2020 NGSS High School Chemistry Supply List
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Standard Operating Procedures
Standard Operating Procedures 1 Standard Operating Procedures OVERVIEW In the following laboratory exercises you will be introduced to some of the glassware and tech- niques used by chemists to isolate components from natural or synthetic mixtures and to purify the individual compounds and characterize them by determining some of their physical proper- ties. While working collaboratively with your group members you will become acquainted with: a) Volumetric glassware b) Liquid-liquid extraction apparatus c) Distillation apparatus OBJECTIVES After finishing these sessions and reporting your results to your mentor, you should be able to: • Prepare solutions of exact concentrations • Separate liquid-liquid mixtures • Purify compounds by recrystallization • Separate mixtures by simple and fractional distillation 2 EXPERIMENT 1 Glassware Calibration, Primary and Secondary Standards, and Manual Titrations PART 1. Volumetric Glassware Calibration Volumetric glassware is used to either contain or deliver liquids at a specified temperature. Glassware manufacturers indicate this by inscribing on the volumetric ware the initials TC (to contain) or TD (to deliver) along with the calibration temperature, which is usually 20°C1. Volumetric glassware must be scrupulously clean before use. The presence of streaks or droplets is an indication of the presence of a grease film. To eliminate grease from glassware, scrub with detergent solution, rinse with tap water, and finally rinse with a small portion of distilled water. Volumetric flasks (TC) A volumetric flask has a large round bottom with only one graduation mark positioned on the long narrow neck. Graduation Mark Stopper The position of the mark facilitates the accurate and precise reading of the meniscus. If the flask is used to prepare a solution starting with a solid compound, add small amounts of sol- vent until the entire solid dissolves. -
SC-300 Pro Kit Manual 1 Version 2.3D Materials Provided in the Kit
Vinmetrica SC-300 Pro Kit™ User Manual Vinmetrica SC-300 Pro Kit is a simple and robust device that provides high accuracy in determination of sulfite (SO2), pH and titratable acidity (TA) levels in wines, ciders, and other liquids. These are essential parameters to control in the effort to make high quality wines. The Pro kit includes lab accessories for the SC-300 Analyzer. Table of Contents: Materials Provided in the Kit............................................................................................................... 2 Things you will need............................................................................................................................ 2 Why Test for SO2, pH and TA?............................................................................................................ 3 Theory of Operation............................................................................................................................. 4 Setup.................................................................................................................................................... 5 Setting up the SC-300 for the first time................................................................................... 5 Assembling the Pro Kit Equipment......................................................................................... 6 Burette Maintenance................................................................................................................ 8 Burette Reading ...................................................................................................................... -
General Chemistry Laboratory I Manual
