Term Dynamics of Pollinator Abundance in Undisturbed Mediterranean Montane Habitats Over Two Decades
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Nomenclatura De Narcissus L
Nomenclatura de Amaryllidaceae J. St.-Hil. Amaryllidaceae J. St.-Hil., Expos. Fam. Nat. 1: 134 (1805) [nom. cons.], validated by a description in French. Nombres que aparecen en las observaciones Amaryllis belladonna L., Sp. Pl.: 293 (1753), en las observaciones de la fam. Amaryllidaceae iberica Flora 1 Nomenclatura de Galanthus L. Galanthus L., Sp. Pl.: 288 (1753) T.: G. nivalis L. Galanthus nivalis L., Sp. Pl.: 288 (1753) Ind. Loc.- “Habitat as radices Alpium Veronae, Tridenti, Viennae” [lectótipo designado por A.P. Davis in Regnum Veg. 127: 48 (1993): LINN 409.1] {} = Galanthus fontii Sennen, Pl. Espagne 1915, n.º 2851 (1915-1916), in sched., nom. nud. iberica Flora 2 Nomenclatura de Lapiedra Lag. Lapiedra Lag. in Gen. Sp. Pl.: [14] (1816) T.: L. martinezii Lag. Lapiedra martinezii Lag. in Gen. Sp. Pl.: [14] (1816) Ind. Loc.- “Hab. ad saxorum rimas subhumidas, in monte Arcis Saguntinae, prope Sanctuarium de la Fuen Santa juxta Algezares oppidum in Murciae Regno, atque non procul á Malacensi urbe legit acerrimus Naturae scrutator D. Felix Haenseler” [neótipo designado por R. Gonzalo & al. in Candollea 63: 206 (2008): MA 731958] ≡ Crinum martinezii (Lag.) Spreng., Syst. Veg. 2: 56 (1825) Nombres necesarios para el índice Crinum L., Sp. Pl.: 291 (1753) iberica Flora 3 Nomenclatura de Leucojum L. Leucojum L., Sp. Pl.: 289 (1753) LT.: L. vernum L. [cf. Hitchock, Prop. Brit. Bot. 144 (1929)] Leucojum aestivum L., Syst. Nat. ed. 10: 975 (1759) Ind. Loc.- “Habitat in Pannonia, Hetruria, Monspelii” [sec. L., Sp. Pl. ed. 2: 414 (1762)] ≡ Leucojum aestivum subsp. aestivum L., Syst. Nat. ed. -
Conserving Europe's Threatened Plants
Conserving Europe’s threatened plants Progress towards Target 8 of the Global Strategy for Plant Conservation Conserving Europe’s threatened plants Progress towards Target 8 of the Global Strategy for Plant Conservation By Suzanne Sharrock and Meirion Jones May 2009 Recommended citation: Sharrock, S. and Jones, M., 2009. Conserving Europe’s threatened plants: Progress towards Target 8 of the Global Strategy for Plant Conservation Botanic Gardens Conservation International, Richmond, UK ISBN 978-1-905164-30-1 Published by Botanic Gardens Conservation International Descanso House, 199 Kew Road, Richmond, Surrey, TW9 3BW, UK Design: John Morgan, [email protected] Acknowledgements The work of establishing a consolidated list of threatened Photo credits European plants was first initiated by Hugh Synge who developed the original database on which this report is based. All images are credited to BGCI with the exceptions of: We are most grateful to Hugh for providing this database to page 5, Nikos Krigas; page 8. Christophe Libert; page 10, BGCI and advising on further development of the list. The Pawel Kos; page 12 (upper), Nikos Krigas; page 14: James exacting task of inputting data from national Red Lists was Hitchmough; page 16 (lower), Jože Bavcon; page 17 (upper), carried out by Chris Cockel and without his dedicated work, the Nkos Krigas; page 20 (upper), Anca Sarbu; page 21, Nikos list would not have been completed. Thank you for your efforts Krigas; page 22 (upper) Simon Williams; page 22 (lower), RBG Chris. We are grateful to all the members of the European Kew; page 23 (upper), Jo Packet; page 23 (lower), Sandrine Botanic Gardens Consortium and other colleagues from Europe Godefroid; page 24 (upper) Jože Bavcon; page 24 (lower), Frank who provided essential advice, guidance and supplementary Scumacher; page 25 (upper) Michael Burkart; page 25, (lower) information on the species included in the database. -
MEDICINAL PLANTS OPIUM POPPY: BOTANY, TEA: CULTIVATION to of NORTH AFRICA Opidjd CHEMISTRY and CONSUMPTION by Loutfy Boulos
