* a Pocket Statistics

Total Page:16

File Type:pdf, Size:1020Kb

* a Pocket Statistics -w mn- * A Pocket Statistics 1996 Edit ion POCKET STATISTICS is published by the NATIONAL AERONAUTICS AND SPACE ADMINISTRATION (NASA). Included in each edition is Administrative and Organizational information, summaries of Space Flight Activity including the NASA Major Launch Record, and NASA Procurement, Financial and Workforce data Foreword The NASA Major Launch Record includes all launches of Scout class and larger vehicles. Vehicle and spacecraft development flights are also included in the Major Launch Record. Shuttle missions are counted as one launch and one payload, where free flying payloads are not involved. Satellites deployed from the cargo bay of the Shuttle and placed in a separate orbit or trajectory are counted as an additional payload. For yearly breakdown of charts shown by decade, refer to the issues of POCKET STATISTICS published prior to 1995. Changes or deletions to this book may be made by phone to Ron Hoffman, (202) 358-1596. NATIONAL AERONAUTICS AND SPACE ADMINISTRATION HEADQUARTERS FACILITIESAND LOGISTICS MANAGEMENT Washington, DC 20546 Contents I Sectlon A - Admlnlstratlon and Organlzatlon Sectlon C - Procurement, Funding and Workforce NASA Organization Contract Awards by State NASA Administrators Distributionof NASA Prime Contract Awards National Aeronautics and Space Act Procurement Activity NASA Installations Contract Awards by Type of Effort The Year in Review Distribution of NASA Procurements Principal Contractors Educational and Nonprofit Institutions Sectlon B Space Flight Actlvlty NASA's Budget Authority in 1994 Dollars - Financial Summary Launch History Mission Support Funding Cunent Worldwide Launch Vehicles R&D Funding by Program Summary of Announced Launches Sci, Aero. &Tech Funding NASA Launches by Vehicle R&D Funding by Location Summary of Announced Payloads Human Space Flight Funding Summary of USA Payloads SpFlt. Ctl, & Data Funding Shuttle Approach and Landing Tests CofF Funding Soviet Spacecraft Designations Personnel Summary NASA Astronauts NASA Civil Service Workforce Employment Trend United States Human Space Flight Occupational Summary Shuttle Payloads and Experiments Women Employees The Planets Minority Employees The Solar System Planetary Exploration Lunar Exploration Unofficial Tabulation of CIS (USSR) Payloads NASA Major Launch Record Section A Administration and Organization NASA Organization Chart A-2 Excerpts From The National Aeronautics And Space Act Of 1958. As Amended AN ACT To provide for research into problems of flight within and outside the (d) The aeronauticaland space adivities of the United States shall Earth's atmosphere, and for other purposes. be conducted so as to contribute materially to one or more of the following objectives: Declaration Of Pollcy And Purpose (1) The expansion of human knwvledge of the Earth and of Sec. 102 (a) The Congress hereby dedares that it is the policy of the United phenomena in the atmosphere and space; States that activities in space should be devoted to peaceful purposes for the benefit of all mankind. (2) The improvement of the usefulness, performance, speed. safety, and efficiency of aeronautical and space vehicles; @) The Congress dedares that the general welfare and security of the United States require hat adequate provision be made for (3) The development and operation of vehicles capable of aeronautical and space activiies. The Congress further carrying instruments, equipment, supplies. and living dedares that such activiies shall be the responsibility of, and organisms through space; shall be directed by, a civilian agency exercising control over aeronautical and space activiies sponsored by the United (4) The establishment of long-range studies of the potential States, except that activities peculiar to or primarity associated benefits to be gained from, the opportunities for, and the with the development of weapons systems, military operations, problems involved in the utilization of aeronautical and or the defense of the United States (induding the research and space activiies for peaceful and scientific purposes; development necessary to make effective provisionfor the defense of the United States) shall be the responsibility of, and (5) The preservation of the role of the United States as a leader shall be directed by, the