18Th EANA Conference European Astrobiology Network Association
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Download Download
Journal Journal of Entomological of Entomological and Acarologicaland Acarological Research Research 2020; 2012; volume volume 52:9304 44:e INSECT ECOLOGY Update to the “Catalogue of Lepidoptera Tortricidae of the Italian Fauna” (2003-2020) P. Trematerra Department of Agricultural, Environmental and Food Sciences, University of Molise, Italy List of taxa Tortricidae Abstract Subfamily Tortricinae In the paper are reported 37 species to add at the “Catalogue of Lepidoptera Tortricidae of the Italian fauna” published on 2003. Tribe Cochylini After this paper the list of tortricids found in Italy passed from 633 to 670 species. Phtheochroa reisseri Razowski, 1970 GEONEMY. Europe (France, Italy, ex-Yugoslavia, Crete). CHOROTYPE. S-European. DISTRIBUTION IN ITALY. Abruzzo: Rivoli and Aschi, L’Aquila Introduction (Pinzari et al., 2006) BIOLOGICAL NOTES. Adults were collected in May. The “Catalogue of Lepidoptera Tortricidae of the Italian fauna” IDENTIFICATION. Morphology of the adult and genital characters published on 2003 as supplement of the Bollettino di Zoologia are reported by Razowski (2009). agraria e di Bachicoltura, reported 633 species (Trematerra, 2003). In these last years tortricids from the Italian territory received atten- Cochylimorpha scalerciana Trematerra, 2019 tion by both local and foreign entomologists that also studied many GEONEMY. Europe (Italy: Calabria) collections deposited in various museums, increasing the faunistic CHOROTYPE. S-Appenninic. knowledge with the recording and description of new taxa. DISTRIBUTION IN ITALY. Calabria: various locations of the Monti In the present paper are reported 37 species to add at the della Sila, Cosenza (Trematerra, 2019a). “Catalogue”, after this paper the list of tortricids found in Italy BIOLOGICAL NOTES. Adults were found in May. -
Lepidoptera of North America 5
Lepidoptera of North America 5. Contributions to the Knowledge of Southern West Virginia Lepidoptera Contributions of the C.P. Gillette Museum of Arthropod Diversity Colorado State University Lepidoptera of North America 5. Contributions to the Knowledge of Southern West Virginia Lepidoptera by Valerio Albu, 1411 E. Sweetbriar Drive Fresno, CA 93720 and Eric Metzler, 1241 Kildale Square North Columbus, OH 43229 April 30, 2004 Contributions of the C.P. Gillette Museum of Arthropod Diversity Colorado State University Cover illustration: Blueberry Sphinx (Paonias astylus (Drury)], an eastern endemic. Photo by Valeriu Albu. ISBN 1084-8819 This publication and others in the series may be ordered from the C.P. Gillette Museum of Arthropod Diversity, Department of Bioagricultural Sciences and Pest Management Colorado State University, Fort Collins, CO 80523 Abstract A list of 1531 species ofLepidoptera is presented, collected over 15 years (1988 to 2002), in eleven southern West Virginia counties. A variety of collecting methods was used, including netting, light attracting, light trapping and pheromone trapping. The specimens were identified by the currently available pictorial sources and determination keys. Many were also sent to specialists for confirmation or identification. The majority of the data was from Kanawha County, reflecting the area of more intensive sampling effort by the senior author. This imbalance of data between Kanawha County and other counties should even out with further sampling of the area. Key Words: Appalachian Mountains, -
A Future Mars Environment for Science and Exploration
