Memorandum in Opposition to Hewlett-Packard Company's Motion to Quash Intel's Subpoena Duces Tecum
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Green Destiny: a 240-Node Compute Cluster in One Cubic Meter
Green Destiny: A 240-Node Compute Cluster in One Cubic Meter Wu-chun (Wu) Feng Research & Development in Advanced Network Technology (RADIANT) Computer & Computational Sciences Division Los Alamos National Laboratory LA-UR 02-6127 Outline Where is Supercomputing? Architectures from the Top 500. Evaluating Supercomputers Metrics: Performance & Price/Performance An Alternative Flavor of Supercomputing Supercomputing in Small Spaces Æ Bladed Beowulf Architecture of a Bladed Beowulf Performance Metrics Benchmark Results Discussion & Status Conclusion Acknowledgements & Media Coverage Wu-chun Feng http://www.lanl.gov/radiant [email protected] http://sss.lanl.gov Flavors of Supercomputing (Picture Source: Thomas Sterling, Caltech & NASA JPL) Wu-chun Feng http://www.lanl.gov/radiant [email protected] http://sss.lanl.gov 500 400 SIMD Architectures from the 300 Top 500 Supercomputer List 200 100 0 ProcessorSingle Wu-chun Feng [email protected] Jun-93 Nov-93 Jun-94 MPP Nov-94 Jun-95 Nov-95 Jun-96 Constellation SMP Nov-96 Cluster Jun-97 http://www.lanl.gov/radiant Nov-97 http://sss.lanl.gov Jun-98 Nov-98 Jun-99 Nov-99 Jun-00 Nov-00 Jun-01 Nov-01 Jun-02 Metrics for Evaluating Supercomputers Performance Metric: Floating-Operations Per Second (FLOPS) Example: Japanese Earth Simulator Price/Performance Æ Cost Efficiency Metric: Cost / FLOPS Examples: SuperMike, GRAPE-5, Avalon. Wu-chun Feng http://www.lanl.gov/radiant [email protected] http://sss.lanl.gov Performance (At Any Cost) Japanese Earth Simulator ($400M) Performance Price/Perf Peak 40.00 Tflop $10.00/Mflop Linpack 35.86 Tflop $11.15/Mflop n-Body 29.50 Tflop $13.56/Mflop Climate 26.58 Tflop $15.05/Mflop Turbulence 16.40 Tflop $24.39/Mflop Fusion 14.90 Tflop $26.85/Mflop Wu-chun Feng http://www.lanl.gov/radiant [email protected] http://sss.lanl.gov Price/Performance Cost Efficiency LSU’s SuperMike Performance Price/Perf (2002: $2.8M) Linpack 2210 Gflops $1.27/Mflop U. -
Service Manual
, , , , , www.sonyweb.co.uk , www.sonyweb.co.uk , , www.sonyweb.co.uk , www.sonyweb.co.uk , , www.sonyweb.co.uk , www.sonyweb.co.uk , www.sonyweb.co.uk , , www.sonyweb.co.uk , www.sonyweb.co.uk , www.sonyweb.co.uk , www.sonyweb.co.uk , , www.sonyweb.co.uk , www.sonyweb.co.uk , www.sonyweb.co.uk , www.sonyweb.co.uk , www.sonyweb.co.uk , www.sonyweb.co.uk , www.sonyweb.co.uk www.sonyweb.co.uk , www.sonyweb.co.uk , www.sonyweb.co.uk , SERVICE MANUAL www.sonyweb.co.uk , www.sonyweb.co.uk , www.sonyweb.co.uk Ver 1-2002J www.sonyweb.co.uk , www.sonyweb.co.uk , www.sonyweb.co.uk , www.sonyweb.co.uk www.sonyweb.co.uk www.sonyweb.co.uk , , Revision History www.sonyweb.co.uk , www.sonyweb.co.uk , www.sonyweb.co.uk , PCG-GRV550 www.sonyweb.co.uk , www.sonyweb.co.uk , www.sonyweb.co.uk www.sonyweb.co.uk , www.sonyweb.co.uk , www.sonyweb.co.uk , www.sonyweb.co.uk , www.sonyweb.co.uk , www.sonyweb.co.uk www.sonyweb.co.uk , www.sonyweb.co.uk , www.sonyweb.co.uk , www.sonyweb.co.uk , www.sonyweb.co.uk , www.sonyweb.co.uk www.sonyweb.co.uk , www.sonyweb.co.uk , www.sonyweb.co.uk , www.sonyweb.co.uk , www.sonyweb.co.uk , www.sonyweb.co.uk www.sonyweb.co.uk www.sonyweb.co.uk , www.sonyweb.co.uk , , Lineup : PCG-GRV550 www.sonyweb.co.uk , www.sonyweb.co.uk , www.sonyweb.co.uk www.sonyweb.co.uk , www.sonyweb.co.uk , www.sonyweb.co.uk , www.sonyweb.co.uk , www.sonyweb.co.uk , www.sonyweb.co.uk For American Area www.sonyweb.co.uk , www.sonyweb.co.uk , www.sonyweb.co.uk , www.sonyweb.co.uk , www.sonyweb.co.uk , www.sonyweb.co.uk www.sonyweb.co.uk , www.sonyweb.co.uk -
Firmenhistorien Zur Rechentechnik
Biographien von Herstellern zur Rechentechnik in der rechentechnischen Sammlung des Geodätischen Instituts der Leibniz Universität Hannover In alphabetischer Reihenfolge Inhalte ohne Anspruch auf Vollständigkeit von Rainer Heer 1 Ascota (Astra) VEB 1919 Mechaniker-Werkstatt von John E. Greve in Chemnitz, Schlossstraße 2, 1921 Gründung der Astra-Werke AG in Chemnitz, Herbertstraße 9, Eintragung in HR Blatt 8209, dann HRB 23, Vorstand: John Greve, erste Mustermaschine des Modells A mit Einfachtastatur, erste deutsche und eu- ropäische Zehnertastatur. 1922 Fertigungsverlagerung in die Reitbahnstraße 40 1923 Beginn der Serienfertigung Modell A, (produziert bis 1939 mit 1 451 Stück) 1924 Modell B (Addier- und Subtrahiermaschine), Weiterent wicklung Modell A - D mit elektrischem Antrieb, Stellenan- zeiger und Sprungwagen 1928 Steigerung der Belegschaft von 175 im Jahr 1923 auf 407 Mitarbeiter. Jahresprodukti- on: Modell A: 446 Stück, Modell B: 1 183 Stück, Modell C: 810 Stück, Modell D: 313 Stück. 1928 Duplexmaschine in verschiedener Ausstattung, ab 1938 als Klasse 3/Modell 320 bis 340 (Buchungsmaschine mit 1 Saldierwerk und 1 Duplexwerk) Bild 1: Fertigungsstätte Astra-Werke 1929 1928 Triplexmaschine in verschiedener Ausstattung: ab 1938 als Klasse 4/Modell 420 und 430 (3 Zählwerke) 1929 Inbetriebnahme der neuen Fertigungsstätte im Bauhausstil auf der Altchemnitzer Straße 41 (siehe Bild 1); neue Modelle der Pultmaschinen und der Symbol-Buchungsmaschine: (Modelle J, K, L) 1930 Multiplex - Buchungsautomat mit bis zu 16 Registern, 1938-41 Produktion -
The Technology Behind Crusoe™ Processors
The Technology Behind Crusoe™ Processors Low-power x86-Compatible Processors Implemented with Code Morphing™ Software Alexander Klaiber Transmeta Corporation January 2000 The Technology Behind Crusoe™ Processors Property of: Transmeta Corporation 3940 Freedom Circle Santa Clara, CA 95054 USA (408) 919-3000 http://www.transmeta.com The information contained in this document is provided solely for use in connection with Transmeta products, and Transmeta reserves all rights in and to such information and the products discussed herein. This document should not be construed as transferring or granting a license to any intellectual property rights, whether express, implied, arising through estoppel or otherwise. Except as may be agreed in writing by Transmeta, all Transmeta products are provided “as is” and without a warranty of any kind, and Transmeta hereby disclaims all warranties, express or implied, relating to Transmeta’s products, including, but not limited to, the implied warranties of merchantability, fitness for a particular