A Re-Appraisal Ofaralosaurus Tuberiferus (Dinosauria, Hadrosauridae) from the Late Cretaceous of Kazakhstan

Total Page:16

File Type:pdf, Size:1020Kb

A Re-Appraisal Ofaralosaurus Tuberiferus (Dinosauria, Hadrosauridae) from the Late Cretaceous of Kazakhstan bulletin de l'institut royal des sciences naturelles de belgique sciences de la terre. 74-suppl.: 139-154, 2004 bulletin van het koninklijk belgisch instituut voor natuurwetenschappen aardwetenschappen, 74-suppl.: 139-154, 2004 A re-appraisal ofAralosaurus tuberiferus (Dinosauria, Hadrosauridae) from the Late Cretaceous of Kazakhstan by Pascal GODEFROIT, Vladimir ALIFANOV & Yuri BOLOTSKY Godefroit, P., Alifanov V. & Y. Bolotsky, 2004. - A re-appraisal of sauridae than to Iguanodon (Weishampel & Horner, Aralosaurus tuberiferus (Dinosauria, Hadrosauridae) from the Late Cretaceous of Kazakhstan. Bulletin de l'Institut royal des Sciences 1990; Sereno, 1998). They were the most successful naturelles de Belgique, Sciences de la Terre, 74 supplement: 139- herbivorous dinosaurs in Laurasia during the closing 154, 1 pl., 7 figs, Bruxelles - Brussel, December 15, 2004. - ISSN stages of the Cretaceous. During the Campanian and 0374-6291. Maastrichtian, they were the primary constituents of many terrestrial vertebrate faunas. In western North Abstract America, hundreds of fragmentary to complete hadro¬ saurid specimens have been collected, including remains Aralosaurus tuberiferus Rozhdestvensky, 1968 (Dinosauria: Hadro¬ of eggs, embryos, hatchlings and juvéniles. They were sauridae) is based on a fragmentary skull from the Beleutinskaya Svita apparently spread world-wide: besides North America, (?Turonian, Late Cretaceous) from the Sakh-Sakh locality of central fossils have also been discovered in Central America, Kazakhstan. Redescription of the type material reveals that it is a valid South taxon, characterised by a hollow nasal crest-like structure located far in America, Europe, Asia (Weishampel & Horner, front of the orbits and by a well-developed curved crest on the maxilla 1990) and apparently even in Antarctica (Rich et al., that borders laterally the caudal part of the premaxillary shelf. Phylo- 1999). The main reason for this evolutionary success genetic analysis, based on 36 cranial characters, indicates that A. tube¬ was riferus is the most basai lambeosaurine hadrosaurid known to date; it is probably their very efficient plant-processing masti- therefore not a gryposaur-like hadrosaurine as previously described. catory apparatus, characterised by an improved mobility Lambeosaurines originated from Asia and then migrated to North of the upper jaw and by an elaborated dental battery well America before or at the beginning of the late Campanian. They remained well diversifted in eastern Asia until the late Maastrichtian. adapted for feeding on hard vegetables (Norman, 1984; Weishampel, 1984). Besides typical hadrosaurids, the Key-words: Aralosaurus tuberiferus. Hadrosauridae, Lambeosauri- hadrosauroid clade includes a number of less derived nae. Late Cretaceous, Kazakhstan, phylogeny, palaeobiogeography. forms that evolved in Laurasia from the late Early Cre¬ taceous (You et al., 2003) until the Maastrichtian. Ha¬ drosauridae includes members of Hadrosaurinae and Résumé Lambeosaurinae subfamilies and their most recent com- Aralosaurus tuberiferus Rozhdestvensky, 1968 (Dinosauria: Hadro¬ mon ancestor (Weishampel & Horner, 1990; Weisham¬ sauridae) est décrit sur base d'un crâne fragmentaire découvert dans la pel et al., 1993). With the exception of Horner (1988, Beleutinskaya Svita (?Turonien, Crétacé supérieur) du site de Sakh- 1990, 1992), ail the authors working on hadrosauroid Sakh au Kazakhstan central. La redescription du matériel type indique qu'il s'agit bien d'un taxon valide, caractérisé par la présence d'une phylogeny accept the monophyly of Hadrosauridae and, structure en forme de crête creuse située bien à l'avant des orbites et par within this family, that of the subfamilies Hadrosaurinae une crête courbée très développée sur le maxillaire bordant la portion and Lambeosaurinae. 