Planetary Science Vision 2050 Workshop 2017 (LPI Contrib. No. 1989) 8250.pdf A FUTURE MARS ENVIRONMENT FOR SCIENCE AND EXPLORATION. J. L. Green1, J. Hol- lingsworth2, D. Brain3, V. Airapetian4, A. Glocer4, A. Pulkkinen4, C. Dong5 and R. Bamford6 (1NASA HQ, 2ARC, 3U of Colorado, 4GSFC, 5Princeton University, 6Rutherford Appleton Laboratory) Introduction: Today, Mars is an arid and cold world of existing simulation tools that reproduce the physics with a very thin atmosphere that has significant frozen of the processes that model today’s Martian climate. A and underground water resources. The thin atmosphere series of simulations can be used to assess how best to both prevents liquid water from residing permanently largely stop the solar wind stripping of the Martian on its surface and makes it difficult to land missions atmosphere and allow the atmosphere to come to a new since it is not thick enough to completely facilitate a equilibrium. soft landing. In its past, under the influence of a signif- Models hosted at the Coordinated Community icant greenhouse effect, Mars may have had a signifi- Modeling Center (CCMC) are used to simulate a mag- cant water ocean covering perhaps 30% of the northern netic shield, and an artificial magnetosphere, for Mars hemisphere. When Mars lost its protective magneto- by generating a magnetic dipole field at the Mars L1 sphere, three or more billion years ago, the solar wind Lagrange point within an average solar wind environ- was allowed to directly ravish its atmosphere.[1] The ment. The magnetic field will be increased until the lack of a magnetic field, its relatively small mass, and resulting magnetotail of the artificial magnetosphere its atmospheric photochemistry, all would have con- encompasses the entire planet as shown in Figure 1. -
Can't Go Home by Noelle Adams / Pfangirl PART 1
Can't go home By Noelle Adams / pfangirl PART 1 - SUFFOCATED A caged lioness. That's what Lara reminded Sam of now. Every time she looked at her best friend, the American thought of the big cat she'd seen in a German zoo during her globe- trotting childhood. It wouldn't lie still. It was pure feral energy, striding back and forth in its enclosure, muscles rippling beneath its pelt. Lara was the same. Lithe grace and power in human form, always moving, always intensely focused on some task or thing. Almost permanently scowling. Sam had always wondered which of her parents Lara inherited her effortless physicality from. Four years of knowing Lara, and Sam still wasn't sure. There were no photos for her to consult. The young archaeologist hardly spoke about her vanished mother and father. She avoided talking about them; evidently running from their memory like she ran from what had happened on Yamatai. In the one and a half months since the shipwreck – well, at least since she was released from hospital – Lara had been seized by a frantic, feverish vigour. They had travelled from Osaka to the UK, where Lara had spent a single day at her family's estate, ransacking her father's study. From there they headed to New York. This put Lara closer to her next intended stop – Roanoke Island. Although the city was a good base for Lara to work from while she planned her next expedition, there was a second, more distasteful reason for the archaeologist to be there: an exclusive television interview. -
Biotic Interactions Are an Unexpected Yet Critical Control on the Complexity of an Abiotically Driven Polar Ecosystem
ARTICLE https://doi.org/10.1038/s42003-018-0274-5 OPEN Biotic interactions are an unexpected yet critical control on the complexity of an abiotically driven polar ecosystem Charles K. Lee et al. # 123456789 0():,; Abiotic and biotic factors control ecosystem biodiversity, but their relative contributions remain unclear. The ultraoligotrophic ecosystem of the Antarctic Dry Valleys, a simple yet highly heterogeneous ecosystem, is a natural laboratory well-suited for resolving the abiotic and biotic controls of community structure. We undertook a multidisciplinary investigation to capture ecologically relevant biotic and abiotic attributes of more than 500 sites in the Dry Valleys, encompassing observed landscape heterogeneities across more than 200 km 2. Using richness of autotrophic and heterotrophic taxa as a proxy for functional complexity, we linked measured variables in a parsimonious yet comprehensive structural equation model that explained signi ficant variations in biological complexity and identi fied landscape-scale and fine-scale abiotic factors as the primary drivers of diversity. However, the inclusion of lin- kages among functional groups was essential for constructing the best- fitting model. Our findings support the notion that biotic interactions make crucial contributions even in an extremely simple ecosystem. Correspondence and requests for materials should be addressed to S.C.C. (email: [email protected] ). #A full list of authors and their af filiations appears at the end of the paper. COMMUNICATIONS BIOLOGY | (2019) 2:62 | https://doi.org/10.1038/s42003-018-0274-5 | www.nature.com/commsbio 1 ARTICLE COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-018-0274-5 nderstanding how ecosystems self-organize at landscape soils 20 ,21 ,24 –27 . -