purpose and non-infringement of third party intellectual property. Transmeta products may contain design defects or errors which may cause the products to deviate from published specifications, and Transmeta documents may contain inaccurate information. Transmeta makes no representations or warranties with respect to the accuracy or completeness of the information contained in this document, and Transmeta reserves the right to change product descriptions and product specifications at any time, without notice. Transmeta products have not been designed, tested, or manufactured for use in any application where failure, malfunction, or inaccuracy carries a risk of death, bodily injury, or damage to tangible property, including, but not limited to, use in factory control systems, medical devices or facilities, nuclear facilities, aircraft, watercraft or automobile navigation or communication, emergency systems, or other applications with a similar degree of potential hazard. -
USCOURTS-Ca9-09-35307-1.Pdf
Case: 09-35307 01/18/2011 ID: 7614842 DktEntry: 67 Page: 1 of 67 FOR PUBLICATION UNITED STATES COURT OF APPEALS FOR THE NINTH CIRCUIT VANESSA SIMMONDS, Plaintiff-Appellant, v. CREDIT SUISSE SECURITIES (USA) LLC; JPMORGAN CHASE & CO., a Delaware corporation, successor in interest to Hambrecht & Quist and Chase Securities Inc.; BANK OF No. 09-35262 AMERICA CORPORATION, a Delaware D.C. No. 2:07-cv- corporation, successor in interest 01549-JLR to Fleetboston Robertson Stephens, Inc.; ONVIA INC., a Delaware corporation formerly known as Onvia.com Inc.; ROBERTSON STEPHENS, INC.; J.P. MORGAN SECURITIES INC., Defendants-Appellees. In Re: SECTION 16(b) LITIGATION 821 Case: 09-35307 01/18/2011 ID: 7614842 DktEntry: 67 Page: 2 of 67 822 SIMMONDS v. CREDIT SUISSE SECURITIES VANESSA SIMMONDS, Plaintiff-Appellant, v. DEUTSCHE BANK SECURITIES INC.; FOUNDRY NETWORKS INC., Nominal No. 09-35280 Defendant, a Delaware D.C. Nos. corporation; MERRILL LYNCH 2:07-cv-01566-JLR PIERCE FENNER & SMITH 2:07-cv-01549-JLR INCORPORATED; J.P. MORGAN SECURITIES INC., Defendants-Appellees. In Re: SECTION 16(b) LITIGATION VANESSA SIMMONDS, Plaintiff-Appellant, v. MERRILL LYNCH & CO. INC., Defendant, and No. 09-35282 D.C. Nos. FINISAR CORPORATION, Nominal Defendant, a Delaware 2:07-cv-01567-JLR 2:07-cv-01549-JLR corporation; MERRILL LYNCH PIERCE FENNER & SMITH INCORPORATED; J.P. MORGAN SECURITIES INC., Defendants-Appellees. In Re: SECTION 16(b) LITIGATION Case: 09-35307 01/18/2011 ID: 7614842 DktEntry: 67 Page: 3 of 67 SIMMONDS v. CREDIT SUISSE SECURITIES 823 VANESSA SIMMONDS, Plaintiff-Appellant, v. MORGAN STANLEY & CO., No. 09-35285 INCORPORATED; LEHMAN BROTHERS, D.C. -
Reverse Engineering X86 Processor Microcode
Reverse Engineering x86 Processor Microcode Philipp Koppe, Benjamin Kollenda, Marc Fyrbiak, Christian Kison, Robert Gawlik, Christof Paar, and Thorsten Holz, Ruhr-University Bochum https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/koppe This paper is included in the Proceedings of the 26th USENIX Security Symposium August 16–18, 2017 • Vancouver, BC, Canada ISBN 978-1-931971-40-9 Open access to the Proceedings of the 26th USENIX Security Symposium is sponsored by USENIX Reverse