'Flat-headed' Hadrosaurinae is e.g. caudale du rebord prémaxillaire. L'analyse phylogénétique, basée sur characterised 36 caractères crâniens, indique qu' A. tuberiferus est le lambéosauriné by the development of depressed areas le plus basai connu à ce jour; ce n'est donc pas un hadrosauriné proche around the external nares and by the latéral expansion de Gryposaurus, comme on le pensait avant. Les lambéosaurinés sont of their premaxillary beak. Some hadrosaurines, such as apparus en Asie et ont migré en Amérique du Nord avant ou au début du Campanien supérieur. Ils sont restés bien diversifiés en Asie jus¬ Prosaurolophus, Saurolophus, Brachylophosaurus or qu'au Maastrichtien supérieur. Maiasaura are characterised by the presence of a low, solid cranial crest, whereas others, such as Edmonto- Mots-clefs: Aralosaurus tuberiferus, Hadrosauridae, Lambeosaurinae, saurus, Anatotitan, or Gryposaurus, lack any crest Crétacé supérieur, Kazakhstan, phylogénie, paléobiogéographie. kind of development. Lambeosaurinae is characterised by an im¬ portant diversity of hollow cranial crests. The nasal cavity Introduction is completely modified and extends into this hollow crest, following a very tortuous route. With this hollow crest, it Hadrosauroidea, or "duck-billed" dinosaurs, can be de- is postulated that lambeosaurines could produce different fined as those dinosaurs more closely related to Hadro- kinds of trumpeting noises. As different species are char- 140 Pascal GODEFROIT, Vladimir ALIFANOV & Yuri BOLOTSKY Furmanovo D&iambeyty WF.ST KAZAJ^HSTAI^H KalmykovoV r -* Dzhambul •A \ Saryshagan Beyrieu ,> Osrrora u fj/VanoifKluniya ?„ ^Zhetybay ARAL\g~'" SEA 'JL Kïis.akskiy Zaiiv TURKMENISTAN Samarqam 65° TAJ1KISTAN Fig. 1 — Geographical location of sites from which hadrosauroid dinosaurs have been recovered in Kazakhstan. acterised by different shapes of crests, they produced to juvénile individuals. This taxon is unanimously re- different noises. garded as a nomen dubium (Maryanska & Osmólska Dinosaur discoveries in Central Asia began at the end 1981; Weishampel & Horner 1990). Jaxartosaurus ara- of the 19th century, when the Russian geologist Roma- lensis was described from the caudal part of one skull, novsky (1882) described dinosaur tracks on the right one dentary, one surangular and a few postcranial élé¬ bank of Yaknob River, in Tajikistan. In the second decade ments. This taxon can be regarded as a basai Lambeo- of the 20th century, more intensive and systematic geo- saurinae (Godefroit et al., in press; see also below). logical investigations in Eastern Russia and Central Asia Efremov (1932, 1933, 1944) subsequently investigated lead to the discovery of new dinosaur localities in the Central Asian dinosaur localities, from the Aral Sea (Ka¬ Transbaikal Région, along Amur River, and in Kyzyl zakhstan - Uzbekistan) to Issyk-Kul Lake (Kirgizstan), Kum Desert of Central Asia (Rozhdestvensky, 1977). especially from a taphonomic point of view. He concluded From 1923 to 1926, the Geological Committee of that dinosaur-bearing beds were intensively re-deposited USSR excavated the Kyrk-Kuduk dinosaur locality in during the Paleogene in a vast area north of the Tien-Shan the Chuley région of Shymkent / Tashkent area in eastern Mountains. As a resuit oftheir secondary re-déposition, the Kazakhstan (Fig. 1). Most of the fossils were discovered bones are found separated and rolled in this area. This within a conglomerate, possibly Santonian in âge (Aver- theory led to a decreasing interest to Central Asian dino¬ anov & nessov, 1995). Riabinin (1939) described two saur localities, because the probability to find more or less hadrosaurid taxa from this locality: Jaxartosaurus ara- complete skeletons appeared very low. lensis and Bactrosaurus