Vertigo: Automatic Performance-Setting for Linux

Total Page:16

File Type:pdf, Size:1020Kb

Vertigo: Automatic Performance-Setting for Linux USENIX Association Proceedings of the 5th Symposium on Operating Systems Design and Implementation Boston, Massachusetts, USA December 9–11, 2002 THE ADVANCED COMPUTING SYSTEMS ASSOCIATION © 2002 by The USENIX Association All Rights Reserved For more information about the USENIX Association: Phone: 1 510 528 8649 FAX: 1 510 548 5738 Email: [email protected] WWW: http://www.usenix.org Rights to individual papers remain with the author or the author's employer. Permission is granted for noncommercial reproduction of the work for educational or research purposes. This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein. Vertigo: Automatic Performance-Setting for Linux Krisztián Flautner Trevor Mudge [email protected] [email protected] ARM Limited The University of Michigan 110 Fulbourn Road 1301 Beal Avenue Cambridge, UK CB1 9NJ Ann Arbor, MI 48109-2122 Abstract player, game machine, camera, GPS, even the wallet— into a single device. This requires processors that are Combining high performance with low power con- capable of high performance and modest power con- sumption is becoming one of the primary objectives of sumption. Moreover, to be power efficient, the proces- processor designs. Instead of relying just on sleep mode sors for the next generation communicator need to take for conserving power, an increasing number of proces- advantage of the highly variable performance require- sors take advantage of the fact that reducing the clock ments of the applications they are likely to run. For frequency and corresponding operating voltage of the example an MPEG video player requires about an order CPU can yield quadratic decrease in energy use. How- of magnitude higher performance than an MP3 audio ever, performance reduction can only be beneficial if it player but optimizing the processor to always run at the is done transparently, without causing the software to level that accommodates the video player would be miss its deadlines. In this paper, we describe the imple- wasteful. mentation and performance-setting algorithms used in Dynamic Voltage Scaling (DVS) exploits the fact Vertigo, our power management extensions for Linux. that the peak frequency of a processor implemented in Vertigo makes its decisions automatically, without any CMOS is proportional to the supply voltage, while the application-specific involvement. We describe how a amount of dynamic energy required for a given work- hierarchy of performance-setting algorithms, each spe- load is proportional to the square of the processor’s cialized for different workload characteristics, can be supply voltage [12]. Running the processor slower used for controlling the processor’s performance. The means that the voltage level can also be lowered, yield- algorithms operate independently from one another ing a quadratic reduction in energy consumption, at the and can be dynamically configured. As a basis for com- cost of increased run time. The key to making use of parison with conventional algorithms, we contrast this trade-off are performance-setting algorithms that measurements made on a Transmeta Crusoe-based aim to reduce the processor’s performance level (clock computer using its built-in LongRun power manager frequency) only when it is not critical to meeting the with Vertigo running on the same system. We show that software’s deadlines. The key observation is that often unlike conventional interval-based algorithms like Lon- the processor is running too fast. For example, it is gRun, Vertigo is successful at focusing in on a small pointless from a quality-of-service perspective to range of performance levels that are sufficient to meet decode the 30 frames of a video in half a second, when an application’s deadlines. When playing MPEG mov- the software is only required to display those frames ies, this behavior translates into a 11%-35% reduction during a one second interval. Completing a task before of mean performance level over LongRun, without any its deadline is an inefficient use of energy [6]. negative impact on the framerate. The performance While dynamic power currently accounts for the reduction can in turn yield significant power savings. greatest fraction of a processor’s power consumption, static power consumption, which results from the leak- 1. Introduction age current in CMOS devices, is rapidly increasing. If Power considerations are increasingly driving pro- left unchecked, in a 0.07 micron process, leakage cessor designs from embedded computers to servers. power could become comparable to the amount of Perhaps the most apparent need for low-power proces- dynamic power [3]. Similarly to dynamic power, leak- sors is for mobile communication and PDA devices. age can also be substantially reduced if the processor These devices are battery operated, have small form does not always have to operate at its