Engineering x86 Processor Microcode Philipp Koppe, Benjamin Kollenda, Marc Fyrbiak, Christian Kison, Robert Gawlik, Christof Paar, and Thorsten Holz Ruhr-Universitat¨ Bochum Abstract hardware modifications [48]. Dedicated hardware units to counter bugs are imperfect [36, 49] and involve non- Microcode is an abstraction layer on top of the phys- negligible hardware costs [8]. The infamous Pentium fdiv ical components of a CPU and present in most general- bug [62] illustrated a clear economic need for field up- purpose CPUs today. In addition to facilitate complex and dates after deployment in order to turn off defective parts vast instruction sets, it also provides an update mechanism and patch erroneous behavior. Note that the implementa- that allows CPUs to be patched in-place without requiring tion of a modern processor involves millions of lines of any special hardware. While it is well-known that CPUs HDL code [55] and verification of functional correctness are regularly updated with this mechanism, very little is for such processors is still an unsolved problem [4, 29]. known about its inner workings given that microcode and the update mechanism are proprietary and have not been Since the 1970s, x86 processor manufacturers have throughly analyzed yet. -
TRANSMETA BREAKS X86 LOW-POWER BARRIER VLIW Chips Use Hardware-Assisted X86 Emulation by Tom R
MICROPROCESSOR www.MPRonline.com THE REPORTINSIDER’S GUIDE TO MICROPROCESSOR HARDWARE TRANSMETA BREAKS X86 LOW-POWER BARRIER VLIW Chips Use Hardware-Assisted x86 Emulation By Tom R. Halfhill {2/14/00-01} Like moths drawn to a flame, semiconductor startups seem to find the bright but dangerous glow of the x86 market irresistible. Never mind that companies as resourceful as AMD, Cen- taur, Cyrix, IBM, National Semiconductor, and Rise have all charred their wings in the fires of competition with Intel. More than 120 million x86 chips were with a software envelope that translates x86 binaries into sold in the profitable PC market last year, casting off a warmth native code at run time. that lures newly hatched companies from the darkness. While some companies have used the term “emula- The latest newcomer to emerge from its cocoon is tion” to describe the binary-translation process, Transmeta Transmeta. After nearly five years of unprecedented secrecy, founder Dave Ditzel shuns that term, preferring to describe the Santa Clara–based startup finally unveiled its pair of his company’s method of converting x86 instructions into x86-compatible Crusoe processors at a widely covered VLIW instructions as “code morphing” or simply “transla- media event near Silicon Valley last month. The event tion.” Sometimes this process is called dynamic binary received the same sort of overhyped coverage the U.S. Air recompilation. Transmeta’s code-morphing software cer- Force might attract by flinging open the gates to Area 51. A tainly is more advanced than old-fashioned emulators, large crowd of mainstream and business journalists were which slowly convert one type of binary executable into dazzled by marketing claims about “revolutionary” micro- another by translating one instruction at a time. -
Why 8Th Gen Intel® Core™ Vpro® Processors?
