Constraining Upper Crustal Magmas in the N. Chilean Andes Chuck

Total Page:16

File Type:pdf, Size:1020Kb

Constraining Upper Crustal Magmas in the N. Chilean Andes Chuck Constraining Upper Crustal Magmas in the N. Chilean Andes Chuck Lewis College of Earth, Ocean, and Atmospheric Sciences Oregon State University Senior thesis June 3rd 2020 Advisor: Professor Shanaka de Silva Abstract The 4.59-4.18 Ma Caspana ignimbrite, found within the Altiplano-Puna Volcanic Complex (APVC), is the result of an ~8km3 eruption that took place during the Neogene Ignimbrite Flare- up in the N. Chilean Andes. While most of the eruptions during this flare up are large, monogenetic eruptions, the Caspana that is characterized by a compositional gap of ~16% SiO2 between the parental andesite and daughter rhyolite. The rhyolitic plinian fallout is distinct in composition from the majority rhyolite but is also the result of fractionation from andesite. The andesitic magma in the Caspana system are shown to represent some of the most mafic magma that was recharging the upper crustal chambers in the APVC, though all the andesites seem to share a similar signature. Depth estimates and spatial locality place the chamber at the edge of the large thermal anomaly known as the Altiplano-Puna Magma Body (APMB), where cooling would allow for dense solidification during the waning stages of mantle flux. During an initial period of cooling, the system rapidly fractionated along a shallow cotectic and produced the first of two rhyolites. The system was remobilized following recharge and renewed convection produced the second of two rhyolites and fractionation models are shown for both crystallization sequences. The bulk rhyolitic pumice contains fayalite, amongst other Fe-rich minerals, that indicate low Fe3+/Fe2+. Oxidation state in the rhyolite was likely due to the crystallization of orthopyroxene in the presence of magnetite in the parental andesite. With these two phases crystallizing together without clinopyroxene, the latter of which is common in other APVC magmas, the oxidation state in the daughter can be lowered without another method of reduction. 1 1. Introduction Explosive volcanic eruptions are an intrinsic threat to nearby communities, with continental arc settings having a concentration of this geologic hazard. The assembly of granodioritic batholiths and long-lived volcanic provinces within arcs can occur by periodic high mantle flux into the upper crust, known as an ignimbrite flare-up (de Silva, 2008). Ignimbrites containing super evolved, explosive compositions tend to have a less silicic pumice overlying the basal deposits, and are commonly interpreted as an inverted magma chamber with the parental magma following the fractionate during eruption (Hildreth, 1981). The processes capable of producing rhyolitic magma have been thoroughly investigated and attributed to various causes such as incremental recharge, assimilation, rapid compositional change during fractionation, and gas percolation through dense cumulate structures (Depaolo, 1981; Grove and Donnelly-Nolan, 1986; Bachmann and Bergantz, 2006; Coleman et al., 2012). Many of the dynamics occurring in a magma chamber during evolution, inferred through phase chemistry and whole rock data alike, include the partial melting of cumulates, storage in a rigid mush, recharge, and behavior of magmatic volatiles (Eichelberger et al., 2000; Waters and Lange, 2015; Wolff et al., 2015; Shamloo and Till, 2019). Though it appears there is a non-unique solution to producing rhyolitic compositions, some of these processes certainly prevail over others for a given magmatic system. The Caspana ignimbrite, found within the Altiplano-Puna Volcanic Complex (APVC) of the North Chilean Andes, is an archetypal occurrence of bimodal compositions seen in continental arc settings (de Silva, 1991). The spatiotemporal characteristics of the APVC make the presence of bimodal compositions somewhat of an anomaly, as most of the eruptions in the region are monotonous intermediates erupted from large calderas (de Silva and Kay, 2018). This ignimbrite signifies that high silica, low fragility (explosive) magma can be produced in the upper crust even in regions where astronomically high mantle input causes the geotherm to raise, 2 promoting long term storage and generally homogenous batholiths. The compositional gap between andesite and rhyolite bears with it a phase assemblage that is not common in the APVC. While most andesites in the APVC have two pyroxenes, the andesite in the Caspana has only orthopyroxene. The bulk of the rhyolite that constitutes the ~8km3 of erupted material contains a particularly iron rich assemblage that is undocumented in the APVC: fayalite, allanite, biotite, and oxides. The purpose of this paper is therefore two-fold: 1) we will test the original hypothesis of de Silva (1991) to find if the rhyolite indeed fractionated from the andesite and 2) investigate how these phases were stabilized. Both of these questions are linked to the overarching goals of constraining development of explosive compositions that pose a threat, the construction of the continental (granodioritic) crust, and