prynadai. Bactrosaurus pryna- Subséquent discoveries of more complete dinosaur dai is based on two dentaries and one maxilla belonging material in Central Asia partly invalidated Efremov's A re-appraisal of Araiosaurus tuberiferus (Dinosauria, Hadrosauridae) 141 theory, indicating that the reworking of bone-bearing In the present paper, the holotype specimen of Aralo¬ sediments north of the Tien-Shan was more local than saurus tuberiferus will be re-examined, because it ap- previously thought and occurred during the first half of pears to us that its phylogenetic affmities have not yet the Late Cretaceous rather than during the Paleogene been correctly established. (Rozhdestvensky, 1977). In 1957, an expédition of the USSR Academy of Sciences discovered a hadrosaur skull Abbreviations: AEHM: Amur Natural History Museum in situ in the Beleutinskaya Svita of Sakh-Sakh locality in (Blagoveschensk, Russia); PIN: Palaeontological Insti- central Kazakhstan. The age of this formation is not well tute of the Russian Academy of Sciences (Moscow). established: Rozhdestvensky (1974, 1977)advocatedfor a Turonian age, but without any justification. This speci¬ men, regarded as a hadrosaurine, was described under the Systematic palaeontology name Aralosaurus tuberiferus Rozhdestvensky, 1968. In 1961, the nearly complete skeleton of a hadrosaurid Dinosauria Owen, 1842 was discovered at the Syuk-Syuk wells site, in the same Ornithischia Seeley, 1887 area as the type material of Jaxartosaurus, but in a Ornithopoda Marsh, 1881 different formation: the Dabrazinskaya Svita (Santo- Ankylopollexia Sereno, 1986 nian-Campanian: Rozhdestvensky; lower Santonian: Hadrosauriformes Sereno, 1986 Rozhdestvensky, 1977). This specimen, named Proche- Hadrosauroidea Cope, 1869 neosaurus convincens Rozhdestvensky, 1968, may be Hadrosauridae Cope, 1869 attributed to a juvénile lambeosaurine. Lambeosaurinae Parks, 1923 Arstanosaurus akkurganensis Shilin
Recommended publications
  • A. K. Rozhdestvensky HISTORY of the DINOSAUR FAUNA of ASIA
    A. K. Rozhdestvensky HISTORY OF THE DINOSAUR FAUNA OF ASIA AND OTHER CONTINENTS AND QUESTIONS CONCERNING PALEOGEOGRAPHY* The distribution and evolution of dinosaur faunas during the period of their existence, from the Late Triassic to the end of the Cretaceous, shows a close connection with the paleogeography of the Mesozoic. However these questions were hard to examine on a global scale until recently, because only the dinosaurs of North America were well known, where during the last century were found their richest deposits and where the best paleontologists were studying them — J. Leidy, E. Cope, O. Marsh, R. Lull, H. Osborn, C. Gilmore, B. Brown, and later many others. On the remaining continents, including Europe, where the study of dinosaurs started earlier than it did in America, the information was rather incomplete due to the fragmentary condition of the finds and rare, episodic studies. The Asian continent remained unexplored the longest, preventing any intercontinental comparisons. Systematic exploration and large excavations of dinosaur locations in Asia, which began in the last fifty years (Osborn, 1930; Efremov, 1954; Rozhdestvenskiy, 1957a, 1961, 1969, 1971; Rozhdestvenskiy & Chzhou, 1960; Kielan-Jaworowska & Dovchin, 1968; Kurochkin, Kalandadze, & Reshetov, 1970; Barsbold, Voronin, & Zhegallo, 1971) showed that this continent has abundant dinosaur remains, particularly in its central part (Fig. 1). Their study makes it possible to establish a faunal connection between Asia and other continents, correlate the stratigraphy of continental deposits of the Mesozoic, because dinosaurs are reliable leading forms, as well as to make corrections in the existing paleogeographic structure. The latter, in their turn, promote a better understanding of the possible paths of distribution of the individual groups of dinosaurs, the reasons for their appearance, their development, and disappearance.