Depment of Defense; and that in aeronautical and space science and technology and in determinationas to which such agency has responsibility for the application thereof to the conduct of peaceful activities and direction of any such activity shall be made by the within and outside the atmosphere; President in conformity with section 201 (9). (6) The making available to agencies directly concerned with (c) The Congress dedares that the general welfare of the United national defense of discoveries that have military value or States requires that the National Aeronautics and Space significance, and the furnishing by such agencies, to the Admlnistration (as established by title II of this act) seek and civilian agency established to direct and control nonmilitary encourage to the maxjmum extent possible the fullest aeronautical and space activiies, of information as to commercial use of space. discoveries which have value or significance to that agency; Excerpts From The National Aeronautics And Space Act Of 1958, As Amended Declaration Of Policy And Purpose (ConUnued) ) Functions Of The Admlnlstratlon m Cooperation by the United States with other nations and Sec. 203 (a) The Administration, in order to carry out the purpose of this Act. groups of nations in work done pursuant to this Act and in shall - the peaceful application of the results thereof; and The most effective ub'liiation of the scientific and (1) plan, direct, and conduct aeronaub'cal and space activities; engineering resources of the United States, with close I cooperation among all interested agencies of the United (2) arrange for partidpationby the scientificcommunity in States in order to avoid unnecessary duplication of effort, planning scientific measurements and observationsto be facilities, and equipment made through use of aeronautical and space vehicles, and conduct or arrange for the conduct of such measurements (6) The Congress dedares that the general welfare of the United and observations, and States requires that the unique competence in scientific and engineering systems of the National Aeronautics and Space (3) provide for the widest practicable and appropriate Administration also be directed toward ground propulsion dissemination of informationconcerning its activities and systems research and development I the results thereof. I (f) The Congress dedares that the general welfare of the United @) (1) The Administration shall, to the extent of appropriated States requires that the unique competence in scientific and funds, initiate, support, and carry out such research, engineering systems of the National Aeronautics and Space development, demonstration. and other related activities in Administration also be directed toward the development of ground propulsiontechnologies as are providedfor in advanced automobile propulsion systems. sections 4 through 10 of the Elecbic and Hybrid Vehicle Research, ~eveio~ment,and Act of 1976. (g) The Congress dedares that the general welfare of the Unled emo on st sat ion States requires that the unique competence in scientific and (2) The Administration shall initiate, support, and carry out such engineering systems of the National Aeronaulics and Space research, development. demonswation, and other related Administration also be directed to assisting in bioengineering activities in solar heating and cooling technologies (to the research, development, and demonstration programs designed extent that funds are appropriatedtherefor) as are provided to alleviate and minimize the effects of disability. for in sections 5,6 and 9 of the Solar Heating and Cooling Demonstration Act of 1974. Q It is the purpose of this Act to carry out and effectuate the policies declared in subsections (a), @), (c), (d). (e), (f), and (g). NASA Installations Lewls Research Whlte Sands Test Las Cruces, NM Mlchoud Assemhly Faclllty New Orleans. LA NASA HEADQUARTERS Through its research efforts, the center supports military programs, the Space Washington, DC 20546 Shuttle and various civil aviation projects. These projects and responsibilitieswill I continue to evolve as NASA's needs change and Ames' capabilities develop. I NASA Headquarters exercises manaaement over the space flight centers, research centers and other installatiois that constitute ihe ~atinalAeronautics HUGH L DRYDEN FLIGHT RESEARCH CENTER I and Space Administration. I