hv'IERIGAN BCXtlNICAL COJNCIL -----New Act(uisition~---------l ETHNOBOTANY FLORA OF LOUISIANA Jllll!llll GUIDE TO FLOWERING FLORA Ed. by Richard E. Schultes and Siri of by Margaret Stones. 1991. Over PLANT FAMILIES von Reis. 1995. Evolution of o LOUISIANA 200 beautiful full color watercolors by Wendy Zomlefer. 1994. 130 discipline. Thirty-six chapters from and b/w illustrations. Each pointing temperate to tropical families contributors who present o tru~ accompanied by description, habitat, common to the U.S. with 158 globol perspective on the theory and and growing conditions. Hardcover, plates depicting intricate practice of todoy's ethnobotony. 220 pp. $45. #8127 of 312 species. Extensive Hardcover, 416 pp. $49.95. #8126 glossary. Hardcover, 430 pp. $55. #8128 FOLK MEDICINE MUSHROOMS: TAXOL 4t SCIENCE Ed. by Richard Steiner. 1986. POISONS AND PANACEAS AND APPLICATIONS Examines medicinal practices of by Denis Benjamin. 1995. Discusses Ed. by Matthew Suffness. 1995. TAXQL® Aztecs and Zunis. Folk medicine Folk Medicine signs, symptoms, and treatment of Covers the discovery and from Indio, Fup, Papua New Guinea, poisoning. Full color photographic development of Toxol, supp~. Science and Australia, and Africa. Active identification. Health and nutritional biology (including biosynthesis and ingredients of garlic and ginseng. aspects of different species. biopharmoceutics), chemistry From American Chemical Society Softcover, 422 pp. $34.95 . #8130 (including structure, detection and Symposium. Softcover, isolation), and clinical studies. 223 pp. $16.95. #8129 Hardcover, 426 pp. $129.95 #8142 MEDICINAL PLANTS OPIUM POPPY: BOTANY, TEA: CULTIVATION TO OF NORTH AFRICA OpiDJD CHEMISTRY AND CONSUMPTION by Loutfy Boulos. 1983. Authoritative, Poppy PHARMACOLOGY TEA Ed. -
Long-Term Changes in the Composition, Ecology, and Structure of Pinus Mugo Scrubs in the Apennines (Italy)
diversity Article Long-Term Changes in the Composition, Ecology, and Structure of Pinus mugo Scrubs in the Apennines (Italy) Valentina Calabrese 1, Maria Laura Carranza 1,* ID , Alberto Evangelista 1, Marco Marchetti 2 ID , Adriano Stinca 3 ID and Angela Stanisci 1 ID 1 Envix-Lab, Dipartimento di Bioscienze e Territorio, Università degli Studi del Molise, Contrada Fonte Lappone, 86090 Pesche, Italy; [email protected] (V.C.); [email protected] (A.E.); [email protected] (A.S.) 2 Centro ArIA, Università degli Studi del Molise Via F. De Sanctis, 86100 Campobasso, Italy; [email protected] 3 Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Università della Campania Luigi Vanvitelli, via Vivaldi 43, 81100 Caserta, Italy; [email protected] * Correspondence: [email protected]; Tel.: +39-320-479-3882 Received: 4 June 2018; Accepted: 17 July 2018; Published: 20 July 2018 Abstract: Mountain ecosystems are vulnerable because of land-use and climate change. In this study, we performed a re-visitation study using historical and newly collected vegetation plots to explore the primary trends in the floristic, ecological, and structural features of Mediterranean Pinus mugo krummholz over past decades. The plant community composition over time (1992 vs. 2016–17) was analyzed by a detrended correspondence analysis followed by a statistical comparison of time steps and an analysis of the contribution of each species to temporal differences. Ecological and structural changes were analyzed by a permutational multivariate analysis of variance followed by a post hoc comparison. We observed relevant changes in the floristic composition, structure, and ecological characteristics of Pinus mugo scrub. -
Pollination and Botanic Gardens Contribute to the Next Issue of Roots
Botanic Gardens Conservation International Education Review Volume 17 • Number 1 • May 2020 Pollination and botanic gardens Contribute to the next issue of Roots The next issue of Roots is all about education and technology. As this issue goes to press, most botanic gardens around the world are being impacted by the spread of the coronavirus Covid-19. With many Botanic Gardens Conservation International Education Review Volume 16 • Number 2 • October 2019 Citizen gardens closed to the public, and remote working being required, Science educators are having to find new and innovative ways of connecting with visitors. Technology is playing an ever increasing role in the way that we develop and deliver education within botanic gardens, making this an important time to share new ideas and tools with the community. Have you developed a new and innovative way of engaging your visitors through technology? Are you using technology to engage a Botanic Gardens Conservation International Education Review Volume 17 • Number 1 • April 2020 wider audience with the work of your garden? We are currently looking for a variety of contributions including Pollination articles, education resources and a profile of an inspirational garden and botanic staff member. gardens To contribute, please send a 100 word abstract to [email protected] by 15th June 2020. Due to the global impacts of COVID-19, BGCI’s 7th Global Botanic Gardens Congress is being moved to the Australian spring. Join us in Melbourne, 27 September to 1 October 2021, the perfect time to visit Victoria. Influence and Action: Botanic Gardens as Agents of Change will explore how botanic gardens can play a greater role in shaping our future. -