GENERAL CHEMISTRY LABORATORY I MANUAL Fall Semester Contents Laboratory Equipments .............................................................................................................................. i Experiment 1 Measurements and Density .............................................................................................. 10 Experiment 2 The Stoichiometry of a Reaction ..................................................................................... 31 Experiment 3 Titration of Acids and Bases ............................................................................................ 10 Experiment 4 Oxidation – Reduction Titration ..................................................................................... 49 Experiment 5 Quantitative Analysis Based on Gas Properties ............................................................ 57 Experiment 6 Thermochemistry: The Heat of Reaction ....................................................................... 67 Experiment 7 Group I: The Soluble Group ........................................................................................... 79 Experiment 8 Gravimetric Analysis ........................................................................................................ 84 Scores of the General Chemistry Laboratory I Experiments ............................................................... 93 LABORATORY EQUIPMENTS BEAKER (BEHER) Beakers are containers which can be used for carrying out reactions, heating solutions, and for water baths. They are for -
An Efficient Vacuum Apparatus for Microtechnic
AN EFFICIENT VACUUM APPARATUS FOR MICROTECHNIC EUGENE B. WITTLAKE1 The Ohio State University From time to time notes on vacuum apparatus and its applications to micro- technic have been published. These papers, with the exception of very few instances, do not deal with the actual measurement and control of vacuum, the effect of vacuum on tissues and the pumping of tissues in reagents not miscible with water and water vapor. It seemed necessary, therefore, to check the above conditions and to determine, if possible, their relation to fixation, dehydration and infiltration of paraffin in plant material in the "in vacuo" process. Lebowich (4) in 1936 developed a soap-wax medium for the simultaneous dehydration and infiltration of human tissues. In this technic he employed a vacuum apparatus consisting of a faucet aspirator and a wide-mouthed bottle placed in an oven automatically controlled for temperature. Later Moritz (5) modified Lebowich's vacuum pump. Instead of using the expensive equipment which Lebowich had at his disposal, Moritz attained the same end with ordinary laboratory equipment obtainable by any technician. In the same paper he presented a modification of Lebowich's dehydration schedule. In the technics of both of these men a vacuum apparatus was used to definite advantage in regard to time and thoroughness of preparation of tissues. In April 1940 Chermock and Hance (2) announced the use of a vacuum pump for general micrology. Their principle dehydration agent was "methyl cellosolve" which they used in a vacuum apparatus of simple and convenient construction. Their accessory devices were a thermometer and a water trap. -
Construction and Application of a Novel Combination Glove Box Deposition System to the Study of Air-Sensitive Materials by Tunneling Spectroscopy
Construction and application of a novel combination glove box deposition system to the study of air-sensitive materials by tunneling spectroscopy Cite as: Review of Scientific Instruments 55, 1120 (1984); https://doi.org/10.1063/1.1137895 Submitted: 27 February 1984 . Accepted: 20 March 1984 . Published Online: 04 June 1998 K. W. Hipps, and Ursula Mazur ARTICLES YOU MAY BE INTERESTED IN A Versatile, Inert Atmosphere Vacuum Glove Box Review of Scientific Instruments 40, 414 (1969); https://doi.org/10.1063/1.1683961 Inelastic electron tunneling spectroscopy in molecular junctions: Peaks and dips The Journal of Chemical Physics 121, 11965 (2004); https://doi.org/10.1063/1.1814076 Review of Scientific Instruments 55, 1120 (1984); https://doi.org/10.1063/1.1137895 55, 1120 © 1984 American