Edwards, CA 93523 I Responsibilities of Headquarters cover the determination of programs and projects he Dryden Flight Research Center was named after Hugh L Dryden, an establishment of policies, procedures and performance criteria; evaluation of internationallyknown aeronautical scientist. In 1946, he was appointed NACA's progress and the review and analysis of all phases Of the aerospace program. Director of Aeronautical Research, and was responsible for making the center a permanent facility in 1947. His vision was "to separate the real from the Management of NASA's research and development programs are the responsibilit imagined problems and to make known the overlooked and the unexpected of program offices which report to and receive overall guidance and direction from problems." an associate administrator. IDryden acts as the flight research arm of NASA's aeronautics
Recommended publications
  • Handbookhandbook Mobile-Satellite Service (MSS) Handbook
    n International Telecommunication Union Mobile-satellite service (MSS) HandbookHandbook Mobile-satellite service (MSS) Handbook *00000* Edition 2002 Printed in Switzerland Geneva, 2002 ISBN 92-61-09951-3 Radiocommunication Bureau Edition 2002 THE RADIOCOMMUNICATION SECTOR OF ITU The role of the Radiocommunication Sector is to ensure the rational, equitable, efficient and economical use of the radio-frequency spectrum by all radiocommunication services, including satellite services, and carry out studies without limit of frequency range on the basis of which Recommendations are adopted. The regulatory and policy functions of the Radiocommunication Sector are performed by World and Regional Radiocommunication Conferences and Radiocommunication Assemblies supported by Study Groups. Inquiries about radiocommunication matters Please contact: ITU Radiocommunication Bureau Place des Nations CH -1211 Geneva 20 Switzerland Telephone: +41 22 730 5800 Fax: +41 22 730 5785 E-mail: [email protected] Web: www.itu.int/itu-r Placing orders for ITU publications Please note that orders cannot be taken over the telephone. They should be sent by fax or e-mail. ITU Sales and Marketing Division Place des Nations CH -1211 Geneva 20 Switzerland Telephone: +41 22 730 6141 English Telephone: +41 22 730 6142 French Telephone: +41 22 730 6143 Spanish Fax: +41 22 730 5194 Telex: 421 000 uit ch Telegram: ITU GENEVE E-mail: [email protected] The Electronic Bookshop of ITU: www.itu.int/publications ITU 2002 All rights reserved. No part of this publication may be reproduced, by any means whatsoever, without the prior written permission of ITU. International Telecommunication Union HandbookHandbook Mobile-satellite service (MSS) Radiocommunication Bureau Edition 2002 - iii - FOREWORD In today’s world, people have become increasingly mobile in both their work and play.
    [Show full text]
  • University of Iowa Instruments in Space
    University of Iowa Instruments in Space A-D13-089-5 Wind Van Allen Probes Cluster Mercury Earth Venus Mars Express HaloSat MMS Geotail Mars Voyager 2 Neptune Uranus Juno Pluto Jupiter Saturn Voyager 1 Spaceflight instruments designed and built at the University of Iowa in the Department of Physics & Astronomy (1958-2019) Explorer 1 1958 Feb. 1 OGO 4 1967 July 28 Juno * 2011 Aug. 5 Launch Date Launch Date Launch Date Spacecraft Spacecraft Spacecraft Explorer 3 (U1T9)58 Mar. 26 Injun 5 1(U9T68) Aug. 8 (UT) ExpEloxrpelro r1e r 4 1915985 8F eJbu.l y1 26 OEGxOpl o4rer 41 (IMP-5) 19697 Juunlye 2 281 Juno * 2011 Aug. 5 Explorer 2 (launch failure) 1958 Mar. 5 OGO 5 1968 Mar. 4 Van Allen Probe A * 2012 Aug. 30 ExpPloiorenre 3er 1 1915985 8M Oarc. t2. 611 InEjuxnp lo5rer 45 (SSS) 197618 NAouvg.. 186 Van Allen Probe B * 2012 Aug. 30 ExpPloiorenre 4er 2 1915985 8Ju Nlyo 2v.6 8 EUxpKlo 4r e(rA 4ri1el -(4IM) P-5) 197619 DJuenc.e 1 211 Magnetospheric Multiscale Mission / 1 * 2015 Mar. 12 ExpPloiorenre 5e r 3 (launch failure) 1915985 8A uDge.c 2. 46 EPxpiolonreeerr 4130 (IMP- 6) 19721 Maarr.. 313 HMEaRgCnIe CtousbpeShaetr i(cF oMxu-1ltDis scaatelell itMe)i ssion / 2 * 2021081 J5a nM. a1r2. 12 PionPeioenr e1er 4 1915985 9O cMt.a 1r.1 3 EExpxlpolorerer r4 457 ( S(IMSSP)-7) 19721 SNeopvt.. 1263 HMaalogSnaett oCsupbhee Sriact eMlluitlet i*scale Mission / 3 * 2021081 M5a My a2r1. 12 Pioneer 2 1958 Nov. 8 UK 4 (Ariel-4) 1971 Dec. 11 Magnetospheric Multiscale Mission / 4 * 2015 Mar.
