas regional air masses,submarine topography, and coastline shape affectlocal processes such as upwelling. I hypothesize that the long-termdevelopment of these abiotic processes has influencedthe relative diversityand communitycomposition of North Pacific seabirds. To explore this hypothesis,I divided the historyof North Pacific seabirds into seven intervalsof time. Using published descriptions,I summarized the tectonicand oceanographic events that occurred during each of these time intervals,and related changes in species diversityto changes in the physical environment.Over the past 95 years,at least 94 species of fossil seabirds have been described from marine deposits of the North Pacific. Most of these species are from Middle Miocene through Pliocene (16.0-1.6 Ma) sediments of southern California, although species from Eocene to Early Miocene (52.0-22.0 Ma) deposits are fromJapan,
    [Show full text]
  • LISTA STARTOWA Kat
    Organizator: ZPO- MOS PL Limanowa, PSZS Limanowa Powiat Limanowski, Trasy "Aktywna Mogielica" Zalesie 11.02.2020r. LISTA STARTOWA kat. Chłopców ur. 2005, dyst. 3km F Nr Nazwisko Imię ur Szkoła Czas startu 1 Młynarczyk Mateusz 2005 SP Kłodne 10:30:30,0 2 Woźniak Kamil 2005 SP Kłodne 10:31:00,0 3 Kubiński Dawid 2005 ZSiP w Olszówce 10:31:30,0 4 Florek Jakub 2005 SP Zalesie 10:32:00,0 5 Sołtys Krystian 2005 SP Kłodne 10:32:30,0 6 Leśniara Bartłomiej 2005 SP Kłodne 10:33:00,0 7 Karabin Konrad 2005 SP Zalesie 10:33:30,0 8 Wacławik Stanisław 2005 ZSiP w Olszówce 10:34:00,0 9 Zygmunt Patryk 2005 SP Kłodne 10:34:30,0 10 Winikajtys Eryk 2005 SP Kłodne 10:35:00,0 11 Cichorczyk Bartosz 2005 ZSiP w Olszówce 10:35:30,0 kat. Dziewcząt ur. 2005, dyst. 3km F Nr Nazwisko Imię ur Szkoła Czas startu 15 Chramęga Daria 2005 SP Kłodne 10:40:00,0 16 Macuga Julia 2005 ZSiP w Olszówce 10:40:30,0 17 Pacholarz Eliza 2005 SP Kłodne 10:41:00,0 18 Pławecka Ewelina 2005 SP Kłodne 10:41:30,0 19 Świerczek Julia 2005 SP Kłodne 10:42:00,0 20 Curzydło Amelia 2005 SP3 Słopnice 10:42:30,0 21 Leśniak Wiktoria 2005 SP Kłodne 10:43:00,0 22 Sochacka Oliwia 2005 ZSiP w Olszówce 10:43:30,0 23 Skawska Justyna 2005 ZSiP w Olszówce 10:44:00,0 24 Marcisz Weronika 2005 SP Zalesie 10:44:30,0 25 Bierowiec Kinga 2005 ZSiP w Olszówce 10:45:00,0 26 Ruchałowski Kacper 2006 SP Kłodne 10:45:30,0 kat.
    [Show full text]
  • Uchwala Nr XXV/250/2018 Z Dnia 22 Marca 2018 R
    DZIENNIK URZĘDOWY WOJEWÓDZTWA MAŁOPOLSKIEGO Kraków, dnia 28 marca 2018 r. Poz. 2414 UCHWAŁA NR XXV/250/2018 RADY GMINY LIMANOWA z dnia 22 marca 2018 roku w sprawie utworzenia stałych obwodów głosowania, ustalenia ich granic i numerów oraz siedzib obwodowych komisji wyborczych w Gminie Limanowa. Na podstawie art. 12 § 2 i § 11 ustawy z dnia 5 stycznia 2011 r. – Kodeks wyborczy (Dz. U. 2017 r. poz. 15 i 1089 oraz z 2018 r. poz. 4, 130 i 138) oraz art. 13 ust. 1 ustawy z dnia 11 stycznia 2018 r. o zmianie niektórych ustaw w celu zwiększenia obywateli w procesie wybierania, funkcjonowania i kontrolowania niektórych organów publicznych (Dz. U. poz.130) – Rada Gminy Limanowa uchwala, co następuje: § 1. Na wniosek Wójta Gminy Limanowa, dokonuje się podziału Gminy Limanowa na stałe obwody głosowania, ustalając ich granice, numery oraz siedziby obwodowych komisji wyborczych, zgodnie z załącznikiem do uchwały. § 2. Po jednym egzemplarzu uchwały przekazuje się Wojewodzie Małopolskiemu i komisarzowi wyborczemu. § 3. Na ustalenia Rady Gminy Limanowa w sprawie obwodów głosowania, podjęte w uchwale, wyborcom, w liczbie co najmniej 15 przysługuje prawo wniesienia skargi do komisarza wyborczego, w terminie 5 dni od daty podania uchwały do publicznej wiadomości. § 4. Wykonanie uchwały powierza się Wójtowi Gminy Limanowa. § 5. Uchwałę podaje się do publicznej wiadomości poprzez zamieszczenie jej w Biuletynie Informacji Publicznej Urzędu Gminy Limanowa oraz wywieszenie na tablicy ogłoszeń w Urzędzie Gminy Limanowa. § 6. 1. Uchwała podlega ogłoszeniu w Dzienniku Urzędowym Województwa Małopolskiego. 2. Uchwała wchodzi w życie po upływie 14 dni od dnia jej ogłoszenia w Dzienniku Urzędowym Województwa Małopolskiego. Przewodniczący Rady Gminy Limanowa Stanisław Młyński Dziennik Urzędowy Województwa Małopolskiego – 2 – Poz.