peak performance factors and are increasingly taking up computational level. One technique for accomplishing this is adaptive tasks that in the past have been performed by desktop reverse body biasing (ABB), which combined with computers. The next generation 3G mobile phones dynamic voltage scaling can yield substantial reduction promise always-on connections, high-bandwidth in both leakage and dynamic power consumption [11]. mobile data access, voice recognition, video-on- The pertinent point for this paper with respect to DVS demand services, video conferencing and the conver- and ABB is that lowering the speed of the processor gence of today’s multiple standalone devices—MP3 results in better than linear energy savings. Vertigo pro- vides the main lever for controlling both of these tech- FIGURE 1. MPEG video playback LongRun vs. Vertigo Danse De Cable MPEG Legendary MPEG 100% 100% 4.07% 80% 80% 600 Mhz 47.72% 48.34% 60% 60% 600 Mhz 79.15% 88.06% 40% 40% 500 Mhz 29.50% 51.17% 20% 20% 400 Mhz 17.04% 500 Mhz 17.20% Fraction of time at each performance level Fraction of time at each performance level 300 Mhz 5.74% 400 Mhz 7.78% 0% 0% LongRun Vertigo LongRun Vertigo niques by providing an estimate for the necessary described in our previous papers and moves these tech- performance level of the processor. niques out of the simulator into a hardware and soft- Most mobile processors on the market today ware implementation. already support some form of voltage scaling; Intel Our performance-setting algorithms, described in calls its version of this technology SpeedStep [8]. How- Section 2, compare favorably to previous interval- ever, due to the lack of built-in performance-setting based algorithms. The two key differences in our policies in current operating systems, the computers approach are that multiple performance-setting algo- based on these chips use a simple approach that is rithms are used to come up with a global prediction and driven not by the workload but by the usage model: that the algorithms are implemented in the OS kernel, when the notebook computer is plugged in a power out- which gives them access to a richer set of data for pre- let the processor runs at a higher speed, when running dictions. The multiple performance-setting algorithms on batteries, it is switched to a more power efficient but in the system ensure that they do not all have to be opti- slower mode. Transmeta’s Crusoe processor sidesteps mal in all possible circumstances. This allows at least this problem by building the power management pol- some of the algorithms to be less concerned about the icy—called LongRun—into the processor’s firmware worst case. Figure 1 illustrates the fraction of time to avoid the need to modify the operating system [20]. spent at each of the processor’s four performance levels LongRun uses the historical utilization of the processor (300, 400, 500, and 600 Mhz) using the Crusoe’s built- to guide clock rate selection: it speeds up the processor in LongRun power manager in contrast with Vertigo if utilization is high and decreases performance if utili- during playbacks of two MPEG movies. The data for zation is low. Unlike on more conventional processors, both algorithms were collected on the same hardware, the power management policy can be implemented on however during the Vertigo measurements, the built-in the Crusoe relatively easily because it already has a LongRun power manager was disabled. While the play- hidden software layer that performs dynamic binary back quality of the different runs were identical, the translation and optimizations. However, it is currently main difference between the results is that Vertigo an open question—one that we address in this paper— spends significantly more time below peak perfor- how effectively a policy implemented at such a low mance than LongRun. During the first movie, Vertigo level in the software hierarchy can perform. switches mostly between two performance levels: the Research into performance-setting algorithms can machine’s minimum 300 Mhz and 400 Mhz, while dur- be broadly divided into two categories: ones that use ing the second, it settles on the processor’s third perfor- information about task deadlines in real-time kernels to mance level at 500 Mhz. LongRun, on the other hand, guide the performance-setting decisions of the proces- during both movies chooses the machine’s peak perfor- sor [9][13][15][19][16][17], and others that seek to mance setting for the dominant portion of execution derive deadlines automatically by either monitoring time. past utilization of the processor (interval-based tech- Vertigo is implemented as a set of kernel modules niques) [6][14][21] or based on semantic task and event and patches that hook into the Linux kernel to monitor classification [4][10]. Our work falls into the latter cat- program execution and to control the speed and voltage egory. Previously, we presented a mechanism for auto- levels of the processor (Figure 2).