    [Show full text]
  • Information Summaries
    TIROS 8 12/21/63 Delta-22 TIROS-H (A-53) 17B S National Aeronautics and TIROS 9 1/22/65 Delta-28 TIROS-I (A-54) 17A S Space Administration TIROS Operational 2TIROS 10 7/1/65 Delta-32 OT-1 17B S John F. Kennedy Space Center 2ESSA 1 2/3/66 Delta-36 OT-3 (TOS) 17A S Information Summaries 2 2 ESSA 2 2/28/66 Delta-37 OT-2 (TOS) 17B S 2ESSA 3 10/2/66 2Delta-41 TOS-A 1SLC-2E S PMS 031 (KSC) OSO (Orbiting Solar Observatories) Lunar and Planetary 2ESSA 4 1/26/67 2Delta-45 TOS-B 1SLC-2E S June 1999 OSO 1 3/7/62 Delta-8 OSO-A (S-16) 17A S 2ESSA 5 4/20/67 2Delta-48 TOS-C 1SLC-2E S OSO 2 2/3/65 Delta-29 OSO-B2 (S-17) 17B S Mission Launch Launch Payload Launch 2ESSA 6 11/10/67 2Delta-54 TOS-D 1SLC-2E S OSO 8/25/65 Delta-33 OSO-C 17B U Name Date Vehicle Code Pad Results 2ESSA 7 8/16/68 2Delta-58 TOS-E 1SLC-2E S OSO 3 3/8/67 Delta-46 OSO-E1 17A S 2ESSA 8 12/15/68 2Delta-62 TOS-F 1SLC-2E S OSO 4 10/18/67 Delta-53 OSO-D 17B S PIONEER (Lunar) 2ESSA 9 2/26/69 2Delta-67 TOS-G 17B S OSO 5 1/22/69 Delta-64 OSO-F 17B S Pioneer 1 10/11/58 Thor-Able-1 –– 17A U Major NASA 2 1 OSO 6/PAC 8/9/69 Delta-72 OSO-G/PAC 17A S Pioneer 2 11/8/58 Thor-Able-2 –– 17A U IMPROVED TIROS OPERATIONAL 2 1 OSO 7/TETR 3 9/29/71 Delta-85 OSO-H/TETR-D 17A S Pioneer 3 12/6/58 Juno II AM-11 –– 5 U 3ITOS 1/OSCAR 5 1/23/70 2Delta-76 1TIROS-M/OSCAR 1SLC-2W S 2 OSO 8 6/21/75 Delta-112 OSO-1 17B S Pioneer 4 3/3/59 Juno II AM-14 –– 5 S 3NOAA 1 12/11/70 2Delta-81 ITOS-A 1SLC-2W S Launches Pioneer 11/26/59 Atlas-Able-1 –– 14 U 3ITOS 10/21/71 2Delta-86 ITOS-B 1SLC-2E U OGO (Orbiting Geophysical
    [Show full text]
  • Analytics Manual
    ANALYTICS MANUAL August ’09 Analytics Explorers Creating Basic Reports Report Management Custom Reports Dashboards Enterprise Analytics RightNow Documentation Administrators Staff Members Administrator Manual User Manual Navigation Sets System Configuration CTI Administration Common Functionality Staff Management Communication Configuration Screen Pop Contacts Workspaces/Workflows Monetary Configuration Contact Upload Organizations Agent Scripting Database Administration Add-Ins Tasks Customizable Menus External Suppression List Notifications RightNow Business Rules Multiple Interfaces CTI Solution Custom Fields Outlook Integration Configuration Outlook Integration Administrators Staff Members Admins & Designers Service Administrator Service User Manual Customer Portal Manual Incidents Configuring RightNow for Answers Customer Portal Content Library RightNow Chat Configuration