Institute of Physics. Construction and application of a novel combination glove box deposition system to the study of air-sensitive materials by tunneling spectroscopy K. W. Hipps and Ursula Mazur Department of Chemistry and Chemical Physics Program, Washington State University, Pullman, Washington 99164-4630 (Received 27 February 1984; accepted for publication 20 March 1984) The construction and application of a high-vacuum deposition system housed in a recirculating, catalytically scrubbed, inert-atmosphere glove box is reported. This system is specifically applied to the fabrication of tunnel diodes used in a surface vibrational spectroscopy called inelastic electron tunneling spectroscopy or lETS. Through the use of this inert-atmosphere adsorption/ fabrication system, tunneling spectra have been obtained from a variety of air-sensitive compounds adsorbed on aluminum oxide. Up to now, spectra of some of the species reported here have been unattainable by the adsorption techniques used in lETS. -
Kjeldahl Distillation Unit
Terms of Business v There are frequent fluctuations in the cost of input. So we may not be able to give prior intimation regarding changes in the price structure. v Packing, Forwarding, Freight and Insurance will be Charged Extra. v Sales Tax and Excise Duty will be extra as per Central or State Government Rules. v Every possible care is taken in packing, but it is difficult to undertake responsibility of loss, breakage or damage during transit. v R/R and our bill be sent though V. P. P. or any scheduled bank. New customers are requested to advance 25% of the estimated value. v While placing the order, please give clear despatch instructions indicating C. S. T. Number, Name of Railway Station, Your Banker and Our Catalogue Number. v All problems shall be solved amicably subject to Ambala Jurisdiction. GUPTA SCIENTIFIC INDUSTRIES Ambala Cantt. THIS CANCELS OUR ALL PREVIOUS PRICE LISTS PPPrice List 2017-18 CATALOGUE CONTENTS Product Range Pages Interchangeable Standard Joints, Adapters, Stirrers, Condensers, 1 to 49 Laboratory Flasks, Columns, Separating Funnels, Assemblies, Glasswares Water Distillation, Essential Oil, Soxhlet Apparatus. Volumetric Burettes, Pipettes, Micro Pipettes, Measuring Cylinders, 50 to 74 Glasswares Measuring Flasks, Culture Tubes, Centrifuge Tube & Test Tubes. Sintered Sintered Crucibles, Funnels, Chromatography Columns and 75 to 84 Glasswares Filter Assembly. Gas Estimation Impinger, Gas Burettes, Tubes, Gas Wash Bottles, 85 to 90 Apparatus Oxygen Purity and Orsat Apparatus. Special Semi Micro Ware, Clinical Laboratory Apparatus, 91 to 97 Glasswares Electrodes and Milk Testing Apparatus. Supplementary Stopcocks, Rotaflow Screw Type Stopcocks, Teflon Key 98 to 123 Glasswares Stopcocks, Manometers, Weighing Bottles, S. -
Laboratory Supplies and Equipment
Laboratory Supplies and Equipment Beakers: 9 - 12 • Beakers with Handles • Printed Square Ratio Beakers • Griffin Style Molded Beakers • Tapered PP, PMP & PTFE Beakers • Heatable PTFE Beakers Bottles: 17 - 32 • Plastic Laboratory Bottles • Rectangular & Square Bottles Heatable PTFE Beakers Page 12 • Tamper Evident Plastic Bottles • Concertina Collapsible Bottle • Plastic Dispensing Bottles NEW Straight-Side Containers • Plastic Wash Bottles PETE with White PP Closures • PTFE Bottle Pourers Page 39 Containers: 38 - 42 • Screw Cap Plastic Jars & Containers • Snap Cap Plastic Jars & Containers • Hinged Lid Plastic Containers • Dispensing Plastic Containers • Graduated Plastic Containers • Disposable Plastic Containers Cylinders: 45 - 48 • Clear Plastic Cylinder, PMP • Translucent Plastic Cylinder, PP • Short Form Plastic Cylinder, PP • Four Liter Plastic Cylinder, PP NEW Polycarbonate Graduated Bottles with PP Closures Page 21 • Certified Plastic Cylinder, PMP • Hydrometer Jar, PP • Conical Shape Plastic Cylinder, PP Disposal Boxes: 54 - 55 • Bio-bin Waste Disposal Containers • Glass Disposal Boxes • Burn-upTM Bins • Plastic Recycling Boxes • Non-Hazardous Disposal Boxes Printed Cylinders Page 47 Drying Racks: 55 - 56 • Kartell Plastic Drying Rack, High Impact PS • Dynalon Mega-Peg Plastic Drying Rack • Azlon Epoxy Coated Drying Rack • Plastic Draining Baskets • Custom Size Drying Racks Available Burn-upTM Bins Page 54 Dynalon® Labware Table of Contents and Introduction ® Dynalon Labware, a leading wholesaler of plastic lab supplies throughout -