    [Show full text]
  • A Revised Taxonomy of the Iguanodont Dinosaur Genera and Species
    ARTICLE IN PRESS + MODEL Cretaceous Research xx (2007) 1e25 www.elsevier.com/locate/CretRes A revised taxonomy of the iguanodont dinosaur genera and species Gregory S. Paul 3109 North Calvert Station, Side Apartment, Baltimore, MD 21218-3807, USA Received 20 April 2006; accepted in revised form 27 April 2007 Abstract Criteria for designating dinosaur genera are inconsistent; some very similar species are highly split at the generic level, other anatomically disparate species are united at the same rank. Since the mid-1800s the classic genus Iguanodon has become a taxonomic grab-bag containing species spanning most of the Early Cretaceous of the northern hemisphere. Recently the genus was radically redesignated when the type was shifted from nondiagnostic English Valanginian teeth to a complete skull and skeleton of the heavily built, semi-quadrupedal I. bernissartensis from much younger Belgian sediments, even though the latter is very different in form from the gracile skeletal remains described by Mantell. Currently, iguanodont remains from Europe are usually assigned to either robust I. bernissartensis or gracile I. atherfieldensis, regardless of lo- cation or stage. A stratigraphic analysis is combined with a character census that shows the European iguanodonts are markedly more morpho- logically divergent than other dinosaur genera, and some appear phylogenetically more derived than others. Two new genera and a new species have been or are named for the gracile iguanodonts of the Wealden Supergroup; strongly bipedal Mantellisaurus atherfieldensis Paul (2006. Turning the old into the new: a separate genus for the gracile iguanodont from the Wealden of England. In: Carpenter, K. (Ed.), Horns and Beaks: Ceratopsian and Ornithopod Dinosaurs.
    [Show full text]
  • Phylogeny and Biogeography of Iguanodontian Dinosaurs, with Implications from Ontogeny and an Examination of the Function of the Fused Carpal-Digit I Complex
    Phylogeny and Biogeography of Iguanodontian Dinosaurs, with Implications from Ontogeny and an Examination of the Function of the Fused Carpal-Digit I Complex By Karen E. Poole B.A. in Geology, May 2004, University of Pennsylvania M.A. in Earth and Planetary Sciences, August 2008, Washington University in St. Louis A Dissertation submitted to The Faculty of The Columbian College of Arts and Sciences of The George Washington University in partial fulfillment of the requirements for the degree of Doctor of Philosophy August 31, 2015 Dissertation Directed by Catherine Forster Professor of Biology The Columbian College of Arts and Sciences of The George Washington University certifies that Karen Poole has passed the Final Examination for the degree of Doctor of Philosophy as of August 10th, 2015. This is the final and approved form of the dissertation. Phylogeny and Biogeography of Iguanodontian Dinosaurs, with Implications from Ontogeny and an Examination of the Function of the Fused Carpal-Digit I Complex Karen E. Poole Dissertation Research Committee: Catherine A. Forster, Professor of Biology, Dissertation Director James M. Clark, Ronald Weintraub Professor of Biology, Committee Member R. Alexander Pyron, Robert F. Griggs Assistant Professor of Biology, Committee Member ii © Copyright 2015 by Karen Poole All rights reserved iii Dedication To Joseph Theis, for his unending support, and for always reminding me what matters most in life. To my parents, who have always encouraged me to pursue my dreams, even those they didn’t understand. iv Acknowledgements First, a heartfelt thank you is due to my advisor, Cathy Forster, for giving me free reign in this dissertation, but always providing valuable commentary on any piece of writing I sent her, no matter how messy.