Recommended publications
  • Approaches in Green Computing
    Special Issue - 2015 International Journal of Engineering Research & Technology (IJERT) ISSN: 2278-0181 NSRCL-2015 Conference Proceedings Approaches in Green Computing Reena Thomas Fedrina J Manjaly 3 rd BCA, Department of Computer Science 3 rd BCA , Department of Computer Science Carmel College Carmel College Mala, Thrissur Mala, Thrissur Abstract— In a 2008 article San Murugesan defined green computing as "the study and practice of designing, manufacturing, using, and disposing of computers, servers, and associated subsystems — such as monitors, printers, storage devices, and networking and communications systems — efficiently and effectively with minimal or no impact on the environment."Murugesan lays out four paths along which he believes the environmental effects of computing should be addressed:Green use, green disposal, green design, and green manufacturing. Green computing can also develop solutions that offer benefits by "aligning all IT processes and practices with the core principles of sustainability, which are to reduce, reuse, and recycle; and finding innovative ways to use IT in business processes to deliver sustainability benefits across the Figure 1: Green Computing Migration Framework enterprise and beyond". I. INTRODUCTION II. APPROACHES In 1992, the U.S. Environmental Protection Agency A. Product longevity launched Energy Star, a voluntary labeling program that is Gartner maintains that the PC manufacturing process designed to promote and recognize energy-efficiency in accounts for 70% of the natural resources used in the life monitors, climate control equipment, and other cycle of a PC. More recently, Fujitsu released a Life Cycle technologies. This resulted in the widespread adoption of Assessment (LCA) of a desktop that show that sleep mode among consumer electronics.
    [Show full text]
  • Green Destiny: a 240-Node Compute Cluster in One Cubic Meter
    Green Destiny: A 240-Node Compute Cluster in One Cubic Meter Wu-chun (Wu) Feng Research & Development in Advanced Network Technology (RADIANT) Computer & Computational Sciences Division Los Alamos National Laboratory LA-UR 02-6127 Outline Where is Supercomputing? Architectures from the Top 500. Evaluating Supercomputers Metrics: Performance & Price/Performance An Alternative Flavor of Supercomputing Supercomputing in Small Spaces Æ Bladed Beowulf Architecture of a Bladed Beowulf Performance Metrics Benchmark Results Discussion & Status Conclusion Acknowledgements & Media Coverage Wu-chun Feng http://www.lanl.gov/radiant [email protected] http://sss.lanl.gov Flavors of Supercomputing (Picture Source: Thomas Sterling, Caltech & NASA JPL) Wu-chun Feng http://www.lanl.gov/radiant [email protected] http://sss.lanl.gov 500 400 SIMD Architectures from the 300 Top 500 Supercomputer List 200 100 0 ProcessorSingle Wu-chun Feng [email protected] Jun-93 Nov-93 Jun-94 MPP Nov-94 Jun-95 Nov-95 Jun-96 Constellation SMP Nov-96 Cluster Jun-97 http://www.lanl.gov/radiant Nov-97 http://sss.lanl.gov Jun-98 Nov-98 Jun-99 Nov-99 Jun-00 Nov-00 Jun-01 Nov-01 Jun-02 Metrics for Evaluating Supercomputers Performance Metric: Floating-Operations Per Second (FLOPS) Example: Japanese Earth Simulator Price/Performance Æ Cost Efficiency Metric: Cost / FLOPS Examples: SuperMike, GRAPE-5, Avalon. Wu-chun Feng http://www.lanl.gov/radiant [email protected] http://sss.lanl.gov Performance (At Any Cost) Japanese Earth Simulator ($400M) Performance Price/Perf Peak 40.00 Tflop $10.00/Mflop Linpack 35.86 Tflop $11.15/Mflop n-Body 29.50 Tflop $13.56/Mflop Climate 26.58 Tflop $15.05/Mflop Turbulence 16.40 Tflop $24.39/Mflop Fusion 14.90 Tflop $26.85/Mflop Wu-chun Feng http://www.lanl.gov/radiant [email protected] http://sss.lanl.gov Price/Performance Cost Efficiency LSU’s SuperMike Performance Price/Perf (2002: $2.8M) Linpack 2210 Gflops $1.27/Mflop U.