RightNow Chat Setting UP WebDAV and Dreamweaver Guided Assistance Service Level Agreements Cloud Monitor Creating Templates and Pages RightNow Wireless Offer Advisor Administration Offer Advisor Working with Widgets RightNow Incident Archiving Deploying Customer Portal Service RightNow Wireless Migrating to Customer Portal Admins Admins & Staff & Staff Sales Administrator Analytics Manual and User Manual Sales Processes Analytics Explorers Quote Templates Report Management Disconnected Access Configuration Creating Basic Reports RightNow Opportunities RightNow Custom Reports Quotes Dashboards Sales Disconnected Access Analytics Enterprise Analytics Staff Members
    [Show full text]
  • Honoring Yesterday, Inspiring Tomorrow
    TALK ThistleThistle TALK Art from the heart Middle Schoolers expressed themselves in creating “Postcards to the Congo,” a unique component of the City as Our Campus initiative. (See story on page 13.) Winchester Nonprofi t Org. Honoring yesterday, Thurston U.S. Postage School PAID inspiring tomorrow. Pittsburgh, PA 555 Morewood Avenue Permit No. 145 Pittsburgh, PA 15213 The evolution of WT www.winchesterthurston.org in academics, arts, and athletics in this issue: Commencement 2007 A Fond Farewell City as Our Campus Expanding minds in expanding ways Ann Peterson Refl ections on a beloved art teacher Winchester Thurston School Autumn 2007 TALK A magnifi cent showing Thistle WT's own art gallery played host in November to LUMINOUS, MAGAZINE a glittering display of 14 local and nationally recognized glass Volume 35 • Number 1 Autumn 2007 artists, including faculty members Carl Jones, Mary Martin ’88, and Tina Plaks, along with eighth-grader Red Otto. Thistletalk is published two times per year by Winchester Thurston School for alumnae/i, parents, students, and friends of the school. Letters and suggestions are welcome. Please contact the Director of Communications, Winchester Thurston School, 555 Morewood Malone Scholars Avenue, Pittsburgh, PA 15213. Editor Anne Flanagan Director of Communications fl [email protected] Assistant Editor Alison Wolfson Director of Alumnae/i Relations [email protected] Contributors David Ascheknas Alison D’Addieco John Holmes Carl Jones Mary Martin ’88 Karen Meyers ’72 Emily Sturman Allison Thompson Printing Herrmann Printing School Mission Winchester Thurston School actively engages each student in a challenging and inspiring learning process that develops the mind, motivates the passion to achieve, and cultivates the character to serve.