PER-CAST VACUUM CASTING MACHINE No.0132 120V No.0133 240V
PER-CAST VACUUM CASTING MACHINE No.0132 120V No.0133 240V Feature:This vacuum investment machine can also be used as a vacuum casting machine. Specifications: 0132 0133 Voltage 120V 240V Amperage 6A 3A Cycle 60Hz 50Hz Speed 1720 rpm 1420 rpm Horse power ¼ HP Phase Single Dimension 26⅜"×14³/ "×13¾" (67×36×35cm) (Bell jar not included) 16 Investment table 10⅜"×10⅜" (27×27cm) 5 Vacuum chamber Ф5 ⁄16"×7¼" (13.5×18.5cm) Vacuum pump 65 liter / min Net weight 89.1Lbs(40.5kgs) Shipping weight 93.5Lbs(42.5kgs) 1-5 Parts name 1 2 8 6 3 4 5 7 9 1 Investment table 4 Vacuum pump gauge 7 Oil filler cap 2 Vacuum chamber 5 Control handle 8 Sight glass 3 ON/OFF switch 6 Power line cord 9 Oil drain plug Accessories: A-1 A-2 A-3 A-4 No.0490 No.0130-038 No.0130-039 No.0130-042 9"Bell jar:1pc. Investment table rubber pad:1pc. Silicone rubber pad:1pc. Vacuum pump oil:600cc A-5 A-6 A-7 A-8 No.0160 No.0155-002 No.0155-001 No.0225 15"Perforated flask tong:1pc. Handle for crucible:1pc. Crucible:1pc. 3⅜"×4" Perforated flask:1pc. A-9 A-10 A-11 A-12 No.0264 No.0225-001 No.3303 No.3304 3⅜"Tree sprue base:1pc. 3⅜"Flask sleeve:1pc. 4"Adapter ring:1pc. 3⅜"Adapter ring:1pc. A-13 A-14 A-15 A-16 No.3302 No.3501 No.3503 No.3504 ½"Adapter ring:1pc. -
Bel-Art Clamps and Holders Catalog.Pdf
clamps and holders C a b Tubing Clamps a. screw Clamp Precise Control Offers on/off and fine control so accurate that it replaces stopcocks in many applications. Can be installed without disconnecting tubing or interrupting operation. Molded of Delrin® plastic, the clamp is autoclavable and resistant to acids, alkalis and organic solvents. Accepts flexible 1 tubing up to 14mm ( ⁄2") O.D. 3 per bag. CaTalog no. fiTs Tubing up To: 1 F18212-0000 14mm ( ⁄2") O.D. b. spring Tubing Clamps Squeeze Control Perfect for all flexible tubing, this positive-action, self-closing clamp opens by squeezing the handles together. Made of chemical and stain-resistant Delrin® plastic and stainless steel. 3 per bag. CaTalog no. fiTs Tubing up To: 5 H18213-0000 8mm ( ⁄16") O.D. 15 H18214-0000 12mm ( ⁄32") O.D. C. Tubing Clamp Serrated Jaws 1 Strong acetal plastic clamp provides secure closure on tubing with a wall of 0.82mm ( ⁄32") or thinner. Slides over tubing at any point for easy installation and may be left open for convenient storage without constricting flow. It locks when closed and springs open when the 1 5 locking tab is released. Jaws are 2.7cm (1 ⁄16") long; total length is 5.9cm (2 ⁄16") long. 12 per bag, 6 bags per case. CaTalog no. fiTs Tubing up To: 1 F18218-0000 0.82mm ( ⁄32") Wall Thickness Use a Scienceware® Tubing Sizer to Select the Right Size Tubing, Page 154 56 www.novatech-usa.com (866) 433-6682 clamps and holders D E D. swing Jaw™ Tubing Clamps For All Flexible Tubing Zinc-plated steel clamp provides a non-slip closure for all flexible tubing – even heavy-walled vacuum lines. -
High School Chemistry
RECOMMENDED MINIMUM CORE INVENTORY TO SUPPORT STANDARDS-BASED INSTRUCTION HIGH SCHOOL GRADES SCIENCES High School Chemistry Quantity per Quantity per lab classroom/ Description group adjacent work area SAFETY EQUIPMENT 2 Acid storage cabinet (one reserved exclusively for nitric acid) 1 Chemical spill kit 1 Chemical storage reference book 5 Chemical waste containers (Categories: corrosives, flammables, oxidizers, air/water reactive, toxic) 1 Emergency shower 1 Eye wash station 1 Fire blanket 1 Fire extinguisher 1 First aid kit 1 Flammables cabinet 1 Fume hood 1/student Goggles 1 Goggles sanitizer (holds 36 pairs of goggles) 