    [Show full text]
  • Service Manual
    , , , , , www.sonyweb.co.uk , www.sonyweb.co.uk , , www.sonyweb.co.uk , www.sonyweb.co.uk , , www.sonyweb.co.uk , www.sonyweb.co.uk , www.sonyweb.co.uk , , www.sonyweb.co.uk , www.sonyweb.co.uk , www.sonyweb.co.uk , www.sonyweb.co.uk , , www.sonyweb.co.uk , www.sonyweb.co.uk , www.sonyweb.co.uk , www.sonyweb.co.uk , www.sonyweb.co.uk , www.sonyweb.co.uk , www.sonyweb.co.uk www.sonyweb.co.uk , www.sonyweb.co.uk , www.sonyweb.co.uk , SERVICE MANUAL www.sonyweb.co.uk , www.sonyweb.co.uk , www.sonyweb.co.uk Ver 1-2002J www.sonyweb.co.uk , www.sonyweb.co.uk , www.sonyweb.co.uk , www.sonyweb.co.uk www.sonyweb.co.uk www.sonyweb.co.uk , , Revision History www.sonyweb.co.uk , www.sonyweb.co.uk , www.sonyweb.co.uk , PCG-GRV550 www.sonyweb.co.uk , www.sonyweb.co.uk , www.sonyweb.co.uk www.sonyweb.co.uk , www.sonyweb.co.uk , www.sonyweb.co.uk , www.sonyweb.co.uk , www.sonyweb.co.uk , www.sonyweb.co.uk www.sonyweb.co.uk , www.sonyweb.co.uk , www.sonyweb.co.uk , www.sonyweb.co.uk , www.sonyweb.co.uk , www.sonyweb.co.uk www.sonyweb.co.uk , www.sonyweb.co.uk , www.sonyweb.co.uk , www.sonyweb.co.uk , www.sonyweb.co.uk , www.sonyweb.co.uk www.sonyweb.co.uk www.sonyweb.co.uk , www.sonyweb.co.uk , , Lineup : PCG-GRV550 www.sonyweb.co.uk , www.sonyweb.co.uk , www.sonyweb.co.uk www.sonyweb.co.uk , www.sonyweb.co.uk , www.sonyweb.co.uk , www.sonyweb.co.uk , www.sonyweb.co.uk , www.sonyweb.co.uk For American Area www.sonyweb.co.uk , www.sonyweb.co.uk , www.sonyweb.co.uk , www.sonyweb.co.uk , www.sonyweb.co.uk , www.sonyweb.co.uk www.sonyweb.co.uk , www.sonyweb.co.uk
    [Show full text]
  • Power-Aware Design Methodologies for FPGA-Based Implementation of Video Processing Systems
    Old Dominion University ODU Digital Commons Electrical & Computer Engineering Theses & Dissertations Electrical & Computer Engineering Winter 2007 Power-Aware Design Methodologies for FPGA-Based Implementation of Video Processing Systems Hau Trung Ngo Old Dominion University Follow this and additional works at: https://digitalcommons.odu.edu/ece_etds Part of the Electrical and Computer Engineering Commons Recommended Citation Ngo, Hau T.. "Power-Aware Design Methodologies for FPGA-Based Implementation of Video Processing Systems" (2007). Doctor of Philosophy (PhD), Dissertation, Electrical & Computer Engineering, Old Dominion University, DOI: 10.25777/j6kw-q685 https://digitalcommons.odu.edu/ece_etds/185 This Dissertation is brought to you for free and open access by the Electrical & Computer Engineering at ODU Digital Commons. It has been accepted for inclusion in Electrical & Computer Engineering Theses & Dissertations by an authorized administrator of ODU Digital Commons. For more information, please contact [email protected]. POWER-AW ARE DESIGN METHODOLOGIES FOR FPGA-BASED IMPLEMENTATION OF VIDEO PROCESSING SYSTEMS By Hau Trung Ngo B. S. May 2001, Old Dominion University M. S. May 2003, Old Dominion University A Dissertation Submitted to the Faculty of Old Dominion University in Partial Fulfillment of the Requirements for the Degree of DOCTOR OF PHILOSOPHY ELECTRICAL AND COMPUTER ENGINEERING OLD DOMINION UNIVERSITY December 2007 Approved by: Vijayan i K. Asari (Direc(Director) Shirshak K. Dhali (Member) Min Song (Member) Ravi Mukkdmala (Member) Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. ABSTRACT POWER-AWARE DESIGN METHODOLOGIES FOR FPGA-BASED IMPLEMENTATION OF VIDEO PROCESSING SYSTEMS Hau Trung Ngo Old Dominion University Director: Dr. Vijayan Asari The increasing capacity and capabilities of FPGA devices in recent years provide an attractive option for performance-hungry applications in the image and video processing domain.