Honey and Pollen Flora of SE Australia Species
List of families - genus/species Page Acanthaceae ........................................................................................................................................................................34 Avicennia marina grey mangrove 34 Aizoaceae ............................................................................................................................................................................... 35 Mesembryanthemum crystallinum ice plant 35 Alliaceae ................................................................................................................................................................................... 36 Allium cepa onions 36 Amaranthaceae ..................................................................................................................................................................37 Ptilotus species foxtails 37 Anacardiaceae ................................................................................................................................................................... 38 Schinus molle var areira pepper tree 38 Schinus terebinthifolius Brazilian pepper tree 39 Apiaceae .................................................................................................................................................................................. 40 Daucus carota carrot 40 Foeniculum vulgare fennel 41 Araliaceae ................................................................................................................................................................................42 -
Switzerland - Alpine Flowers of the Upper Engadine
Switzerland - Alpine Flowers of the Upper Engadine Naturetrek Tour Report 8 - 15 July 2018 Androsace alpina Campanula cochlerariifolia The group at Piz Palu Papaver aurantiacum Report and Images by David Tattersfield Naturetrek Mingledown Barn Wolf's Lane Chawton Alton Hampshire GU34 3HJ UK T: +44 (0)1962 733051 E: [email protected] W: www.naturetrek.co.uk Tour Report Switzerland - Alpine Flowers of the Upper Engadine Tour participants: David Tattersfield (leader) with 16 Naturetrek clients Day 1 Sunday 8th July After assembling at Zurich airport, we caught the train to Zurich main station. Once on the intercity express, we settled down to a comfortable journey, through the Swiss countryside, towards the Alps. We passed Lake Zurich and the Walensee, meeting the Rhine as it flows into Liectenstein, and then changed to the UNESCO World Heritage Albula railway at Chur. Dramatic scenery and many loops, tunnels and bridges followed, as we made our way through the Alps. After passing through the long Preda tunnel, we entered a sunny Engadine and made a third change, at Samedan, for the short ride to Pontresina. We transferred to the hotel by minibus and met the remaining two members of our group, before enjoying a lovely evening meal. After a brief talk about the plans for the week, we retired to bed. Day 2 Monday 9th July After a 20-minute walk from the hotel, we caught the 9.06am train at Surovas. We had a scenic introduction to the geography of the region, as we travelled south along the length of Val Bernina, crossing the watershed beside Lago Bianco and alighting at Alp Grum. -
An Investigation of the Reproductive Ecology and Seed Bank