Design of a Human Settlement on Mars Using In-Situ Resources
46th International Conference on Environmental Systems ICES-2016-151 10-14 July 2016, Vienna, Austria Design of a Human Settlement on Mars Using In-Situ Resources Marlies Arnhof1 Vienna University of Technology, Vienna, 1040, Austria Mars provides plenty of raw materials needed to establish a lasting, self-sufficient human colony on its surface. Due to the planet's vast distance from Earth, it is neither possible nor economically reasonable to provide permanent, interplanetary supply. In-situ resource utilization (ISRU) will be necessary to keep the Earth launch burden and mission costs as low as possible, and to provide – apart from propellant and life support – a variety of construction material. However, to include outposts on other planets into the scope of human spaceflight also opens up new psychological and sociological challenges. Crews will live in extreme environments under isolated and confined conditions for much longer periods of time than ever before. Therefore, the design of a Mars habitat requires most careful consideration of physiological as well as psychosocial conditions of living in space. In this design for a Martian settlement, the author proposes that – following preliminary automated exploration – a basic surface base brought from Earth would be set up. Bags of unprocessed Martian regolith would be used to provide additional shielding for the habitat. Once the viability of the base and its production facilities are secured, the settlement would be expanded, using planetary resources. Martian concrete – processed regolith with a polymeric binder – would be used as main in-situ construction material. To provide optimum living and working conditions, the base would respond to the environment and the residents' number and needs, thereby evolving and growing continuously. -
Second Annual NASA Ames Space Science and Astrobiology Jamboree
Second Annual NASA Ames Space Science and Astrobiology Jamboree March 4, 2014 Welcome to the Second Annual Ames Space Sciences and Astrobiology Jamboree! The Space Science and Astrobiology Division at NASA Ames Research Center consists of over 50 civil servants and more than 110 contractors, co-ops, post-docs and associates. Researchers in the division are pursuing investigations in a variety of fields including exoplanets, planetary science, astrobiology and astrophysics. In addition, division personnel support a wide variety of NASA missions including (but not limited to) Kepler, SOFIA, LADEE, JWST, and New Horizons. With such a wide variety of interesting research going on, distributed among three branches in at least 5 different buildings, it can be difficult to stay abreast of what one’s fellow researchers are doing. Our goal in organizing this symposium is to facilitate communication and collaboration among the scientists within the division, and to give center management and other ARC researchers and engineers an opportunity to see what scientific research and science mission work is being done in the division. We also wanted to continue a new tradition created last year within the Space Science and Astrobiology Division to honor one senior and one early career scientist with the Pollack Lecture and the Early Career Lecture, respectively. With the Pollack Lecture, our intent is to select a senior researcher who has made significant contributions to any area of research within the space sciences, and we are pleased to honor Dr. Jeff Cuzzi this year. With the Early Career Lecture, our intent is to select a young researcher within the division who, by their published scientific papers, shows great promise for the future in any area of space science research, and we are pleased to honor Dr. -