    [Show full text]
  • Memorandum in Opposition to Hewlett-Packard Company's Motion to Quash Intel's Subpoena Duces Tecum
    ORIGINAL UNITED STATES OF AMERICA BEFORE THE FEDERAL TRADE COMMISSION ) In the Matter of ) ) DOCKET NO. 9341 INTEL. CORPORATION, ) a corporation ) PUBLIC ) .' ) MEMORANDUM IN OPPOSITION TO HEWLETT -PACKARD COMPANY'S MOTION TO QUASH INTEL'S SUBPOENA DUCES TECUM Intel Corporation ("Intel") submits this memorandum in opposition to Hewlett-Packard Company's ("HP") motion to quash Intel's subpoena duces tecum issued on March 11,2010 ("Subpoena"). HP's motion should be denied, and it should be ordered to comply with Intel's Subpoena, as narrowed by Intel's April 19,2010 letter. Intel's Subpoena seeks documents necessary to defend against Complaint Counsel's broad allegations and claimed relief. The Complaint alleges that Intel engaged in unfair business practices that maintained its monopoly over central processing units ("CPUs") and threatened to give it a monopoly over graphics processing units ("GPUs"). See CompI. iiii 2-28. Complaint Counsel's Interrogatory Answers state that it views HP, the world's largest manufacturer of personal computers, as a centerpiece of its case. See, e.g., Complaint Counsel's Resp. and Obj. to Respondent's First Set ofInterrogatories Nos. 7-8 (attached as Exhibit A). Complaint Counsel intends to call eight HP witnesses at trial on topics crossing virtually all of HP' s business lines, including its purchases ofCPUs for its commercial desktop, commercial notebook, and server businesses. See Complaint Counsel's May 5, 2010 Revised Preliminary Witness List (attached as Exhibit B). Complaint Counsel may also call HP witnesses on other topics, including its PUBLIC FTC Docket No. 9341 Memorandum in Opposition to Hewlett-Packard Company's Motion to Quash Intel's Subpoena Duces Tecum USIDOCS 7544743\'1 assessment and purchases of GPUs and chipsets and evaluation of compilers, benchmarks, interface standards, and standard-setting bodies.