California Department of Fish & Game U.S. Fish and Wildlife Service: Endangered Species Act (Section-6) Grant-in-Aid Program FINAL PROJECT REPORT E-2-P-35 An Investigation of the Reproductive Ecology and Seed Bank Dynamics of Burke’s Goldfields (Lasthenia burkei), Sonoma Sunshine (Blennosperma bakeri), and Sebastopol Meadowfoam (Limnanthes vinculans) in Natural and Constructed Vernal Pools Christina M. Sloop1, 2, Kandis Gilmore1, Hattie Brown3, Nathan E. Rank1 1Department of Biology, Sonoma State University, Rohnert Park, CA 2San Francisco Bay Joint Venture, Fairfax, CA 3Laguna de Santa Rosa Foundation, Santa Rosa, CA Prepared for Cherilyn Burton ([email protected]) California Department of Fish and Game, Habitat Conservation Division 1416 Ninth Street, Room 1280, Sacramento, CA 95814 March 1, 2012 1 1. Location of work: Santa Rosa Plain, Sonoma County, California 2. Background: Burke’s goldfield (Lasthenia burkei), a small, slender annual herb in the sunflower family (Asteraceae), is known only from southern portions of Lake and Mendocino counties and from northeastern Sonoma County. Historically, 39 populations were known from the Santa Rosa Plain, two sites in Lake County, and one site in Mendocino County. The occurrence in Mendocino County is most likely extirpated. From north to south on the Santa Rosa Plain, the species ranges from north of the community of Windsor to east of the city of Sebastopol. The long-term viability of many populations of Burke’s goldfields is particularly problematic due to population decline. There are currently 20 known extant populations, a subset of which were inoculated into pools at constructed sites to mitigate the loss of natural populations in the context of development. -
Gathered Food Plants in the Mountains
34063_Rivera.qxd 7/2/07 2:03 PM Page 1 Gathered Food Plants in the Mountains of Castilla–La Mancha (Spain): Ethnobotany and Multivariate Analysis1 Diego Rivera*,2, Concepción Obón3, Cristina Inocencio3, Michael Heinrich4, Alonso Verde2, José Fajardo2, and José Antonio Palazón5 2 Departamento de Biología Vegetal, Facultad de Biología, Universidad de Murcia, 30100 Murcia, Spain 3 Departamento de Biología Aplicada, EPSO, Universidad Miguel Hernández, 03312 Orihuela, Alicante, Spain 4 Centre for Pharmacognosy and Phytotherapy, The School of Pharmacy, Univ. London, 29–39 Brunswick Sq. London, WC1N 1AX, United Kingdom 5 Departamento de Ecología e Hidrología, Facultad de Biología, Universidad de Murcia, 30100 Murcia, Spain * Corresponding author: Departamento de Biología Vegetal, Facultad de Biología, Universidad de Murcia, 30100 Murcia, Spain; e-mail: [email protected] GATHERED FOOD PLANTS IN THE MOUNTAINS OF CASTILLA–LA MANCHA (SPAIN): ETHNOBOTANY AND MULTIVARIATE ANALYSIS. Gathered food plants (GFPs) (wild and weeds) are crucial for under- standing traditional Mediterranean diets. Combining open interviews and free–listing ques- tionnaires, we identified 215 GFP items, i.e., 53 fungi and 162 from 154 vascular plant species. The variation in frequency and in salience among the items follows a rectangular hyperbola. Highly salient species were Silene vulgaris (Moench) Garcke, Scolymus hispani- cus L., and Pleurotus eryngii (DC.: Fr.) Quélet. Salience and frequency showed no correlation with the expected health benefits of each species. Regional frequency in the Mediter- ranean and local frequency are directly related. Thus, local food plants are much less “local” than expected. Different types of culinary preparations provide the most information in the cluster analysis of variables. -
Nuclear and Plastid DNA Phylogeny of the Tribe Cardueae (Compositae
1 Nuclear and plastid DNA phylogeny of the tribe Cardueae 2 (Compositae) with Hyb-Seq data: A new subtribal classification and a 3 temporal framework for the origin of the tribe and the subtribes 4 5 Sonia Herrando-Morairaa,*, Juan Antonio Callejab, Mercè Galbany-Casalsb, Núria Garcia-Jacasa, Jian- 6 Quan Liuc, Javier López-Alvaradob, Jordi López-Pujola, Jennifer R. Mandeld, Noemí Montes-Morenoa, 7 Cristina Roquetb,e, Llorenç Sáezb, Alexander Sennikovf, Alfonso Susannaa, Roser Vilatersanaa 8 9 a Botanic Institute of Barcelona (IBB, CSIC-ICUB), Pg. del Migdia, s.n., 08038 Barcelona, Spain 10 b Systematics and Evolution of Vascular Plants (UAB) – Associated Unit to CSIC, Departament de 11 Biologia Animal, Biologia Vegetal i Ecologia, Facultat de Biociències, Universitat Autònoma de 12 Barcelona, ES-08193 Bellaterra, Spain 13 c Key Laboratory for Bio-Resources and Eco-Environment, College of Life Sciences, Sichuan University, 14 Chengdu, China 15 d Department of Biological Sciences, University of Memphis, Memphis, TN 38152, USA 16 e Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, LECA (Laboratoire d’Ecologie Alpine), FR- 17 38000 Grenoble, France 18 f Botanical Museum, Finnish Museum of Natural History, PO Box 7, FI-00014 University of Helsinki, 19 Finland; and Herbarium, Komarov Botanical Institute of Russian Academy of Sciences, Prof. Popov str. 20 2, 197376 St. Petersburg, Russia 21 22 *Corresponding author at: Botanic Institute of Barcelona (IBB, CSIC-ICUB), Pg. del Migdia, s. n., ES- 23 08038 Barcelona, Spain. E-mail address: [email protected] (S. Herrando-Moraira). 