    [Show full text]
  • Venona Special Studies
    - 1 - Venona Project Special Studies Transcribed by Students of the Mercyhurst College Institute for Intelligence Studies Arranged by John Earl Haynes, Library of Congress, 2010 COVER NAMES IN NEW YORK TRAFFIC p. 2 UNIDENTIFIED COVER NAMES IN NEW YORK TRAFFIC p. 86 COVER NAMES IN SAN FRANCISCO TRAFFIC p. 92 COVER NAMES IN WASHINGTON TRAFFIC p. 123 ADDITIONAL COVERNAMES AND RELATED INFORMATION IN DIPLOMATIC TRAFFIC p. 127 REVISED TRANSLATION OF MESSAGE ON ANTENNA-LIBERAL'S WIFE ETHEL p. 135 THE COVERNAMES "ANTENNA" AND "LIBERAL" IN . MESSAGES p. 139 ESSAGES IN . INVOLVING THE COVERNAME"ENORMOZ" AND THE NAMES OF NUCLEAR PHYSICISTS, ETC. p. 147 UNDATED REPORT OF MEREDITH GARDNER p. 155 DEVELOPMENT OF THE “G--“HOMER” [“GOMER”] CASE p. 158 THE KOMAR (KRAVCHENKO) AFFAIR IN . MESSAGES p. 161 REVISED TRANSLATION OF TWO . MESSAGES ON CHANGES IN COVERNAMES p. 170 THE COVERNAME "KARAS" IN. TRAFFIC p. 178 THE COVERNAMES "TÉNOR", "BAS", AND "CHETÁ" (? IN . TRAFFIC p. 181 - 2 - Special Study Cover Names in New York Traffic - 3 - cover-name Message number Date Publication reference S/ or 3/NBF/ 19 N.Y. to M. 812 29053 JKI 06 T1022 1B-1910 0027A ABRAM N.Y. to M. 992 24063 JKR 14 T872√ 1B-7518 0005A JACK SOBLE 1086 06073 JKV 48 T873√ 2A-0011 1957 29113 NNNNNN T939√ 625 04054 JHD 48 T916√ 851 15064 JIJ 40 T10.1√ 1146 10084 JHM 41 T123√ 1251 02094 JHN 12 T301√ (to ChEKh) 0005B 1353 23094 JHO 42 T289√ 1449 12104 JIL 37 T106√ 1754 14124 JHZ 49 T6√ 48 11015 JHV 37 (NSA)T1941 AVGUR 2A-0013 1638 (AUGUR) N.Y.
    [Show full text]
  • Lunar Life Sciences Payload Assessment
    Lunar Surface Science Workshop 2020 (LPI Contrib. No. 2241) 5077.pdf LUNAR LIFE SCIENCES PAYLOAD ASSESSMENT. S. C. Sun1, F. Karouia2, M. P. Lera3, M. P. Parra1, H. E. Ray4, A. J. Ricco1, S. M. Spremo1. 1NASA Ames Research Center, 2Blue Marble Space Institute of Science, 3KBR, 4ASRC Federal Space and Defense, Inc. Introduction: The Moon provides a unique site to ISS, including systems that integrate into EXPRESS study living organisms. The fractional gravity and (EXpedite the PRocessing of ExperimentS for Space) unique radiation environment have similarities to Mars Racks or are external space exposure research facilities. and will help us understand how life will respond to These same systems can be the basis for future payload conditions on the red planet. Martian and lunar envi- systems for experiments to be performed beyond Low ronments can be simulated on the ground but not to high Earth Orbit. Such facilities would need to be adapted to fidelity. Altered gravity and increased radiation are dif- be compatible with the new research platforms and ficult to replicate simultaneously, which makes study- function in the harsher radiation environment found out- ing their combined effect difficult. The International side the magnetosphere. If Gateway and a lunar based- Space Station, and previously, the Space Shuttle, pro- lab could provide EXPRESS-compatible interfaces, lev- vided a microgravity environment, and could simulate eraging hardware developed for ISS would be more fea- fractional-g only via an onboard centrifuge. Because sible. the ISS and Space Shuttle orbits were within the Earth’s Gaps in Capabilities: Many of the payload systems magnetosphere, experiments on those platforms have that have been developed require human tending.
    [Show full text]
  • Appendix I Radio Regulations Provisions
    Appendix I Radio Regulations Provisions E. D'Andria I. Introduction We summarize the Radio Regulations provisions and pertinent CCIR recommen­ dations and reports which give a more complete description of frequency sharing. To permit development of the fixed-satellite service (FSS), one of the last services introduced into the Radio Regulations, several technical and administra­ tive rules have been established to guarantee the compatibility of this new service with existing ones having the same frequency allocations. The very first rules were evolved by the Extraordinary Administrative Radio Conference for space radio communications, held in Geneva in 1963, and included in the Radio Regulations. The growing demand for space radio-communication services led the World Administrative Radio Conference for Space Telecommunications, WARC­ ST 1971, to revise and broaden previous frequency allocations and to produce improved technical criteria for frequency-sharing and coordination procedures. The WARC-1979 revision produced the provisions now in force; WARC- 1979 also resolved to hold a conference on the use of the GEO and planning of the space services utilizing it. The first session, held in 1985 (WARC-ORB '85), identified the frequency bands allocated to space services, plus principles and methods for planning to guarantee to all countries equal access to the GEO. The second session, held in 1988 (WARC-ORB '88), defined an allotment plan which specifies for each country the satellite nominal orbital position within a predetermined arc, the satellite beam characteristics, including geographical coordinates of the bore sight , and the satellite and earth stations EIRP densities. Each allotment is to have an aggregate C / I of at least 26 dB, although, when considering existing systems, in some cases this value is not reached.