    [Show full text]
  • Inferring Body Mass in Extinct Terrestrial Vertebrates and the Evolution of Body Size in a Model-Clade of Dinosaurs (Ornithopoda)
    Inferring Body Mass in Extinct Terrestrial Vertebrates and the Evolution of Body Size in a Model-Clade of Dinosaurs (Ornithopoda) by Nicolás Ernesto José Campione Ruben A thesis submitted in conformity with the requirements for the degree of Doctor of Philosophy Ecology and Evolutionary Biology University of Toronto © Copyright by Nicolás Ernesto José Campione Ruben 2013 Inferring body mass in extinct terrestrial vertebrates and the evolution of body size in a model-clade of dinosaurs (Ornithopoda) Nicolás E. J. Campione Ruben Doctor of Philosophy Ecology and Evolutionary Biology University of Toronto 2013 Abstract Organismal body size correlates with almost all aspects of ecology and physiology. As a result, the ability to infer body size in the fossil record offers an opportunity to interpret extinct species within a biological, rather than simply a systematic, context. Various methods have been proposed by which to estimate body mass (the standard measure of body size) that center on two main approaches: volumetric reconstructions and extant scaling. The latter are particularly contentious when applied to extinct terrestrial vertebrates, particularly stem-based taxa for which living relatives are difficult to constrain, such as non-avian dinosaurs and non-therapsid synapsids, resulting in the use of volumetric models that are highly influenced by researcher bias. However, criticisms of scaling models have not been tested within a comprehensive extant dataset. Based on limb measurements of 200 mammals and 47 reptiles, linear models were generated between limb measurements (length and circumference) and body mass to test the hypotheses that phylogenetic history, limb posture, and gait drive the relationship between stylopodial circumference and body mass as critics suggest.
    [Show full text]
  • Dinosaur Species List E to M
    Dinosaur Species List E to M E F G • Echinodon becklesii • Fabrosaurus australis • Gallimimus bullatus • Edmarka rex • Frenguellisaurus • Garudimimus brevipes • Edmontonia longiceps ischigualastensis • Gasosaurus constructus • Edmontonia rugosidens • Fulengia youngi • Gasparinisaura • Edmontosaurus annectens • Fulgurotherium australe cincosaltensis • Edmontosaurus regalis • Genusaurus sisteronis • Edmontosaurus • Genyodectes serus saskatchewanensis • Geranosaurus atavus • Einiosaurus procurvicornis • Gigantosaurus africanus • Elaphrosaurus bambergi • Giganotosaurus carolinii • Elaphrosaurus gautieri • Gigantosaurus dixeyi • Elaphrosaurus iguidiensis • Gigantosaurus megalonyx • Elmisaurus elegans • Gigantosaurus robustus • Elmisaurus rarus • Gigantoscelus • Elopteryx nopcsai molengraaffi • Elosaurus parvus • Gilmoreosaurus • Emausaurus ernsti mongoliensis • Embasaurus minax • Giraffotitan altithorax • Enigmosaurus • Gongbusaurus shiyii mongoliensis • Gongbusaurus • Eoceratops canadensis wucaiwanensis • Eoraptor lunensis • Gorgosaurus lancensis • Epachthosaurus sciuttoi • Gorgosaurus lancinator • Epanterias amplexus • Gorgosaurus libratus • Erectopus sauvagei • "Gorgosaurus" novojilovi • Erectopus superbus • Gorgosaurus sternbergi • Erlikosaurus andrewsi • Goyocephale lattimorei • Eucamerotus foxi • Gravitholus albertae • Eucercosaurus • Gresslyosaurus ingens tanyspondylus • Gresslyosaurus robustus • Eucnemesaurus fortis • Gresslyosaurus torgeri • Euhelopus zdanskyi • Gryponyx africanus • Euoplocephalus tutus • Gryponyx taylori • Euronychodon
    [Show full text]
  • Postcranial Anatomy of Tanius Sinensis Wiman, 1929 (Dinosauria; Hadrosauroidea) Postkraniala Anatomin Hos Tanius Sinensis Wiman, 1929 (Dinosauria; Hadrosauroidea)