    [Show full text]
  • A Dynamic Voltage Scaling Algorithm for Sporadic Tasks∗
    In: Proceedings of the 24th IEEE Real-Time Systems Symposium, Cancun, Mexico, December 2003, pp. 52-62. A Dynamic Voltage Scaling Algorithm for Sporadic Tasks¤ Ala0 Qadi Steve Goddard Shane Farritor Computer Science & Engineering Mechanical Engineering University of Nebraska—Lincoln University of Nebraska - Lincoln Lincoln, NE 68588-0115 Lincoln, NE 68588-0656 faqadi,[email protected] [email protected] Abstract In CMOS circuits the power consumed by a CMOS gate is proportional to the square of the voltage applied to the Dynamic voltage scaling (DVS) algorithms save energy circuit, as shown by Equation (1) where CL is the gate load by scaling down the processor frequency when the proces- capacitance (output capacitance),VDD is the supply voltage sor is not fully loaded. Many algorithms have been proposed and f is the clock frequency [29]. The circuit delay td is for periodic and aperiodic task models but none support the given by Equation (2) where k is a constant depending on canonical sporadic task model. A DVS algorithm, called the output gate size and the output capacitance and VT is DVSST, is presented that can be used with sporadic tasks the threshold voltage [29]. The clock frequency is inversely in conjunction with preemptive EDF scheduling. The algo- proportional to the circuit delay; it is expressed using td and rithm is proven to guarantee each task meets its deadline the logic depth of a critical path as in Equation (3) where Ld while saving the maximum amount of energy possible with is the depth of the critical path [29]. processor frequency scaling.
    [Show full text]
  • Comptia Fc0-Gr1 Exam Questions & Answers
    COMPTIA FC0-GR1 EXAM QUESTIONS & ANSWERS Number : FC0-GR1 Passing Score : 800 Time Limit : 120 min File Version : 31.4 http://www.gratisexam.com/ COMPTIA FC0-GR1 EXAM QUESTIONS & ANSWERS Exam Name: CompTIA Strata Green IT Exam Visualexams QUESTION 1 A small business currently has a server room with a large cooling system that is appropriate for its size. The location of the server room is the top level of a building. The server room is filled with incandescent lighting that needs to continuously stay on for security purposes. Which of the following would be the MOST cost-effective way for the company to reduce the server rooms energy footprint? A. Replace all incandescent lighting with energy saving neon lighting. B. Set an auto-shutoff policy for all the lights in the room to reduce energy consumption after hours. C. Replace all incandescent lighting with energy saving fluorescent lighting. D. Consolidate server systems into a lower number of racks, centralizing airflow and cooling in the room. Correct Answer: C Section: (none) Explanation Explanation/Reference: QUESTION 2 Which of the following methods effectively removes data from a hard drive prior to disposal? (Select TWO). A. Use the remove hardware OS feature B. Formatting the hard drive C. Physical destruction D. Degauss the drive E. Overwriting data with 1s and 0s by utilizing software Correct Answer: CE Section: (none) Explanation Explanation/Reference: QUESTION 3 Which of the following terms is used when printing data on both the front and the back of paper? A. Scaling B. Copying C. Duplex D. Simplex Correct Answer: C Section: (none) Explanation Explanation/Reference: QUESTION 4 A user reports that their cell phone battery is dead and cannot hold a charge.
    [Show full text]
  • The Technology Behind Crusoe™ Processors
    The Technology Behind Crusoe™ Processors Low-power x86-Compatible Processors Implemented with Code Morphing™ Software Alexander Klaiber Transmeta Corporation January 2000 The Technology Behind Crusoe™ Processors Property of: Transmeta Corporation 3940 Freedom Circle Santa Clara, CA 95054 USA (408) 919-3000 http://www.transmeta.com The information contained in this document is provided solely for use in connection with Transmeta products, and Transmeta reserves all rights in and to such information and the products discussed herein. This document should not be construed as transferring or granting a license to any intellectual property rights, whether express, implied, arising through estoppel or otherwise. Except as may be agreed in writing by Transmeta, all Transmeta products are provided “as is” and without a warranty of any kind, and Transmeta hereby disclaims all warranties, express or implied, relating to Transmeta’s products, including, but not limited to, the implied warranties of merchantability, fitness for a particular purpose and non-infringement of third party intellectual property. Transmeta products may contain design defects or errors which may cause the products to deviate from published specifications, and Transmeta documents may contain inaccurate information. Transmeta makes no representations or warranties with respect to the accuracy or completeness of the information contained in this document, and Transmeta reserves the right to change product descriptions and product specifications at any time, without notice. Transmeta products have not been designed, tested, or manufactured for use in any application where failure, malfunction, or inaccuracy carries a risk of death, bodily injury, or damage to tangible property, including, but not limited to, use in factory control systems, medical devices or facilities, nuclear facilities, aircraft, watercraft or automobile navigation or communication, emergency systems, or other applications with a similar degree of potential hazard.