    [Show full text]
  • California State University, Northridge Low Earth Orbit
    CALIFORNIA STATE UNIVERSITY, NORTHRIDGE LOW EARTH ORBIT BUSINESS CENTER A Project submitted in partial satisfaction of the requirements for the degree of Master of Science in Engineering by Dallas Gene Bienhoff May 1985 The Proj'ectof Dallas Gene Bienhoff is approved: Dr. B. J. Bluth Professor T1mothy Wm. Fox - Chair California State University, Northridge ii iii ACKNOWLEDGEHENTS I wish to express my gratitude to those who have helped me over the years to complete this thesis by providing encouragement, prodding and understanding: my advisor, Tim Fox, Chair of Mechanical and Chemical Engineering; Dr. B. J. Bluth for her excellent comments on human factors; Dr. B. J. Campbell for improving the clarity; Richard Swaim, design engineer at Rocketdyne Division of Rockwell International for providing excellent engineering drawings of LEOBC; Mike Morrow, of the Advanced Engineering Department at Rockwell International who provided the Low Earth Orbit Business Center panel figures; Bob Bovill, a commercial artist, who did all the artistic drawings because of his interest in space commercialization; Linda Martin for her word processing skills; my wife, Yolanda, for egging me on without nagging; and finally Erik and Danielle for putting up with the excuse, "I have to v10rk on my paper," for too many years. iv 0 ' PREFACE The Low Earth Orbit Business Center (LEOBC) was initially conceived as a modular structure to be launched aboard the Space Shuttle, it evolved to its present configuration as a result of research, discussions and the desire to increase the efficiency of space utilization. Although the idea of placing space stations into Earth orbit is not new, as is discussed in the first chapter, and the configuration offers nothing new, LEOBC is unique in its application.
    [Show full text]
  • The Legal Ordering of Satellite Telecommunication: Problems and Alternatives
    Indiana Law Journal Volume 44 Issue 3 Article 1 Spring 1969 The Legal Ordering of Satellite Telecommunication: Problems and Alternatives Delbert D. Smith University of Wisconsin Follow this and additional works at: https://www.repository.law.indiana.edu/ilj Part of the Air and Space Law Commons, and the Communications Law Commons Recommended Citation Smith, Delbert D. (1969) "The Legal Ordering of Satellite Telecommunication: Problems and Alternatives," Indiana Law Journal: Vol. 44 : Iss. 3 , Article 1. Available at: https://www.repository.law.indiana.edu/ilj/vol44/iss3/1 This Article is brought to you for free and open access by the Law School Journals at Digital Repository @ Maurer Law. It has been accepted for inclusion in Indiana Law Journal by an authorized editor of Digital Repository @ Maurer Law. For more information, please contact [email protected]. INDIANA LAW JOURNAL Volume 44 Spring 1969 Number 3 THE LEGAL ORDERING OF SATELLITE TELECOMMUNICATION: PROBLEMS AND ALTERNATIVES DELBERT D. SMITHt The use of satellites in outer space to provide a means of transmission for international telecommunication could be viewed as simply a tech- nological advancement neither necessitating basic structural changes in the international control institutions nor requiring alteration of the control theories designed to regulate unauthorized transmissions. How- ever, the magnitude of the changes involved, coupled with increased governmental concern, has resulted in a number of politico-legal problems. It is the purpose of this article to examine on several levels of analysis the implications of utilizing satellites as a means of telecom- munication transmission. Introductory material on the development of communications satellite technology stresses the need for international organization and co-operation to oversee the launching and maintenance of a global communications system and indicates the pressures for the implementation of control measures over transmissions originating in outer space.