SALES BRIEF Why 8th Gen Intel® Core™ vPro® Processors? Top Reasons to Transition to 8th Gen Intel® Core™ vPro® Processors for Your Business PCs Lower support costs with Intel® Active The highest performing ultra-thin Management Technology (Intel® AMT) 1 notebook processor for business1 3 built into the Intel vPro® platform4 The 8th Gen Intel Core vPro processor adds performance— Intel AMT can help save IT time and money when managing 10 percent over the previous generation1—plus optimization a PC fleet. By upgrading to systems employing current and engineering for mobile performance. generation Intel Core vPro processors, organizations can help solve common IT issues with a more secure and manageable • Increased OEM expertise in power management is yielding system while reducing service delivery costs.4 systems that are power-efficient with long battery life. • Optimization for commercial—with Intel® Wireless-AC • Annual reduction of 7680 security support hours with Intel integrated into the Platform Controller Hub (PCH) vPro® platform-based devices, resulting in $1.2 million in risk-adjusted savings over 3 years and 832 hours saved • Windows integration: Modern devices with Windows® 10, with automatic remote patch deployment through Intel® Office 365, and the Intel vPro® platform enable fast startup, Active Management Technology, resulting in risk-adjusted amazing multitasking, and have long-lasting battery life2,3 cost savings of $81,000 over 3 years as estimated using a for anytime, anywhere productivity. composite organization modeled by Forrester Consulting In addition, the 8th Gen Intel Core vPro processor improves in an Intel commissioned TEI study. Read the full study at on the previous generation with: Intel.com/vProPlatformTEI.5 • Intel® Optane™ Memory H10: Accelerated systems • Intel® AMT can also help minimize downtime and help responsiveness create environments that are simpler to manage. -
Why Buy a Computer? How, Read the Instructions and Buy Books in Bookstores
Thanks for picking up this book. I appreciate the lift. occasionally bump into a paragraph that’s outdated or otherwise ill-advised, for which I humbly apologize, o master. Unique I’m your slave. Phone me anytime at 603-666-6644 to whip This is the only book whose author is weird enough to try to me into improving. I’m all ears, to improve my tongue. reveal everything important about computers — and also tricky living — all in one book. You can learn part of this info Come visit yourself, without this book, by just asking weird friends & When you visit New Hampshire, drop in & use my library, experimenting & sloshing through the Internet’s drivel, but free, anytime, day or night! In case I’m having an orgy with my 50 reading this book will save you lots of time and teach you tricks computers, phone first to pick a time when we’re cooled down. you can’t find elsewhere. You can also call the author’s cell Visit SecretFun.com. It reveals any hot news about us, gives phone, 603-666-6644, for free help, day or night. He’s usually you useful links, and lets you read parts of this book online, free. available. He’s me. Go ahead: bug me now! I read all email sent to [email protected]. I guarantee to Earlier editions were rated “the best,” praised by reply, but just by phone, so then phone me at 603-666-6644. The New York Times and thousands of other major newspapers, magazines, and gurus worldwide, in many countries; but this Mail the coupon 33rd edition is even better! It adds the world’s newest Mail us the coupon on this book’s last page. -
Intel® Processor Identification Utility Installation Guide for Windows*
Intel® Processor Identification Utility Installation Guide for Windows* Follow these steps to install the Microsoft Windows* version of the Intel® Processor Identification Utility. Users must have system administrator rights for successful installation with Windows XP* Note and Windows 2000*. 1. Download and save the Windows version of the Intel® Processor Identification Utility. 2. Click Windows Start, and browse the location for the Intel® Processor Identification Utility program. 3. Click the Intel® Processor Identification Utility program, click Open, and click OK. 4. Click Next at the InstallShield* wizard. If a previous version is installed, the InstallShield wizard provides three options: Modify, Note repair, and remove. The previous version of the Intel® Processor Identification Utility should be removed before installing the newer version. 