Solid-State Memory Chips SRAM, DRAM

Total Page:16

File Type:pdf, Size:1020Kb

Solid-State Memory Chips SRAM, DRAM Memory Solid-State Memory Chips SRAM, DRAM PENN J. Van der Spiegel EE200- 1 Simple Processor Datapath Consists of Registers, Combinational Logic and Buses Address Bus Result Bus Memory ALU A Memory Address M P I A M Data Bus Bus A C R C B R R B MEMORY Memory Bus Memory Address Register (MAR) Main Memory: Instruction Register (PR) Accumulator or Data Register (AC) SRAM; DRAM Memory Buffer Register (MBR) Program Counter (PC) PENN EE200- 2 J. Van der Spiegel (Katz, Contemporary Logic Design) Memory in a Computer PENN J. Van der Spiegel EE200- 3 Memory Hierarchy Fast Registers Pro- cessors 1st Level SRAM Speed Cache Cost 2nd Level SRAM - Increase Cache DRAM Increase Main Memory DRAM Magnetic Archive I Disk/Tape Archive II Optical Disk PENN J. Van der Spiegel EE200- 4 Memory capacity and Moore’s Law Memory capacity has increased about 1.5x/yr Memory technology is more aggressive than for microprocessors: Technology Driver 10 10 1GDRAM 1G Giga chip DRAMs Microprocessors 256 M 8 64 M P7 10 16 M 10M 1 MDRAM P6 MPU only 6 Mega chip 256 K Pentium 10 1M 64 K 486 100K 16 K 68020 Power PC 1K DRAM 68000 601 4 10K 10 8080 32-bit 1K 4004 Micro 2 8-bit 16-bit 10 100 invention Micro Micro 10 of the IC 0 Transistors per chip 1 10 PENN 1960 1970 1980 1990 2000 J. Van der Spiegel EE200- 5 Memory types 1. Non-volatile Memory: » Is a memory which keeps its data even when power is switched off. All other memories are volatile. 2. Volatile Memories 2.1 Dynamic Memory (DRAM): » Is a volatile memory where information is stored on a capacitor. Refreshing needed. 2.2 Static Memory (SRAM): » Is a volatile memory where information is maintained as long as the power is switched on. Internal feedback makes the memory static (latch). PENN J. Van der Spiegel EE200- 6 Memory types - overview MEMORIES VOLATILE NON-VOLATILE Read-only memory ROM SRAM DRAM Programmable Read-onlyr memory Static Dynamic PROM Random Access EDO SDRAM Erasable PROM DDSRAM EPROM RAMBus Electrically erasable PROM EEPROM Non-volatileRAM EDO: Enhanced Data Out DRAM NVRAM SDRAM: Synchronous DRAM Battery-backup RAM DDSRAM: double data rate synch. DRAM (266MHz) BRAM FerroelectricRAM NVRAM: - Combination of SRAM and EEPROM; FERRAM MRAM: - Magnetoresistive RAM Ferromagnetic PENN MRAM J. Van der Spiegel EE200- 7 DRAM Memory Technology Word line Poly 6 common capacitor plate + + Poly 4 individual -- capacitor plate Bitline Polycide 3 bit line Samsung 64 Mbit DRAM(Source: ICE Corp.) PENN J. Van der Spiegel EE200- 8 DRAM cell Word line Bit-line Capacitor Transistor (switch) IBM 256 Mb DRAM; Sc. Am. Jan. 02) PENN J. Van der Spiegel EE200- 9 DRAM: System Architecture Writing a bit=1 at Word 0, bit position 5 (Source: Intel Museum www.intel.com/intel/intelis/museum/exhibit/memory_tech/ PENN J. Van der Spiegel EE200- 10 DRAM: System Architecture Random Access Memory Row Decoder 1 1 MATRIX OF MEMORY Row address CELLS one cell N N 2 1 2 M Read Column decoder Write Control 1 M l Out In Data Column address Storage capacity: ( 2 N ) ( 2 M ) = 2 N+M bits PENN J. Van der Spiegel EE200- 11 Giga-bit DRAM NOTE: One 4G DRAM stores the complete works of Shakespeare 64 times! or 47 min. of full-motion video) 64 Gbit DRAM expected in 2016!!! PENN J. Van der Spiegel EE200- 12.