    [Show full text]
  • USCOURTS-Ca9-09-35307-1.Pdf
    Case: 09-35307 01/18/2011 ID: 7614842 DktEntry: 67 Page: 1 of 67 FOR PUBLICATION UNITED STATES COURT OF APPEALS FOR THE NINTH CIRCUIT VANESSA SIMMONDS, Plaintiff-Appellant, v. CREDIT SUISSE SECURITIES (USA) LLC; JPMORGAN CHASE & CO., a Delaware corporation, successor in interest to Hambrecht & Quist and Chase Securities Inc.; BANK OF No. 09-35262 AMERICA CORPORATION, a Delaware D.C. No. 2:07-cv- corporation, successor in interest 01549-JLR to Fleetboston Robertson Stephens, Inc.; ONVIA INC., a Delaware corporation formerly known as Onvia.com Inc.; ROBERTSON STEPHENS, INC.; J.P. MORGAN SECURITIES INC., Defendants-Appellees. In Re: SECTION 16(b) LITIGATION 821 Case: 09-35307 01/18/2011 ID: 7614842 DktEntry: 67 Page: 2 of 67 822 SIMMONDS v. CREDIT SUISSE SECURITIES VANESSA SIMMONDS, Plaintiff-Appellant, v. DEUTSCHE BANK SECURITIES INC.; FOUNDRY NETWORKS INC., Nominal No. 09-35280 Defendant, a Delaware D.C. Nos. corporation; MERRILL LYNCH 2:07-cv-01566-JLR PIERCE FENNER & SMITH 2:07-cv-01549-JLR INCORPORATED; J.P. MORGAN SECURITIES INC., Defendants-Appellees. In Re: SECTION 16(b) LITIGATION VANESSA SIMMONDS, Plaintiff-Appellant, v. MERRILL LYNCH & CO. INC., Defendant, and No. 09-35282 D.C. Nos. FINISAR CORPORATION, Nominal Defendant, a Delaware 2:07-cv-01567-JLR 2:07-cv-01549-JLR corporation; MERRILL LYNCH PIERCE FENNER & SMITH INCORPORATED; J.P. MORGAN SECURITIES INC., Defendants-Appellees. In Re: SECTION 16(b) LITIGATION Case: 09-35307 01/18/2011 ID: 7614842 DktEntry: 67 Page: 3 of 67 SIMMONDS v. CREDIT SUISSE SECURITIES 823 VANESSA SIMMONDS, Plaintiff-Appellant, v. MORGAN STANLEY & CO., No. 09-35285 INCORPORATED; LEHMAN BROTHERS, D.C.
    [Show full text]
  • TRANSMETA BREAKS X86 LOW-POWER BARRIER VLIW Chips Use Hardware-Assisted X86 Emulation by Tom R
    MICROPROCESSOR www.MPRonline.com THE REPORTINSIDER’S GUIDE TO MICROPROCESSOR HARDWARE TRANSMETA BREAKS X86 LOW-POWER BARRIER VLIW Chips Use Hardware-Assisted x86 Emulation By Tom R. Halfhill {2/14/00-01} Like moths drawn to a flame, semiconductor startups seem to find the bright but dangerous glow of the x86 market irresistible. Never mind that companies as resourceful as AMD, Cen- taur, Cyrix, IBM, National Semiconductor, and Rise have all charred their wings in the fires of competition with Intel. More than 120 million x86 chips were with a software envelope that translates x86 binaries into sold in the profitable PC market last year, casting off a warmth native code at run time. that lures newly hatched companies from the darkness. While some companies have used the term “emula- The latest newcomer to emerge from its cocoon is tion” to describe the binary-translation process, Transmeta Transmeta. After nearly five years of unprecedented secrecy, founder Dave Ditzel shuns that term, preferring to describe the Santa Clara–based startup finally unveiled its pair of his company’s method of converting x86 instructions into x86-compatible Crusoe processors at a widely covered VLIW instructions as “code morphing” or simply “transla- media event near Silicon Valley last month. The event tion.” Sometimes this process is called dynamic binary received the same sort of overhyped coverage the U.S. Air recompilation. Transmeta’s code-morphing software cer- Force might attract by flinging open the gates to Area 51. A tainly is more advanced than old-fashioned emulators, large crowd of mainstream and business journalists were which slowly convert one type of binary executable into dazzled by marketing claims about “revolutionary” micro- another by translating one instruction at a time.