5. At the Software License screen, click Agree to the terms of the license agreement and click Next. 6. In the custom setup installation screen, choose the destination location and folder name for the program installation. Click Next to continue. By default, the Intel® Processor Identification Utility is installed under the programs Note folder in the start menu. 7. Follow the on-screen installation instructions. 8. Click Finish in the Setup Complete window. The installation is now complete. You do not need to restart the computer before running the Intel® Processor Identification Utility. Running the Intel® Processor Identification Utility 1. Click Start > All Programs > Intel Processor ID Utility > Processor ID Utility. 2. At the Intel® Processor Identification Utility license agreement screen, click Accept. The Processor Identification Utility screen displays information about your processor. Intel® Processor Support for Microsoft Windows® 10 Identify the processor in your system. -
Journal of the International Academy for Case Studies
Volume 19, Number 1 Print ISSN: 1078-4950 Online ISSN: 1532-5822 JOURNAL OF THE INTERNATIONAL ACADEMY FOR CASE STUDIES Editors Inge Nickerson, Barry University Charles Rarick, Purdue University, Calumet The Journal of the International Academy for Case Studies is owned and published by Jordan Whitney Enterprises, Inc. Editorial content is under the control of the Allied Academies, Inc., a non-profit association of scholars, whose purpose is to support and encourage research and the sharing and exchange of ideas and insights throughout the world. Page ii Authors execute a publication permission agreement and assume all liabilities. Neither Jordan Whitney Enterprises nor Allied Academies is responsible for the content of the individual manuscripts. Any omissions or errors are the sole responsibility of the authors. The Editorial Board is responsible for the selection of manuscripts for publication from among those submitted for consideration. The Publishers accept final manuscripts in digital form and make adjustments solely for the purposes of pagination and organization. The Journal of the International Academy for Case Studies is owned and published by Jordan Whitney Enterprises, Inc, 51 Blake Drive, Arden, NC 28704, USA. Those interested in communicating with the Journal, should contact the Executive Director of the Allied Academies at [email protected]. Copyright 2013 by Jordan Whitney Enterprises, Inc, Arden NC, USA Journal of the International Academy for Case Studies, Volume 19, Number1, 2013 Page iii EDITORIAL BOARD MEMBERS Irfan Ahmed Devi Akella Sam Houston State University Albany State University Huntsville, Texas Albany, Georgia Charlotte Allen Thomas T. Amlie Stephen F. Austin State University Penn State University - Harrisburg Nacogdoches, Texas Harrisburg, Pennsylvania Ismet Anitsal Kavous Ardalan Tennessee Tech University Marist College Cookeville, Tennessee Poughkeepsie, New York Joe Ballenger Lisa Berardino Stephen F. -
Designcon 2003 Tecforum I2C Bus Overview January 27 2003
DesignCon 2003 TecForum I2C Bus Overview January 27 2003 Philips Semiconductors Jean Marc Irazabal –Technical Marketing Manager for I2C Devices Steve Blozis –International Product Manager for I2C Devices Agenda • 1st Hour • Serial Bus Overview • I2C Theory Of Operation • 2nd Hour • Overcoming Previous Limitations • I2C Development Tools and Evaluation Board • 3rd Hour • SMBus and IPMI Overview • I2C Device Overview • I2C Patent and Legal Information • Q & A Slide speaker notes are included in AN10216 I2C Manual 2 DesignCon 2003 TecForum I C Bus Overview 2 1st Hour 2 DesignCon 2003 TecForum I C Bus Overview 3 Serial Bus Overview 2 DesignCon 2003 TecForum I C Bus Overview 4 Com m uni c a t i o ns Automotive SERIAL Consumer BUSES IEEE1394 DesignCon 2003 TecForum I UART SPI 2 C Bus Overview In d u s t r ia l 5 General concept for Serial communications SCL SDA select 3 select 2 select 1 READ Register or enable Shift Reg# enable Shift Reg# enable Shift Reg# WRITE? // to Ser. // to Ser. // to Ser. Shift R/W Parallel to Serial R/W R/W “MASTER” DATA SLAVE 1 SLAVE 2 SLAVE 3 • A point to point communication does not require a Select control signal • An asynchronous communication does not have a Clock signal • Data, Select and R/W signals can share the same line, depending on the protocol • Notice that Slave 1 cannot communicate with Slave 2 or 3 (except via the ‘master’) Only the ‘master’ can start communicating. Slaves can ‘only speak when spoken to’ 2 DesignCon 2003 TecForum I C Bus Overview 6 Typical Signaling Characteristics LVTTL 2 RS422/485