answering the geologically interesting questions of why here, why now? 2. Background 2.1 The APVC and the Rhyolites Therein The Altiplano-Puna Volcanic Complex (APVC) in the Central Volcanic Zone (CVZ) of the N. Chilean Andes is an expression of long-lived subduction zone magmatism (Figure 1). The plateau where the APVC resides is associated with the Central Andean Neogene Ignimbrite province and was constructed from approximately 10-1 Ma with four distinct pulses of high mantle flux (Folkes et al., 2011a; Kern et al., 2016). Delamination of the Nazca plate is thought to produce a MASH (Melting, Assimilation, Storage, and Homogenization) zone at the base of the crust where partial mantle melts stall due to density differences (Hildreth and Moorbath, 1988). At the base of the crust, they undergo MASH processes until their buoyancy allows them to ascend into the mid and upper crust. High flux into the region led to the construction of an arc-scale batholith beneath the APVC, as represented by a large low velocity zone (Ward et al., 2014) and was aptly named the Altiplano-Puna Magma Body (APMB). Periods of high mantle flux into the mid-crustal mash increase eruption rates (i.e. a flare up) by allowing silicic magmas 3 to rise into upper crustal chambers (de Silva et al., 2006). Conversely, periods of waning lead to more heterogeneity and generally more effusive eruptions as the thermal engine cools off and allows geotherms to relax (Burns et al., 2015). Recent work has shown that thermal erosion along the base of the crust is characterized by higher ƒO2 along the arc than the back arc, and that heat transfer through the crust is relatively efficient (Burns et al., 2020). This allows production of high-Mg andesites near the base of the crust, owing to the coupling of Si and Mg with increasing ƒO2. Additionally, it appears that clinopyroxene plays a significant role as magma leaves the lower crust to undergo further AFC processes. The subducting Nazca plate experienced changes in dip angle through time, resulting in an Eastward migration of the arc as the slab flattened. A subsequent steepening caused the arc to migrate back West, resulting in a crustal shortening that generated the thickest continental crust on Earth of ~70km (Allmendinger et al., 1997). More recent work shows that steepening of the slab followed the passing of the Juan Fernandez ridge. As the slab steepened and mantle melting increased, the delamination of the SCLM allowed for lower crustal mash and recycling of crustal material, raising the baseline isotopic compositions. These architectural changes facilitated the raising of the geotherm, promoting episodic high-mantle power input to the mid and upper crust. The mid-crust experienced substantial thermal and rheological changes as a result, promoting the formation of the Alti-Plano Puna Magma Body (APMB) (de Silva and Gosnold, 2007), which is now proposed as the mid-crustal source of the large volume dacitic eruptions (de Silva, 1989; de Silva and Francis, 1989). Amongst the large volume dacites and their parental andesites, several rhyolites have been found within the APVC (Lindsay et al., 2001b; Schmitt et al., 2001; Folkes et al., 2011b; Grocke et al., 2017b) though none seem to share an explicit petrogenetic origin. All of these rhyolites seem to be derived from within the upper crust by different manners. Large crystalline mushes that undergo periodic influx from the source and closed system fractionation, with or without large degassing events, may form some 4 of these rhyolites. Conversely, these mushes can be remobilized if recharge is substantial enough to melt the base of the mush, promoting convection and thereby renewed fractionation as the mush begins to ‘unzip’ (Burgisser and Bergantz, 2011). Tiered systems or cupolas forming a chemically distinct cap are hypothesized to occur in the APVC among other volcanic centers These rhyolites can continue to undergo internal fractionation, especially if a portion of the eruptible magma ascends during eruption but remains in the chamber. We will assess which differentiation processes can produce the observed rhyolites in the APVC and tease out which of these processes can produce the compositions and assemblages preserved in the Caspana ignimbrite. 1.2 Large Scale Beauty: Lithologies and Field Constraints of the Caspana Ignimbrite The Caspana ignimbrite (4.59-4.18 ma; de Silva, 1989) provides a unique glimpse into a highly evolved system, expressed by bimodal compositions found together in outcrop (Figure 2). The plinian deposit is located more proximal to the inferred source, which is inferred to be buried under the modern stratocones of Toconce and Cerro del Leon, along with the Chao Dacite. A co-plinian ash indicates that the eruption plume had time to settle before the larger pyroclastic density currents (PDC’s) deposited on top (Figure 2). More distal deposits are characterized by a thin reworked layer near the base. The larger outcrops in this area contain both andesitic and rhyolitic pumices within the matrix (Figure 2, 3). Additionally, some outcrops show lenses of lithics, which also provide evidence for an eruption with multiple hiatuses.