    [Show full text]
  • Power Reduction Techniques for Microprocessor Systems
    Power Reduction Techniques For Microprocessor Systems VASANTH VENKATACHALAM AND MICHAEL FRANZ University of California, Irvine Power consumption is a major factor that limits the performance of computers. We survey the “state of the art” in techniques that reduce the total power consumed by a microprocessor system over time. These techniques are applied at various levels ranging from circuits to architectures, architectures to system software, and system software to applications. They also include holistic approaches that will become more important over the next decade. We conclude that power management is a multifaceted discipline that is continually expanding with new techniques being developed at every level. These techniques may eventually allow computers to break through the “power wall” and achieve unprecedented levels of performance, versatility, and reliability. Yet it remains too early to tell which techniques will ultimately solve the power problem. Categories and Subject Descriptors: C.5.3 [Computer System Implementation]: Microcomputers—Microprocessors;D.2.10 [Software Engineering]: Design— Methodologies; I.m [Computing Methodologies]: Miscellaneous General Terms: Algorithms, Design, Experimentation, Management, Measurement, Performance Additional Key Words and Phrases: Energy dissipation, power reduction 1. INTRODUCTION of power; so much power, in fact, that their power densities and concomitant Computer scientists have always tried to heat generation are rapidly approaching improve the performance of computers. levels comparable to nuclear reactors But although today’s computers are much (Figure 1). These high power densities faster and far more versatile than their impair chip reliability and life expectancy, predecessors, they also consume a lot increase cooling costs, and, for large Parts of this effort have been sponsored by the National Science Foundation under ITR grant CCR-0205712 and by the Office of Naval Research under grant N00014-01-1-0854.
    [Show full text]
  • The First International Conference on Mobile Systems, Applications, and Services
    USENIX Association Proceedings of MobiSys 2003: The First International Conference on Mobile Systems, Applications, and Services San Francisco, CA, USA May 5-8, 2003 © 2003 by The USENIX Association All Rights Reserved For more information about the USENIX Association: Phone: 1 510 528 8649 FAX: 1 510 548 5738 Email: [email protected] WWW: http://www.usenix.org Rights to individual papers remain with the author or the author's employer. Permission is granted for noncommercial reproduction of the work for educational or research purposes. This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein. Operating System Modifications for Task-Based Speed and Voltage Scheduling Jacob R. Lorch Alan Jay Smith Microsoft Research University of California, Berkeley 1 Microsoft Way EECS Department, Computer Science Division Redmond, WA 98052 Berkeley, CA 94720-1776 [email protected] [email protected] Abstract lower voltages mean lower energy consumption. Lower voltages, however, necessitate lower CPU speeds, pre- This paper describes RightSpeed, a task-based speed senting an interesting operating system issue: how to en- and voltage scheduler for Windows 2000. It takes ad- sure that performance remains reasonable while some- vantage of the ability of certain processors, such as those times lowering speed to save energy. from Transmeta and AMD, to dynamically change speed Traditionally, systems use interval-based strategies. and voltage and thus to save energy while running more Such strategies divide time into intervals of fixed length slowly. RightSpeed uses PACE, an algorithm that com- and set the speed for each interval based on recent CPU putes the most energy efficient way to meet task dead- utilization.
    [Show full text]