Recommended publications
  • Chapter 3 Semiconductor Memories
    Chapter 3 Semiconductor Memories Jin-Fu Li Department of Electrical Engineering National Central University Jungli, Taiwan Outline Introduction Random Access Memories Content Addressable Memories Read Only Memories Flash Memories Advanced Reliable Systems (ARES) Lab. Jin-Fu Li, EE, NCU 2 Overview of Memory Types Semiconductor Memories Read/Write Memory or Random Access Memory (RAM) Read Only Memory (ROM) Random Access Non-Random Access Memory (RAM) Memory (RAM) •Mask (Fuse) ROM •Programmable ROM (PROM) •Erasable PROM (EPROM) •Static RAM (SRAM) •FIFO/LIFO •Electrically EPROM (EEPROM) •Dynamic RAM (DRAM) •Shift Register •Flash Memory •Register File •Content Addressable •Ferroelectric RAM (FRAM) Memory (CAM) •Magnetic RAM (MRAM) Advanced Reliable Systems (ARES) Lab. Jin-Fu Li, EE, NCU 3 Memory Elements – Memory Architecture Memory elements may be divided into the following categories Random access memory Serial access memory Content addressable memory Memory architecture 2m+k bits row decoder row decoder 2n-k words row decoder row decoder column decoder k column mux, n-bit address sense amp, 2m-bit data I/Os write buffers Advanced Reliable Systems (ARES) Lab. Jin-Fu Li, EE, NCU 4 1-D Memory Architecture S0 S0 Word0 Word0 S1 S1 Word1 Word1 S2 S2 Word2 Word2 A0 S3 S3 A1 Decoder Ak-1 Sn-2 Storage Sn-2 Wordn-2 element Wordn-2 Sn-1 Sn-1 Wordn-1 Wordn-1 m-bit m-bit Input/Output Input/Output n select signals are reduced n select signals: S0-Sn-1 to k address signals: A0-Ak-1 Advanced Reliable Systems (ARES) Lab. Jin-Fu Li, EE, NCU 5 Memory Architecture S0 Word0 Wordi-1 S1 A0 A1 Ak-1 Row Decoder Sn-1 Wordni-1 A 0 Column Decoder Aj-1 Sense Amplifier Read/Write Circuit m-bit Input/Output Advanced Reliable Systems (ARES) Lab.
    [Show full text]
  • Multilevel-Cell Phase-Change Memory - Modeling and Reliability Framework
    MULTILEVEL-CELL PHASE-CHANGE MEMORY - MODELING AND RELIABILITY FRAMEWORK THÈSE NO 6801 (2016) PRÉSENTÉE LE 14 JANVIER 2016 À LA FACULTÉ DES SCIENCES ET TECHNIQUES DE L'INGÉNIEUR LABORATOIRE DE SYSTÈMES MICROÉLECTRONIQUES PROGRAMME DOCTORAL EN GÉNIE ÉLECTRIQUE ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE POUR L'OBTENTION DU GRADE DE DOCTEUR ÈS SCIENCES PAR Aravinthan ATHMANATHAN acceptée sur proposition du jury: Prof. G. De Micheli, président du jury Prof. Y. Leblebici, Dr M. Stanisavljevic, directeurs de thèse Dr E. Eleftheriou, rapporteur Dr R. Bez, rapporteur Dr J. Brugger, rapporteur Suisse 2016 All birds find shelter during a rain . But eagle avoids rain by flying above the clouds . Problems are common, but attitude makes the difference . — Dr. A. P.J. Abdul Kalam To my parents and wife. Acknowledgements This accomplishment would not have been possible without the wonderful people who have inspired me on my journey towards the PhD. This PhD challenge would have been more of an academic title than a great adventure if not for them. I consider myself fortunate to have spent the last four years of my life in a great research atmosphere for learning, and also working with some exceptional individuals during the course of my doctoral studies. I am greatly indebted to my supervisor, Prof. Yusuf Leblebici, who gave me the independence to pursue my ideas freely, while at the same time mentoring by example. I am especially grateful to my manager, Dr. Evangelos Eleftheriou, for giving me this wonderful opportunity to pursue my PhD thesis with IBM Research. His energy and enthusiasm have been an inspiration for me to aim ever higher in my pursuits.