    [Show full text]
  • Contributions in BIOLOGY and GEOLOGY
    MILWAUKEE PUBLIC MUSEUM Contributions In BIOLOGY and GEOLOGY Number 51 November 29, 1982 A Compendium of Fossil Marine Families J. John Sepkoski, Jr. MILWAUKEE PUBLIC MUSEUM Contributions in BIOLOGY and GEOLOGY Number 51 November 29, 1982 A COMPENDIUM OF FOSSIL MARINE FAMILIES J. JOHN SEPKOSKI, JR. Department of the Geophysical Sciences University of Chicago REVIEWERS FOR THIS PUBLICATION: Robert Gernant, University of Wisconsin-Milwaukee David M. Raup, Field Museum of Natural History Frederick R. Schram, San Diego Natural History Museum Peter M. Sheehan, Milwaukee Public Museum ISBN 0-893260-081-9 Milwaukee Public Museum Press Published by the Order of the Board of Trustees CONTENTS Abstract ---- ---------- -- - ----------------------- 2 Introduction -- --- -- ------ - - - ------- - ----------- - - - 2 Compendium ----------------------------- -- ------ 6 Protozoa ----- - ------- - - - -- -- - -------- - ------ - 6 Porifera------------- --- ---------------------- 9 Archaeocyatha -- - ------ - ------ - - -- ---------- - - - - 14 Coelenterata -- - -- --- -- - - -- - - - - -- - -- - -- - - -- -- - -- 17 Platyhelminthes - - -- - - - -- - - -- - -- - -- - -- -- --- - - - - - - 24 Rhynchocoela - ---- - - - - ---- --- ---- - - ----------- - 24 Priapulida ------ ---- - - - - -- - - -- - ------ - -- ------ 24 Nematoda - -- - --- --- -- - -- --- - -- --- ---- -- - - -- -- 24 Mollusca ------------- --- --------------- ------ 24 Sipunculida ---------- --- ------------ ---- -- --- - 46 Echiurida ------ - --- - - - - - --- --- - -- --- - -- - - ---
    [Show full text]
  • 1 Tommotiids from the Early Cambrian (Series 2, Stage 3) of Morocco and the Evolution Of
    1 1 Tommotiids from the early Cambrian (Series 2, stage 3) of Morocco and the evolution of 2 the tannuolinid scleritome and setigerous shell structures in stem group brachiopods 3 4 by CHRISTIAN B. SKOVSTED1, SÉBASTIEN CLAUSEN2, J. JAVIER ÁLVARO3 and 5 DEBORAH PONLEVÉ2 6 7 1 Department of Palaeozoology, Swedish Museum of Natural History, P.O. Box 50007, SE- 8 104 05 Stockholm, Sweden, [email protected]. 9 2 UMR 8217 Géosystèmes, UFR Sciences de la Terre, Université Lille 1, 10 [email protected], [email protected]. 11 3 Centro de Astrobiología (CSIC/INTA), Ctra. de Torrejón a Ajalvir km 4, 28850 Torrejón de 12 Ardoz, Spain, [email protected] 13 14 Abstract: An assemblage of tannuolinid sclerites is described from the Amouslek Formation 15 (Souss Basin) of the Anti-Atlas Mountains in Morocco. The assemblage contains two species, 16 Tannuolina maroccana n. sp. which is represented by a small number of mitral and sellate 17 sclerites and Micrina sp., represented by a single mitral sclerite. Tannuolina maroccana 18 differs from other species of the genus in the presence of both bilaterally symmetrical and 19 strongly asymmetrical sellate sclerites. This observation suggests that the scleritome of 20 Tannuolina was more complex than previously thought and that this tommotiid may have held 21 a more basal position in the brachiopod stem group than previously assumed. The shell 22 structure of both T. maroccana and Micrina sp. is well preserved and exhibits two 23 fundamentally different sets of tubular structures, only one of which was likely to contain 24 shell penetrating setae.