Recommended publications
  • Geología De La Cadena Volcánica Paniri-Toconce, Zona Volcánica Central, Altiplano De La Región De Antofagasta, Chile
    Geología de la cadena volcánica Paniri-Toconce, Zona Volcánica Central, Altiplano de la Región de Antofagasta, Chile Edmundo Polanco 1*, Jorge Clavero 1 y Aldo Giavelli 1 1 Energía Andina S.A. Darío Urzúa 2165, Providencia, Santiago, Chile *E-mail: [email protected] conformado por los volcanes del León (5.753 m s.n.m.) y Resumen. La cadena volcánica del Paniri-Toconce (NW- Lagunita (5.404 m s.n.m.) que se ubican al W del volcán SE) localizada en el Altiplano de la Región de Antofagasta Toconce. El Volcán Lagunita corresponde a un se caracteriza por un fuerte control estructural a través de estratovolcán más antiguo fuertemente erosionado, de más su evolución durante el Pleistoceno. Esta cadena volcánica de 7 km de diámetro en dirección E-W que presenta de más de 30 km de longitud es dominada por dacitas de anfíbola y biotita y subordinadamente por andesita de importantes zonas afectadas por procesos de alteración piroxeno±anfíbola±biotita e incluye al domo torta más hidrotermal y está constituido por coladas de lava voluminoso del planeta, el Domo Chao, donde nuevas andesíticas y dacíticas (59 y 65-66% en peso de SiO2) y dataciones Ar/Ar señalan su actividad culminaría en el depósitos piroclásticos de bloques y ceniza. El Volcán del Pleistoceno Superior. Evidencias de terreno, petrográficas León es un estratovolcán de más de 6 km de diámetro y geoquímicas indican la cristalización fraccionada como conformado principalmente por coladas de lava andesíticas proceso dominante durante la evolución de los magmas y dacíticas de piroxeno y anfíbola aunque también tiene que dieron origen a las rocas a los distintos centros depósitos piroclásticos de bloques y ceniza asociados.
    [Show full text]
  • Hoyas Hidrográficas De Chile: Segunda Región
    HOYAS HIDROGRÁFICAS DE CHILE: SEGUNDA REGIÓN REALIZADO POR: HANS NIEMEYER F. HOVA DEL RlO LOA La hoya hidrográfica del río Loa~ con una superf! cie tota~'de 33 570 km2 , se desarrolla en el tercio norte de la IIa R~ gión de Chile, entre latitudes extremas 20Q52' y 22Q57' L.S. ylongit~ des 68QOO' y 7oQ02' L.o. El río Loa nace en la falda norte del Vn. Mi­ ño~ en los Ojos del Hiño, casi en los límites entre la la y IIa Regio­ nes de Chile, en 21Q15' L.S. y 70Q L.O~ Su longitud total se acerca a 440 km. A pesar de su extensa hoya, los recursos h!dricos provienen de la cuenca alta que comprende alrededor del 20% de la su~ perficie total. Con curso aproximadamente norte-sur~ el Loa reco­ rre casi 150 km en un profundo cañón de altura variable, desde su nací miento hasta el oasis de Chiu ~hiu, pueblo que se levanta en su margen izquierda. En este trayecto recibe sus dos tributarios más importantes que le caen del este: el río San Pedro o Inacaliri y el río Salado. En Chiu Chiu dobla su curso sensiblemente hacia el oeste para alcanzar en un recorrido de 115 km el punto denominado Chacance. En él se le reúne por la derecha el río San Salvador. En Chacance,el Loa toma franca di= recci6n sur-norte hasta fertilizar el oasis de Quillagua, despu~s de una trayectoria de 80 km. A partir de Quillagua el Loa describe un gran arco y luego desemboca en el Pacífico~ en Caleta Huel~n, despu~8 de trasponer el macizo costero en un tajo profundo~ de más de 500 m de al­ tura.