    [Show full text]
  • Class Notes Class: IX Topic: INPUT, OUTPUT, MEMORY and STORAGE DEVICES of a COMPUTER SYSTEM Subject: INFORMATION TECHNOLOGY
    Class Notes Class: IX Topic: INPUT, OUTPUT, MEMORY AND STORAGE DEVICES OF A COMPUTER SYSTEM Subject: INFORMATION TECHNOLOGY Q1. A collection of eight bits is called BYTE Q2. Which of the following is an example of non-volatile memory? a) ROM b)RAM c) LSI d) VLSI Q3. Which of the following is unit of measurement used with computer system? a) Byte b) Megabyte c) Gigabyte d) All of the above Q4. Which of the following statement is false? a) Secondary storage in non-volatile. b) Primary storage is volatile. c) When the computer is turned off, data and instructions stored in primary storage are erased. d) None of the above. Q5. The secondary storage devices can only store data but they cannot perform a) Arithmetic operation b) Logic operation c) Fetch operation d) Either of above Q6. Which of the following does not represent an I/O device a) Speaker which beep b) Plotter C) Joystick d) ALU Q7. Which of the following is a correct definition of volatile memory? a) It loses its content at high temperatures. b) It is to be kept in airtight boxes. c) It loses its contents on failure of power supply d) It does not lose its contents on failure of power supply Q8. One thousand byte represent a a) Megabyte b) Gigabyte c) Kilobyte d) None of these Q9.What does a storage unit provide? a) A place to show data b) A place to store currently worked on information b) A place to store information Q10. What are four basic components of a computer? a) Input devices, Output devices, printing and typing b) Input devices, processing unit, storage and Output devices c) Input devices, CPU, Output devices and RAM Q11.
    [Show full text]
  • The Era of Expeditious Nanoram-Based Computers Enhancement of Operating System Performance in Nanotechnology Environment
    International Journal of Applied Engineering Research ISSN 0973-4562 Volume 13, Number 1 (2018) pp. 375-384 © Research India Publications. http://www.ripublication.com The Era of Expeditious NanoRAM-Based Computers Enhancement of Operating System Performance in Nanotechnology Environment Mona Nabil ElGohary PH.D Student, Computer Science Department Faculty of Computers and Information, Helwan University, Cairo, Egypt. 1ORCID: 0000-0002-1996-4673 Dr. Wessam ElBehaidy Assistant Professor, Computer Science Department, Faculty of Computers and Information, Helwan University, Cairo, Egypt. Ass. Prof. Hala Abdel-Galil Associative Professor, Computer Science Department Faculty of Computers and Information, Helwan University, Cairo, Egypt. Prof. Dr. Mostafa-Sami M. Mostafa Professor of Computer Science Faculty of Computers and Information, Helwan University, Cairo, Egypt. Abstract They announced that by 2018 will produce the first NanoRAM. The availability of a new generation of memory that is 1000 times faster than traditional DDRAM which can deliver This new NanoRam has many excellent properties that would terabytes of storage capacity, and consumes very little power, make an excellent replacement for the current DDRAM: being has the potential to change the future of the computer’s non-volatile, its large capacity, high speed read / write cycles. operating system. This paper studies the different changes that All the properties are introduced in the next section. will arise on the operating system functions; memory By replacing this NanoRAM instead of DDRAM in the CPU, management and job scheduling (especially context switch) this will affect the functionality of the operating system; such when integrating NanoRAM into the computer system. It is as main memory management, virtual memory, job scheduling, also looking forward to evaluating the possible enhancements secondary storage management; and thus the efficiency of the of computer’s performance with NanoRAM.