Venona Special Studies
- 1 - Venona Project Special Studies Transcribed by Students of the Mercyhurst College Institute for Intelligence Studies Arranged by John Earl Haynes, Library of Congress, 2010 COVER NAMES IN NEW YORK TRAFFIC p. 2 UNIDENTIFIED COVER NAMES IN NEW YORK TRAFFIC p. 86 COVER NAMES IN SAN FRANCISCO TRAFFIC p. 92 COVER NAMES IN WASHINGTON TRAFFIC p. 123 ADDITIONAL COVERNAMES AND RELATED INFORMATION IN DIPLOMATIC TRAFFIC p. 127 REVISED TRANSLATION OF MESSAGE ON ANTENNA-LIBERAL'S WIFE ETHEL p. 135 THE COVERNAMES "ANTENNA" AND "LIBERAL" IN . MESSAGES p. 139 ESSAGES IN . INVOLVING THE COVERNAME"ENORMOZ" AND THE NAMES OF NUCLEAR PHYSICISTS, ETC. p. 147 UNDATED REPORT OF MEREDITH GARDNER p. 155 DEVELOPMENT OF THE “G--“HOMER” [“GOMER”] CASE p. 158 THE KOMAR (KRAVCHENKO) AFFAIR IN . MESSAGES p. 161 REVISED TRANSLATION OF TWO . MESSAGES ON CHANGES IN COVERNAMES p. 170 THE COVERNAME "KARAS" IN. TRAFFIC p. 178 THE COVERNAMES "TÉNOR", "BAS", AND "CHETÁ" (? IN . TRAFFIC p. 181 - 2 - Special Study Cover Names in New York Traffic - 3 - cover-name Message number Date Publication reference S/ or 3/NBF/ 19 N.Y. to M. 812 29053 JKI 06 T1022 1B-1910 0027A ABRAM N.Y. to M. 992 24063 JKR 14 T872√ 1B-7518 0005A JACK SOBLE 1086 06073 JKV 48 T873√ 2A-0011 1957 29113 NNNNNN T939√ 625 04054 JHD 48 T916√ 851 15064 JIJ 40 T10.1√ 1146 10084 JHM 41 T123√ 1251 02094 JHN 12 T301√ (to ChEKh) 0005B 1353 23094 JHO 42 T289√ 1449 12104 JIL 37 T106√ 1754 14124 JHZ 49 T6√ 48 11015 JHV 37 (NSA)T1941 AVGUR 2A-0013 1638 (AUGUR) N.Y. -
Radiation Exposure and Mission Strategies for Interplanetary Manned Mission
Radiation Exposure and Mission Strategies for Interplanetary Manned Mission Radiation Hazard and Space Weather Warning System WP 5000 Final Version: 14 December 2004 Compiled by Claire Foullon1, Andrew Holmes-Siedle2, Norma Bock Crosby1, Daniel Heynderickx1 1 Belgian Institute for Space Aeronomy Ringlaan-3-Avenue Circulaire 1180 Brussels, Belgium 2 REM OXFORD Ltd. 64A Acre End St. Eynsham, Oxford OX29 4PD, England INTRODUCTION Radiation protection is a prime issue for space station operations, for extended missions to planets in our solar system (e.g. Mars), or for a return visit to the Moon. The radiation environment encountered by solar system missions mainly consists of the following components: 1. Trapped radiation in the Earth’s Van Allen Belts and in the magnetosphere of Jupiter 2. Galactic Cosmic Ray (GCR) background radiation 3. Solar Energetic Particle Events – Solar Proton Events (SPEs) Along with the continuous GCR background, SPEs constitute the main hazard for interplanetary missions. Up to now, prediction of SPE events is not possible. Future interplanetary manned missions will need to consider solar activity (e.g. solar flares, coronal mass ejections, …) very carefully due to the obvious detrimental effects of radiation on humans. Very high doses during the transit phase of a mission can result in radiation sickness or even death. This is equally true for extended visits to surfaces of other planets (for example to Mars) and moons lacking a strong magnetic field capable of deflecting solar particles. The risk of developing cancer several years after a mission is somewhat more difficult to quantify, but must also be considered in mission planning. -
Biotic Interactions Are an Unexpected Yet Critical Control on the Complexity of an Abiotically Driven Polar Ecosystem
Biotic interactions are an unexpected yet critical control on the complexity of an abiotically driven polar ecosystem Lee, C. K., Laughlin, D. C., Bottos, E. M., Caruso, T., Joy, K., Barrett, J. E., ... Cary, S. C. (2019). Biotic interactions are an unexpected yet critical control on the complexity of an abiotically driven polar ecosystem. Communications Biology, (2), [62]. Published in: Communications Biology Document Version: Publisher's PDF, also known as Version of record Queen's University Belfast - Research Portal: Link to publication record in Queen's University Belfast Research Portal Publisher rights © 2019 The Authors. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/ licenses/by/4.0/. General rights Copyright for the publications made accessible via the Queen's University Belfast Research Portal is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights. -