    Examensarbete vid Institutionen för geovetenskaper Degree Project at the Department of Earth Sciences ISSN 1650-6553 Nr 320 Postcranial Anatomy of Tanius Sinensis Wiman, 1929 (Dinosauria; Hadrosauroidea) Postkraniala anatomin hos Tanius sinensis Wiman, 1929 (Dinosauria; Hadrosauroidea) Niclas H. Borinder INSTITUTIONEN FÖR GEOVETENSKAPER DEPARTMENT OF EARTH SCIENCES Examensarbete vid Institutionen för geovetenskaper Degree Project at the Department of Earth Sciences ISSN 1650-6553 Nr 320 Postcranial Anatomy of Tanius Sinensis Wiman, 1929 (Dinosauria; Hadrosauroidea) Postkraniala anatomin hos Tanius sinensis Wiman, 1929 (Dinosauria; Hadrosauroidea) Niclas H. Borinder ISSN 1650-6553 Copyright © Niclas H. Borinder and the Department of Earth Sciences, Uppsala University Published at Department of Earth Sciences, Uppsala University (www.geo.uu.se), Uppsala, 2015 Abstract Postcranial Anatomy of Tanius Sinensis Wiman, 1929 (Dinosauria; Hadrosauroidea) Niclas H. Borinder Tanius sinensis Wiman, 1929 was one of the first hadrosauroid or “duck-billed” taxa erected from China, indeed one of the very first non-avian dinosaur taxa to be erected based on material from the country. Since the original description by Wiman in 1929, the anatomy of T. sinensis has received relatively little attention in the literature since then. This is unfortunate given the importance of T. sinensis as a possible non-hadrosaurid hadrosauroid i.e. a member of Hadrosauroidea outside the family of Hadrosauridae, living in the Late Cretaceous, at a time when most non-hadrosaurid hadro- sauroids had become replaced by the members of Hadrosauridae. To gain a better understanding of the anatomy of T. sinensis and its phylogenetic relationships, the postcranial anatomy of it is redescribed. T. sinensis is found to have a mosaic of basal traits like strongly opisthocoelous cervical vertebrae, the proximal end of scapula being dorsoventrally wider than the distal end, the ratio between the proximodistal length of the metatarsal III and the mediolateral width of this element being greater than 4.5.
    [Show full text]
  • Competition Structured a Late Cretaceous Megaherbivorous Dinosaur Assemblage Jordan C
    www.nature.com/scientificreports OPEN Competition structured a Late Cretaceous megaherbivorous dinosaur assemblage Jordan C. Mallon 1,2 Modern megaherbivore community richness is limited by bottom-up controls, such as resource limitation and resultant dietary competition. However, the extent to which these same controls impacted the richness of fossil megaherbivore communities is poorly understood. The present study investigates the matter with reference to the megaherbivorous dinosaur assemblage from the middle to upper Campanian Dinosaur Park Formation of Alberta, Canada. Using a meta-analysis of 21 ecomorphological variables measured across 14 genera, contemporaneous taxa are demonstrably well-separated in ecomorphospace at the family/subfamily level. Moreover, this pattern is persistent through the approximately 1.5 Myr timespan of the formation, despite continual species turnover, indicative of underlying structural principles imposed by long-term ecological competition. After considering the implications of ecomorphology for megaherbivorous dinosaur diet, it is concluded that competition structured comparable megaherbivorous dinosaur communities throughout the Late Cretaceous of western North America. Te question of which mechanisms regulate species coexistence is fundamental to understanding the evolution of biodiversity1. Te standing diversity (richness) of extant megaherbivore (herbivores weighing ≥1,000 kg) com- munities appears to be mainly regulated by bottom-up controls2–4 as these animals are virtually invulnerable to top-down down processes (e.g., predation) when fully grown. Tus, while the young may occasionally succumb to predation, fully-grown African elephants (Loxodonta africana), rhinoceroses (Ceratotherium simum and Diceros bicornis), hippopotamuses (Hippopotamus amphibius), and girafes (Girafa camelopardalis) are rarely targeted by predators, and ofen show indiference to their presence in the wild5.