    [Show full text]
  • Appendix a Apollo 15: “The Problem We Brought Back from the Moon”
    Appendix A Apollo 15: “The Problem We Brought Back From the Moon” Postal Covers Carried on Apollo 151 Among the best known collectables from the Apollo Era are the covers flown onboard the Apollo 15 mission in 1971, mainly because of what the mission’s Lunar Module Pilot, Jim Irwin, called “the problem we brought back from the Moon.” [1] The crew of Apollo 15 carried out one of the most complete scientific explorations of the Moon and accomplished several firsts, including the first lunar roving vehicle that was operated on the Moon to extend the range of exploration. Some 81 kilograms (180 pounds) of lunar surface samples were returned for anal- ysis, and a battery of very productive lunar surface and orbital experiments were conducted, including the first EVA in deep space. [2] Yet the Apollo 15 crew are best remembered for carrying envelopes to the Moon, and the mission is remem- bered for the “great postal caper.” [3] As noted in Chapter 7, Apollo 15 was not the first mission to carry covers. Dozens were carried on each flight from Apollo 11 onwards (see Table 1 for the complete list) and, as Apollo 15 Commander Dave Scott recalled in his book, the whole business had probably been building since Mercury, through Gemini and into Apollo. [4] People had a fascination with objects that had been carried into space, and that became more and more popular – and valuable – as the programs progressed. Right from the start of the Mercury program, each astronaut had been allowed to carry a certain number of personal items onboard, with NASA’s permission, in 1 A first version of this material was issued as Apollo 15 Cover Scandal in Orbit No.
    [Show full text]
  • Press Kit , Project ~Arisat-B RELEASE NO: 7643
    ! News National Aeronautics and Space Administration Washrngton. D.C.20546 AC 202 755-8370 * For Release IMMEDIATE Press Kit , Project ~arisat-B RELEASE NO: 7643 Contents , GENERAL RE&EASE........:.....e...................... 1-3 DELTA LAUNCH VEHICLEoooo...o........oom....a...o.o. 4 STRAIGH$-SIGHT DELTA FACTS AND FIGURES. ............ 5-6 TYPICAL LAUNCH SEQUENCE FOR MARISAT-B ...............7-8 LAUNCH OP&~TIONS,..........................:...... 9 'NASA TEAM...................^.^..^.^.^..^.^^^ 9-10 COMSAT GENERAL CORP.,.............................. 11 ---- ---- -- -- - - -- - - - - - - .- (111SA-lleus-Release-76-83) . NASA TOLAUNCH SECOND BABISAT POB COBSAT GENERAL COOP- (NASA) 12 p Unclas 43127 N!News National Aeronautics and Space Administration' .> t r I Washington, 0.C.20546 I) AC 202 755-8310 For Release: ' Bill O'bonnell Headquarters, Washington, D.C. IMMEDIATE (Phone: 202/73518487) .. +. 4.: RELEASE NO: 76-83 NASA TO LAUNCH SECOND .~RISATFOR COMSAT GENBRAL,CORP. The 98cond maritime satellite (Marisat) will be launched a ,' by NASA for COMSAT General Corp. from Cape Canaveral, Fla., about May 27. 1, The spacecraft will be the second in the new Marisat system designed to provide communications t6 the :u.s. Navy, commercial shipping and offshore industries. I , Marisat-B will be il'alaced into synchronous orbit. over' the equator above the Pacific Ocean at 176.5 degrees W, longitude just west of Hawaii. A third Marisat has been t built as a spare. The first spacecraft, Marisat-1, was launched success- fully Feb. 19 on a Delta vehicle and is in orbit over the Atlantic at 15 degrees W. longitude, where it has been pro- viding service on UHF frequencies to the Navy since March 25.
    [Show full text]