    [Show full text]
  • Let's Talk About Storage & Recovery Methods for Non-Volatile Memory
    Let’s Talk About Storage & Recovery Methods for Non-Volatile Memory Database Systems Joy Arulraj Andrew Pavlo Subramanya R. Dulloor [email protected] [email protected] [email protected] Carnegie Mellon University Carnegie Mellon University Intel Labs ABSTRACT of power, the DBMS must write that data to a non-volatile device, The advent of non-volatile memory (NVM) will fundamentally such as a SSD or HDD. Such devices only support slow, bulk data change the dichotomy between memory and durable storage in transfers as blocks. Contrast this with volatile DRAM, where a database management systems (DBMSs). These new NVM devices DBMS can quickly read and write a single byte from these devices, are almost as fast as DRAM, but all writes to it are potentially but all data is lost once power is lost. persistent even after power loss. Existing DBMSs are unable to take In addition, there are inherent physical limitations that prevent full advantage of this technology because their internal architectures DRAM from scaling to capacities beyond today’s levels [46]. Using are predicated on the assumption that memory is volatile. With a large amount of DRAM also consumes a lot of energy since it NVM, many of the components of legacy DBMSs are unnecessary requires periodic refreshing to preserve data even if it is not actively and will degrade the performance of data intensive applications. used. Studies have shown that DRAM consumes about 40% of the To better understand these issues, we implemented three engines overall power consumed by a server [42]. in a modular DBMS testbed that are based on different storage Although flash-based SSDs have better storage capacities and use management architectures: (1) in-place updates, (2) copy-on-write less energy than DRAM, they have other issues that make them less updates, and (3) log-structured updates.
    [Show full text]
  • Error Detection and Correction Methods for Memories Used in System-On-Chip Designs
    International Journal of Engineering and Advanced Technology (IJEAT) ISSN: 2249 – 8958, Volume-8, Issue-2S2, January 2019 Error Detection and Correction Methods for Memories used in System-on-Chip Designs Gunduru Swathi Lakshmi, Neelima K, C. Subhas ABSTRACT— Memory is the basic necessity in any SoC Static Random Access Memory (SRAM): It design. Memories are classified into single port memory and consists of a latch or flipflop to store each bit of multiport memory. Multiport memory has ability to source more memory and it does not required any refresh efficient execution of operation and high speed performance operation. SRAM is mostly used in cache memory when compared to single port. Testing of semiconductor memories is increasing because of high density of current in the and in hand-held devices. It has advantages like chips. Due to increase in embedded on chip memory and memory high speed and low power consumption. It has density, the number of faults grow exponentially. Error detection drawback like complex structure and expensive. works on concept of redundancy where extra bits are added for So, it is not used for high capacity applications. original data to detect the error bits. Error correction is done in Read Only Memory (ROM): It is a non-volatile memory. two forms: one is receiver itself corrects the data and other is It can only access data but cannot modify data. It is of low receiver sends the error bits to sender through feedback. Error detection and correction can be done in two ways. One is Single cost. Some applications of ROM are scanners, ID cards, Fax bit and other is multiple bit.
    [Show full text]
  • What Is Cloud-Based Backup and Recovery?
    White paper Cover Image Pick an image that is accurate and relevant to the content, in a glance, the image should be able to tell the story of the asset 550x450 What is cloud-based backup and recovery? Q120-20057 Executive Summary Companies struggle with the challenges of effective backup and recovery. Small businesses lack dedicated IT resources to achieve and manage a comprehensive data protection platform, and enterprise firms often lack the budget and resources for implementing truly comprehensive data protection. Cloud-based backup and recovery lets companies lower their Cloud-based backup and recovery lets data protection cost or expand their capabilities without raising costs or administrative overhead. Firms of all sizes can companies lower their data protection benefit from cloud-based backup and recovery by eliminating cost or expand their capabilities without on-premises hardware and software infrastructure for data raising costs or administrative overhead.” protection, and simplifying their backup administration, making it something every company should consider. Partial or total cloud backup is a good fit for most companies given not only its cost-effectiveness, but also its utility. Many cloud- based backup vendors offer continuous snapshots of virtual machines, applications, and changed data. Some offer recovery capabilities for business-critical applications such as Microsoft Office 365. Others also offer data management features such as analytics, eDiscovery and regulatory compliance. This report describes the history of cloud-based backup and recovery, its features and capabilities, and recommendations for companies considering a cloud-based data protection solution. What does “backup and recovery” mean? There’s a difference between “backup and recovery” and “disaster recovery.” Backup and recovery refers to automated, regular file storage that enables data recovery and restoration following a loss.