1/student Lab aprons COMPUTER ASSISTED LEARNING 1 Television or digital projector 1 VGA Adapters for various digital devices EQUIPMENT/SUPPLIES 1 box Aluminum foil 100 Assorted rubber stoppers 1 Balance, analytical (0.001g precision) 5 Balance, electronic or manual (0.01g precision) 1 pkg of 50 Balloons, latex 4 Beakers, 50 mL 4 Beakers, 100 mL 2 Beakers, 250 mL Developed by California Science Teachers Association to support the implementation of the California Next Generation Science Standards. Approved by the CSTA Board of Directors November 17, 2015. Quantity per Quantity per lab classroom/ Description group adjacent work area 2 Beakers, 400 or 600 mL 1 Beakers, 1000 mL 1 Beaker tongs 1 Bell jar 4 Bottle, carboy round, LDPE 10 L 4 Bottle, carboy round, LDPE 4 L 10 Bottle, narrow mouth, 1000 mL 20 Bottle, narrow mouth, 125 mL 20 Bottle, narrow mouth, 250 mL 20 Bottle, narrow mouth, 500 mL 10 Bottle, wide mouth, 125 -
XXXIK-The Collection and Examination of the Gases Produced by Bacteria from Certain Media
View Article Online / Journal Homepage / Table of Contents for this issue 322 PAKES AND JOLLYMAN : COLLECTION AND EXAMINATION XXXIK-The Collection and Examination of the Gases produced by Bacteria from certain Media. By WALTERCHARLES CROSS PAKES and WALTERHENRY JOLLY AN. DURINGthe course of an investigation upon the bacterial flora of the water of a certain well, several specimens of bacteria were isolated which belonged to the group of Bacillus jhorescens Ziquefcccielzs. The determination of the cultural reactions enabled us to divide these into two groups, (1) that which produced gas, and (2) that which produced no gas in media containing nitrate. These were provisionally designated 5.0.7 and S.0.6 respectively. In order to obtain more information concerning the former of these, it was decided to analyse the gas produced . As the various forms of apparatus hitherto described for the purpose of the collection of gas thus produced did not seem to be sufficiently accurate or suitable for our purpose, we designed one which is both simple and accurate. It was necessary to have an apparatus which fulfilled the following conditions : (1) A relatively large amount of medium must be used-from 300 to 500 C.C. (2) The gas receiver must have a capacity of at least 600 C.C. (3) It must be easy to inoculate the medium without any chance of accidental contamination. (4) The receiver must be fitted with taps so that a part or the whole of the gas can be removed during the course of the experiment with- out chance of contamination. -
Fuel, Water and Gas Analysis for Steam Users
FUE L WAT ER A N D , GAS A NA LY S IS M US ER S FOR STEA , BY H N B C K H W I E S F. C . O . R A $ , A u tl wr o S mok P r v n ti n e a tc f e e e o , t , e W ith 50 Illustratio ns . LONDO N. ARC IB CONSTAB E C LTD D . H AL L 8: O . 1 0 9 7 . 1 4 1 0 2 5 AP R 1 5 1910 9 9 52 0 T H N 1 M A$$ $ P REFA C E . TEAM-USERS have shown a tendency in the past to - - neglect the boiler house for the engine room , and have concentrated their efforts for the improvement of the e ffi ciency of the plant almost exclusively upon the latter . A study of the losses incurred during the conversion of the thermal energy stored in coal into the thermal energy o f - steam , will show that it is in the boiler house that the greater preventable losses are occurring , and that the ratio ma y be expressed by the numbers 25 and 5. It is however , now beginning to be recognized that a s cientifically managed boiler-house is a sine quanon for the e i conom c generation of steam power , and considerable attention is being given by steam-engineers to this portion of their power generating plant . The chemical examination of the fuel , water, and of the waste gases has been found to be of great service in attain ing the highest efficiency from the boiler plant but no fi work has hitherto been published , at once scienti c and - practical , covering the ground required by the boiler house en lneer g .