24 25 Abstract 26 Classification of the tribe Cardueae in natural subtribes has always been a challenge due to the lack of 27 support of some critical branches in previous phylogenies based on traditional Sanger markers. -
Atlas of Pollen and Plants Used by Bees
AtlasAtlas ofof pollenpollen andand plantsplants usedused byby beesbees Cláudia Inês da Silva Jefferson Nunes Radaeski Mariana Victorino Nicolosi Arena Soraia Girardi Bauermann (organizadores) Atlas of pollen and plants used by bees Cláudia Inês da Silva Jefferson Nunes Radaeski Mariana Victorino Nicolosi Arena Soraia Girardi Bauermann (orgs.) Atlas of pollen and plants used by bees 1st Edition Rio Claro-SP 2020 'DGRV,QWHUQDFLRQDLVGH&DWDORJD©¥RQD3XEOLFD©¥R &,3 /XPRV$VVHVVRULD(GLWRULDO %LEOLRWHF£ULD3ULVFLOD3HQD0DFKDGR&5% $$WODVRISROOHQDQGSODQWVXVHGE\EHHV>UHFXUVR HOHWU¶QLFR@RUJV&O£XGLD,Q¬VGD6LOYD>HW DO@——HG——5LR&ODUR&,6(22 'DGRVHOHWU¶QLFRV SGI ,QFOXLELEOLRJUDILD ,6%12 3DOLQRORJLD&DW£ORJRV$EHOKDV3µOHQ– 0RUIRORJLD(FRORJLD,6LOYD&O£XGLD,Q¬VGD,, 5DGDHVNL-HIIHUVRQ1XQHV,,,$UHQD0DULDQD9LFWRULQR 1LFRORVL,9%DXHUPDQQ6RUDLD*LUDUGL9&RQVXOWRULD ,QWHOLJHQWHHP6HUYL©RV(FRVVLVWHPLFRV &,6( 9,7¯WXOR &'' Las comunidades vegetales son componentes principales de los ecosistemas terrestres de las cuales dependen numerosos grupos de organismos para su supervi- vencia. Entre ellos, las abejas constituyen un eslabón esencial en la polinización de angiospermas que durante millones de años desarrollaron estrategias cada vez más específicas para atraerlas. De esta forma se establece una relación muy fuerte entre am- bos, planta-polinizador, y cuanto mayor es la especialización, tal como sucede en un gran número de especies de orquídeas y cactáceas entre otros grupos, ésta se torna más vulnerable ante cambios ambientales naturales o producidos por el hombre. De esta forma, el estudio de este tipo de interacciones resulta cada vez más importante en vista del incremento de áreas perturbadas o modificadas de manera antrópica en las cuales la fauna y flora queda expuesta a adaptarse a las nuevas condiciones o desaparecer. -
View the PDF File of the Tachinid Times, Issue 12
The Tachinid Times ISSUE 12 February 1999 Jim O’Hara, editor Agriculture & Agri-Food Canada, Biological Resources Program Eastern Cereal and Oilseed Research Centre C.E.F., Ottawa, Ontario, Canada, K1A 0C6 Correspondence: [email protected] The Tachinid Times began in 1988 when personal Evolution of Egg Structure in Tachinidae (by S.P. computers were gaining in popularity, yet before the Gaponov) advent of e-mail and the World Wide Web. A newsletter Using a scanning electron microscope I investigated distributed through the mail seemed like a useful the egg structure of 114 species of Tachinidae. The endeavour to foster greater awareness about the work of research was focused on the peculiarities of the egg others among researchers interested in the Tachinidae. surface and the structure of the aeropylar area. Data on Now, eleven years later, despite the speed and the method of egg-laying, the structure of the female convenience of e-mail and other advanced modes of reproductive system and the host range were also taken communication, this newsletter still seems to hold a place into consideration. Since any kind of adaptation is a in the distribution of news about the Tachinidae. If there result of evolution and every stage of ontogenesis, is sufficient interest - and submissions - over the course including the egg stage, is adapted to some specific of the next year, then another issue will appear in environmental conditions, each stage of ontogenesis February of the new millennium. As always, please send evolved more or less independently. The development of me your news for inclusion in the newsletter before the provisionary devices (coenogenetic adaptations) and their end of next January.