    [Show full text]
  • Saurolophus Angustirostris from the Late Cretaceous of Mongolia with Comments on Saurolophus Osborni from Canada Author(S): Phil R
    Cranial Osteology and Ontogeny of Saurolophus angustirostris from the Late Cretaceous of Mongolia with Comments on Saurolophus osborni from Canada Author(s): Phil R. Bell Source: Acta Palaeontologica Polonica, 56(4):703-722. 2011. Published By: Institute of Paleobiology, Polish Academy of Sciences DOI: http://dx.doi.org/10.4202/app.2010.0061 URL: http://www.bioone.org/doi/full/10.4202/app.2010.0061 BioOne (www.bioone.org) is a nonprofit, online aggregation of core research in the biological, ecological, and environmental sciences. BioOne provides a sustainable online platform for over 170 journals and books published by nonprofit societies, associations, museums, institutions, and presses. Your use of this PDF, the BioOne Web site, and all posted and associated content indicates your acceptance of BioOne’s Terms of Use, available at www.bioone.org/page/terms_of_use. Usage of BioOne content is strictly limited to personal, educational, and non-commercial use. Commercial inquiries or rights and permissions requests should be directed to the individual publisher as copyright holder. BioOne sees sustainable scholarly publishing as an inherently collaborative enterprise connecting authors, nonprofit publishers, academic institutions, research libraries, and research funders in the common goal of maximizing access to critical research. Cranial osteology and ontogeny of Saurolophus angustirostris from the Late Cretaceous of Mongolia with comments on Saurolophus osborni from Canada PHIL R. BELL Bell, P.R. 2011. Cranial osteology and ontogeny of Saurolophus angustirostris from the Late Cretaceous of Mongolia with comments on Saurolophus osborni from Canada. Acta Palaeontologica Polonica 56 (4): 703–722. Reanalysis of the skull of the crested Asian hadrosaurine Saurolophus angustirostris confirms its status as a distinct spe− cies from its North American relative, Saurolophus osborni.
    [Show full text]
  • Morphological Variation in the Hadrosauroid Dentary Morfologisk Variation I Det Hadrosauroida Dentärbenet
    Examensarbete vid Institutionen för geovetenskaper Degree Project at the Department of Earth Sciences ISSN 1650-6553 Nr 398 Morphological Variation in the Hadrosauroid Dentary Morfologisk variation i det hadrosauroida dentärbenet D. Fredrik K. Söderblom INSTITUTIONEN FÖR GEOVETENSKAPER DEPARTMENT OF EARTH SCIENCES Examensarbete vid Institutionen för geovetenskaper Degree Project at the Department of Earth Sciences ISSN 1650-6553 Nr 398 Morphological Variation in the Hadrosauroid Dentary Morfologisk variation i det hadrosauroida dentärbenet D. Fredrik K. Söderblom ISSN 1650-6553 Copyright © D. Fredrik K. Söderblom Published at Department of Earth Sciences, Uppsala University (www.geo.uu.se), Uppsala, 2017 Abstract Morphological Variation in the Hadrosauroid Dentary D. Fredrik K. Söderblom The near global success reached by hadrosaurid dinosaurs during the Cretaceous has been attributed to their ability to masticate (chew). This behavior is more commonly recognized as a mammalian adaptation and, as a result, its occurrence in a non-mammalian lineage should be accompanied with several evolutionary modifications associated with food collection and processing. The current study investigates morphological variation in a specific cranial complex, the dentary, a major element of the hadrosauroid lower jaw. 89 dentaries were subjected to morphometric and statistical analyses to investigate the clade’s taxonomic-, ontogenetic-, and individual variation in dentary morphology. Results indicate that food collection and processing became more efficient in saurolophid hadrosaurids through a complex pattern of evolutionary and growth-related changes. The diastema (space separating the beak from the dental battery) grew longer relative to dentary length, specializing food collection anteriorly and food processing posteriorly. The diastema became ventrally directed, hinting at adaptations to low-level grazing, especially in younger individuals.
    [Show full text]
  • THE BIBLIOGRAPHY of HADROSAURIAN DINOSAURS the First 150 Years: 1856 - 2006
    THE BIBLIOGRAPHY OF HADROSAURIAN DINOSAURS The First 150 Years: 1856 - 2006. complied by M.K. Brett-Surman © Smithsonian Institution 1985-2008 The Department of Paleobiology of the National Museum of Natural History, Smithsonian Institution, currently houses approximately 44 million fossil plant, invertebrate, and vertebrate fossils in more than 480 separate collections. In addition, Paleobiology also maintains a reference collection of over 120,000 stratigraphic and sediment samples. This listing represents a service provided to the public as part of our Outreach Program and as part of the Smithsonian Institution’s mission "for the increase and diffusion of knowledge...". Papers are listed by author and year. Author's names are capitalized. The viewer should be aware of any searches that are case sensitive. The papers listed here, in a majority of instances, do NOT contain abstracts, papers on ichnites, or popular articles or books, unless they present new information or cover an aspect of the history of dinosaur paleontology. At present, some of the legacy software that was used to maintain this list only allowed basic ASCII characters, therefore foreign accents (such as in French and Spanish) did not translate. This will be fixed at a later date. The Bibliography of Hadrosaurian Dinosaurs was written, compiled, and maintained by M.K. Brett-Surman, (Museum Specialist), P.O. Box 37012, Department of Paleobiology, National Museum of Natural History, MRC-121, Washington, DC 20013-7012. He can be reached electronically at: [email protected]., and by FAX at 202-786-2832. Please send all corrections and additions to the e-mail address. This file will be no longer be updated, except for entries prior to 2007.