EDL – Lessons Learned and Recommendations
."#!(*"# 0 1(%"##" !)"#!(*"#* 0 1"!#"("#"#(-$" ."!##("""*#!#$*#( "" !#!#0 1%"#"! /!##"*!###"#" #"#!$#!##!("""-"!"##&!%%!%&# $!!# %"##"*!%#'##(#!"##"#!$$# /25-!&""$!)# %"##!""*&""#!$#$! !$# $##"##%#(# ! "#"-! *#"!,021 ""# !"$!+031 !" )!%+041 #!( !"!# #$!"+051 # #$! !%#-" $##"!#""#$#$! %"##"#!#(- IPPW Enabled International Collaborations in EDL – Lessons Learned and Recommendations: Ethiraj Venkatapathy1, Chief Technologist, Entry Systems and Technology Division, NASA ARC, 2 Ali Gülhan , Department Head, Supersonic and Hypersonic Technologies Department, DLR, Cologne, and Michelle Munk3, Principal Technologist, EDL, Space Technology Mission Directorate, NASA. 1 NASA Ames Research Center, Moffett Field, CA [email protected]. 2 Deutsches Zentrum für Luft- und Raumfahrt e.V. (DLR), German Aerospace Center, [email protected] 3 NASA Langley Research Center, Hampron, VA. [email protected] Abstract of the Proposed Talk: One of the goals of IPPW has been to bring about international collaboration. Establishing collaboration, especially in the area of EDL, can present numerous frustrating challenges. IPPW presents opportunities to present advances in various technology areas. It allows for opportunity for general discussion. Evaluating collaboration potential requires open dialogue as to the needs of the parties and what critical capabilities each party possesses. Understanding opportunities for collaboration as well as the rules and regulations that govern collaboration are essential. The authors of this proposed talk have explored and established collaboration in multiple areas of interest to IPPW community. The authors will present examples that illustrate the motivations for the partnership, our common goals, and the unique capabilities of each party. The first example involves earth entry of a large asteroid and break-up. NASA Ames is leading an effort for the agency to assess and estimate the threat posed by large asteroids under the Asteroid Threat Assessment Project (ATAP). -
An Economic Analysis of Mars Exploration and Colonization Clayton Knappenberger Depauw University
DePauw University Scholarly and Creative Work from DePauw University Student research Student Work 2015 An Economic Analysis of Mars Exploration and Colonization Clayton Knappenberger DePauw University Follow this and additional works at: http://scholarship.depauw.edu/studentresearch Part of the Economics Commons, and the The unS and the Solar System Commons Recommended Citation Knappenberger, Clayton, "An Economic Analysis of Mars Exploration and Colonization" (2015). Student research. Paper 28. This Thesis is brought to you for free and open access by the Student Work at Scholarly and Creative Work from DePauw University. It has been accepted for inclusion in Student research by an authorized administrator of Scholarly and Creative Work from DePauw University. For more information, please contact [email protected]. An Economic Analysis of Mars Exploration and Colonization Clayton Knappenberger 2015 Sponsored by: Dr. Villinski Committee: Dr. Barreto and Dr. Brown Contents I. Why colonize Mars? ............................................................................................................................ 2 II. Can We Colonize Mars? .................................................................................................................... 11 III. What would it look like? ............................................................................................................... 16 A. National Program .........................................................................................................................