    [Show full text]
  • ROSS: a Design of Read-Oriented STT-MRAM Storage for Energy
    ROSS: A Design of Read-Oriented STT-MRAM Storage for Energy-Efficient Non-Uniform Cache Architecture Jie Zhang, Miryeong Kwon, Chanyoung Park, Myoungsoo Jung, and Songkuk Kim School of Integrated Technology, Yonsei Institute Convergence Technology, Yonsei University [email protected], [email protected], [email protected], [email protected], [email protected] Abstract high leakage power. With increasing demand for larger caches, SRAM is struggling to keep up with the density Spin-Transfer Torque Magnetoresistive RAM (STT- and energy-efficiency requirements set by state-of-the- MRAM) is being intensively explored as a promis- art system designs. ing on-chip last-level cache (LLC) replacement for Thanks to the device-level advantages of STT-MRAM SRAM, thanks to its low leakage power and high stor- such as high-density structure, zero leakage current, and age capacity. However, the write penalties imposed by very high endurance, it comes out as an excellent candi- STT-MRAM challenges its incarnation as a successful date to replace age-old SRAM for LLC design. However, LLC by deteriorating its performance and energy effi- the performance of STT-MRAM is critically sensitive to ciency. This write performance characteristic unfortu- write frequency due to its high write latency and energy nately makes STT-MRAM unable to straightforwardly values. Therefore, an impulsive replacement of SRAM substitute SRAM in many computing systems. with high-density STT-MRAM, simply for increasing In this paper, we propose a hybrid non-uniform cache LLC capacity, can deteriorate cache performance and in- architecture (NUCA) by employing STT-MRAM as a troduce poor energy consumption behavior.
    [Show full text]
  • Non-Volatile Memory Databases
    15-721 ADVANCED DATABASE SYSTEMS Lecture #24 – Non-Volatile Memory Databases Andy Pavlo // Carnegie Mellon University // Spring 2016 @Andy_Pavlo // Carnegie Mellon University // Spring 2017 2 ADMINISTRIVIA Final Exam: May 4th @ 12:00pm → Multiple choice + short-answer questions. → I will provide sample questions this week. Code Review #2: May 4th @ 11:59pm → We will use the same group pairings as before. Final Presentations: May 9th @ 5:30pm → WEH Hall 7500 → 12 minutes per group → Food and prizes for everyone! CMU 15-721 (Spring 2017) 3 TODAY’S AGENDA Background Storage & Recovery Methods for NVM CMU 15-721 (Spring 2017) 4 NON-VOLATILE MEMORY Emerging storage technology that provide low latency read/writes like DRAM, but with persistent writes and large capacities like SSDs. → AKA Storage-class Memory, Persistent Memory First devices will be block-addressable (NVMe) Later devices will be byte-addressable. CMU 15-721 (Spring 2017) 5 FUNDAMENTAL ELEMENTS OF CIRCUITS Capacitor Resistor Inductor (ca. 1745) (ca. 1827) (ca. 1831) CMU 15-721 (Spring 2017) 6 FUNDAMENTAL ELEMENTS OF CIRCUITS In 1971, Leon Chua at Berkeley predicted the existence of a fourth fundamental element. A two-terminal device whose resistance depends on the voltage applied to it, but when that voltage is turned off it permanently remembers its last resistive state. TWO CENTURIES OF MEMRISTORS Nature Materials 2012 CMU 15-721 (Spring 2017) 7 FUNDAMENTAL ELEMENTS OF CIRCUITS Capacitor Resistor Inductor Memristor (ca. 1745) (ca. 1827) (ca. 1831) (ca. 1971) CMU 15-721 (Spring 2017) 8 MERISTORS A team at HP Labs led by Stanley Williams stumbled upon a nano-device that had weird properties that they could not understand.