    [Show full text]
  • DINOSAURS Contents the Director’S Perspective the Thumb-Spiked Iguanodontians—Dinosaurian Cows of the Early Cretaceous
    UTAH GEOLOGICAL SURVEY SURVEY NOTES Volume 45, Number 1 January 2013 UTAH'S NEW IGUANODONTIAN DINOSAURS Contents The Director’s Perspective The Thumb-Spiked Iguanodontians—Dinosaurian Cows of the Early Cretaceous ...........................1 Each year, the Utah Geological Survey of proven reserves Using Aquifers for Water Storage provides two chapters for the “Economic (barrels) to annual in Cache Valley ................................................ 4 Report to the Governor,” which is pub- oil production (bar- Establishing Baseline Water Quality in the lished by the Governor’s Office of Man- rels per year) has Southeastern Uinta Basin ............................. 6 agement and Budget in January. The two increased from GeoSights ............................................................. 8 chapters address energy and mineral typically 6 to 8 Glad You Asked .................................................... 9 industry trends in Utah during the past years of supply Energy News .......................................................10 year. The UGS also summarizes Utah’s prior to 2000, to Teacher’s Corner ................................................ 12 extractive resource industry trends in 18 years over the Survey News .......................................................13 an annual publication (recently pub- past three years. lished UGS Circular 115 summarizes 2011 In addition, annual New Publications ................................................13 trends). A key indicator we use to mea- oil production has sure the overall
    [Show full text]
  • Edmontosaurus Annectens (Ornithischia, Hadrosauridae) Femur Documents a Previously Unreported Intermediate Growth Stage for This Taxon Andrew A
    Vertebrate Anatomy Morphology Palaeontology 7:59–67 59 ISSN 2292-1389 A juvenile cf. Edmontosaurus annectens (Ornithischia, Hadrosauridae) femur documents a previously unreported intermediate growth stage for this taxon Andrew A. Farke1,2,3,* and Eunice Yip2 1Raymond M. Alf Museum of Paleontology, 1175 West Baseline Road, Claremont, CA, 91711, USA 2The Webb Schools, 1175 West Baseline Road, Claremont, CA, 91711, USA 3Dinosaur Institute, Natural History Museum of Los Angeles County, 900 Exposition Blvd. Los Angeles, CA, 90007, USA; [email protected] Abstract: A nearly complete, but isolated, femur of a small hadrosaurid from the Hell Creek Formation of Montana is tentatively referred to Edmontosaurus annectens. At 28 cm long, the element can be classified as likely that from an ‘early juvenile’ individual, approximately 24% of the maximum known femur length for this species. Specimens from this size range and age class have not been described previously for E. annectens. Notable trends with increasing body size include increasingly distinct separation of the femoral head and greater trochanter, relative increase in the size of the cranial trochanter, a slight reduction in the relative breadth of the fourth trochanter, and a relative increase in the prominence of the cranial intercondylar groove. The gross profile of the femoral shaft is fairly consistent between the smallest and largest individuals. Although an ontogenetic change from relatively symmetrical to an asymmetrical shape in the fourth trochanter has been suggested previously, the new juvenile specimen shows an asymmetric fourth tro- chanter. Thus, there may not be a consistent ontogenetic pattern in trochanteric morphology. An isometric relationship between femoral circumference and femoral length is confirmed for Edmontosaurus.
    [Show full text]