    [Show full text]
  • From the Late Miocene-Early Pliocene (Hemphillian) of California
    Bull. Fla. Mus. Nat. Hist. (2005) 45(4): 379-411 379 NEW SKELETAL MATERIAL OF THALASSOLEON (OTARIIDAE: PINNIPEDIA) FROM THE LATE MIOCENE-EARLY PLIOCENE (HEMPHILLIAN) OF CALIFORNIA Thomas A. Deméré1 and Annalisa Berta2 New crania, dentitions, and postcrania of the fossil otariid Thalassoleon mexicanus are described from the latest Miocene–early Pliocene Capistrano Formation of southern California. Previous morphological evidence for age variation and sexual dimorphism in this taxon is confirmed. Analysis of the dentition and postcrania of Thalassoleon mexicanus provides evidence of adaptations for pierce feeding, ambulatory terrestrial locomotion, and forelimb swimming in this basal otariid pinniped. Cladistic analysis supports recognition of Thalassoleon as monophyletic and distinct from other basal otariids (i.e., Pithanotaria, Hydrarctos, and Callorhinus). Re-evaluation of the status of Thalassoleon supports recognition of two species, Thalassoleon mexicanus and Thalassoleon macnallyae, distributed in the eastern North Pacific. Recognition of a third species, Thalassoleon inouei from the western North Pacific, is questioned. Key Words: Otariidae; pinniped; systematics; anatomy; Miocene; California INTRODUCTION perate, with a very limited number of recovered speci- Otariid pinnipeds are a conspicuous element of the ex- mens available for study. The earliest otariid, tant marine mammal assemblage of the world’s oceans. Pithanotaria starri Kellogg 1925, is known from the Members of this group inhabit the North and South Pa- early late Miocene (Tortonian Stage equivalent) and is cific Ocean, as well as portions of the southern Indian based on a few poorly preserved fossils from Califor- and Atlantic oceans and nearly the entire Southern nia. The holotype is an impression in diatomite of a Ocean.
    [Show full text]
  • PANORAMA from Bleaberry Fell (GR285196) 589M
    PANORAMA from Bleaberry Fell (GR285196) 589m PANORAMA Scales Fell Threlkeld Knotts Great Dodd Knott High Pike Mungrisdale Common Calfhow Pike Souther Fell Blencathra Croglin Fell Clough Head G ate gill Hall’s Blease Fell Fe Castle Rock of ll F ell Triermain High Rigg Pike Dodd N Confluence of the Glenderaterra and Glenderamakin to form the River Greta E Nethermost Pike Sticks White Side Stybarrow Pass Catstycam Dollywaggon Pike Dunmail Raise Dodd Raise Great Rigg Steel Fell Man Watson’s Dodd Brown Crag Browncove Crags Seat Sandal Benn Helvellyn Helvellyn E Stanah Fisherplace Man Gill Lower S Gill Gill Man Great Carrs Glaramara Great Gable Red Pike Pillar High Crag Robinson Pike o’Stickle Scafell Pike Kirk Fell High Stile Starling Dodd Ullscarf Dow Crag Whiteless Pike 7 Knott Rigg 2 4 5 6 8 9 10 11 3 13 1 King’s How High Spy Sergeant’s Crag Maiden Moor Great Crag Brund Fell 12 S 1 High Seat 2 High Raise 3 Grey Friar 4 Crinkle Crags 5 Bowfell 6 Esk Pike 7 Great End 8 Scafell 9 Lingmell 10 Dale Head 11 High Spy 12 Heather Knott 13 Great Borne W Causey Pike Grisedale Pike Whinlatter Fell Lord’s Seat Solway Firth Carl Side Skiddaw Little Man 1 2 3 5 Barf Ullock Pike Skiddaw Lonscale Fell 6 7 4 9 Jenkin Hill Dodd Long Side Swinside 8 Catbells NW cairn and KESWICK Latrigg path to Walla Crag Walla Crag 1 Wandope 2 Grasmoor 3 Eel Crag 4 Rowling End 5 Hopegill Head W 6 Screel Hill 7 Bengairn both of these hills are in Dumfries & Galloway 8 Bassenthwaite 9 Sale Fell N This graphic is an extract from The Central Fells, volume one in the Lakeland Fellranger series published in April 2008 by Cicerone Press (c) Mark Richards 2008.
    [Show full text]