    [Show full text]
  • Low Voltage, One-Time Programmable, Read-Only Memory
    Features • Fast read access time – 90ns • Dual voltage range operation – Low voltage power supply range, 3.0V to 3.6V, or – Standard power supply range, 5V 10% • Compatible with JEDEC standard Atmel® AT27C512R • Low-power CMOS operation – 20µA max standby (less than 1µA, typical) for VCC = 3.6V – 29mW max active at 5MHz for VCC = 3.6V 512K (64K x 8) • JEDEC standard package – 32-lead PLCC Low Voltage, • High-reliability CMOS technology One-time – 2,000V ESD protection Programmable, – 200mA latchup immunity • Rapid programming algorithm – 100µs/byte (typical) Read-only Memory • CMOS- and TTL-compatible inputs and outputs – JEDEC standard for LVTTL • Integrated product identification code Atmel AT27LV512A • Industrial temperature range • Green (Pb/halide-free) packaging option 1. Description The Atmel AT27LV512A is a high-performance, low-power, low-voltage, 524,288-bit, one- time programmable, read-only memory (OTP EPROM) organized as 64K by 8 bits. It requires only one supply in the range of 3.0 to 3.6V in normal read mode operation, making it ideal for fast, portable systems using battery power. The Atmel innovative design techniques provide fast speeds that rival 5V parts, while keep- ing the low power consumption of a 3.3V supply. At VCC = 3.0V, any byte can be accessed in less than 90ns. With a typical power dissipation of only 18mW at 5MHz and VCC = 3.3V, the AT27LV512A consumes less than one-fifth the power of a standard, 5V EPROM. Standby mode supply current is typically less than 1µA at 3.3V. The AT27LV512A is available in industry-standard, JEDEC-approved, one-time programmable (OTP) PLCC package.
    [Show full text]
  • Semiconductor Memories
    Semiconductor Memories Prof. MacDonald Types of Memories! l" Volatile Memories –" require power supply to retain information –" dynamic memories l" use charge to store information and require refreshing –" static memories l" use feedback (latch) to store information – no refresh required l" Non-Volatile Memories –" ROM (Mask) –" EEPROM –" FLASH – NAND or NOR –" MRAM Memory Hierarchy! 100pS RF 100’s of bytes L1 1nS SRAM 10’s of Kbytes 10nS L2 100’s of Kbytes SRAM L3 100’s of 100nS DRAM Mbytes 1us Disks / Flash Gbytes Memory Hierarchy! l" Large memories are slow l" Fast memories are small l" Memory hierarchy gives us illusion of large memory space with speed of small memory. –" temporal locality –" spatial locality Register Files ! l" Fastest and most robust memory array l" Largest bit cell size l" Basically an array of large latches l" No sense amps – bits provide full rail data out l" Often multi-ported (i.e. 8 read ports, 2 write ports) l" Often used with ALUs in the CPU as source/destination l" Typically less than 10,000 bits –" 32 32-bit fixed point registers –" 32 60-bit floating point registers SRAM! l" Same process as logic so often combined on one die l" Smaller bit cell than register file – more dense but slower l" Uses sense amp to detect small bit cell output l" Fastest for reads and writes after register file l" Large per bit area costs –" six transistors (single port), eight transistors (dual port) l" L1 and L2 Cache on CPU is always SRAM l" On-chip Buffers – (Ethernet buffer, LCD buffer) l" Typical sizes 16k by 32 Static Memory
    [Show full text]
  • Computer Conservation Society
    Issue Number 88 Winter 2019/20 Computer Conservation Society Aims and Objectives The Computer Conservation Society (CCS) is a co-operative venture between BCS, The Chartered Institute for IT; the Science Museum of London; and the Science and Industry Museum (SIM) in Manchester. The CCS was constituted in September 1989 as a Specialist Group of the British Computer Society. It is thus covered by the Royal Charter and charitable status of BCS. The objects of the Computer Conservation Society (“Society”) are: To promote the conservation, restoration and reconstruction of historic computing systems and to identify existing computing systems which may need to be archived in the future; To develop awareness of the importance of historic computing systems; To develop expertise in the conservation, restoration and reconstruction of historic computing systems; To represent the interests of the Society with other bodies; To promote the study of historic computing systems, their use and the history of the computer industry; To publish information of relevance to these objectives for the information of Society members and the wider public. Membership is open to anyone interested in computer conservation and the history of computing. The CCS is funded and supported by a grant from BCS and from donations. There are a number of active projects on specific computer restorations and early computer technologies and software. Younger people are especially encouraged to take part in order to achieve skills transfer. The CCS also enjoys a close relationship with the National Museum of Computing. Resurrection The Journal of the Computer Conservation Society ISSN 0958-7403 Number 88 Winter 2019/20 Contents Society Activity 2 News Round-Up 9 The Data Curator 10 Paul Cockshott From Tea Shops to Computer Company: The Improbable 15 Story of LEO John Aeberhard Book Review: Early Computing in Britain Ferranti Ltd.
    [Show full text]