    [Show full text]
  • Application of PIXE to the Characterization of Vitreous Dacites from Archaeolgical Sites in the Atacama Region in Northern Chile
    Available online at www.sciencedirect.com NIM B Beam Interactions with Materials & Atoms Nuclear Instruments and Methods in Physics Research B 264 (2007) 333–339 www.elsevier.com/locate/nimb Application of PIXE to the characterization of vitreous dacites from archaeolgical sites in the Atacama region in northern Chile J.R. Morales a, S. Cancino a, P. Miranda a,*, M.I. Dinator a, A. Seelenfreund b a Departamento de Fı´sica, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Nun˜oa, Santiago 1, Chile b Universidad Academia de Humanismo Cristiano, Condell 343, Providencia, Santiago, Chile Received 13 April 2007; received in revised form 17 August 2007 Available online 11 September 2007 Abstract Geochemical characterization studies using PIXE were carried out on 21 vitreous dacite artifacts from early formative archaeological sites in the Atacama region, in northern Chile, and on 13 samples taken from two potential volcanic sources located within the region. Performing statistical analyses it was possible to obtain elemental concentration patterns for the archaeological samples of this material and match some of these artifacts with the geological source samples. Ó 2007 Elsevier B.V. All rights reserved. PACS: 39.10.+j; 29.17.+w; 29.30.Kv Keywords: PIXE; Archaeology; Vitreous dacite; Atacama region; Chile 1. Introduction performed more systematically beginning in the early 1990s. Studies have been centered on obsidian analysis In northern Chile, since the work of Aldunate et al. and using mainly instrumental neutron activation analysis, others [1–4], the upper Salado river Basin, the main tribu- (INAA) or energy dispersive X-ray fluorescence, tary of the Loa River in the Atacama region, has been con- (EDXRF).
    [Show full text]
  • Convergent Margin Magmatism in the Central Andes and Its Near Antipodes in Western Indonesia: Spatiotemporal and Geochemical Considerations
    AN ABSTRACT OF THE DISSERTATION OF Morgan J. Salisbury for the degree of Doctor of Philosophy in Geology presented on June 3, 2011. Title: Convergent Margin Magmatism in the Central Andes and its Near Antipodes in Western Indonesia: Spatiotemporal and Geochemical Considerations Abstract approved: ________________________________________________________________________ Adam J.R. Kent This dissertation combines volcanological research of three convergent continental margins. Chapters 1 and 5 are general introductions and conclusions, respectively. Chapter 2 examines the spatiotemporal development of the Altiplano-Puna volcanic complex in the Lípez region of southwest Bolivia, a locus of a major Neogene ignimbrite flare- up, yet the least studied portion of the Altiplano-Puna volcanic complex of the Central Andes. New mapping and laser-fusion 40Ar/39Ar dating of sanidine and biotite from 56 locations, coupled with paleomagnetic data, refine the timing and volumes of ignimbrite emplacement in Bolivia and northern Chile to reveal that monotonous intermediate volcanism was prodigious and episodic throughout the complex. 40Ar/39Ar age determinations of 13 ignimbrites from northern Chile previously dated by the K-Ar method improve the overall temporal resolution of Altiplano-Puna volcanic complex development. Together with new and updated volume estimates, the new age determinations demonstrate a distinct onset of Altiplano-Puna volcanic complex ignimbrite volcanism with modest output rates beginning ~11 Ma, an episodic middle phase with the highest eruption rates between 8 and 3 Ma, followed by a general decline in volcanic output. The cyclic nature of individual caldera complexes and the spatiotemporal pattern of the volcanic field as a whole are consistent with both incremental construction of plutons as well as a composite Cordilleran batholith.
    [Show full text]
  • Geological Society of America Bulletin
    Downloaded from gsabulletin.gsapubs.org on February 6, 2012 Geological Society of America Bulletin 40Ar/39Ar chronostratigraphy of Altiplano-Puna volcanic complex ignimbrites reveals the development of a major magmatic province Morgan J. Salisbury, Brian R. Jicha, Shanaka L. de Silva, Brad S. Singer, Néstor C. Jiménez and Michael H. Ort Geological Society of America Bulletin 2011;123, no. 5-6;821-840 doi: 10.1130/B30280.1 Email alerting services click www.gsapubs.org/cgi/alerts to receive free e-mail alerts when new articles cite this article Subscribe click www.gsapubs.org/subscriptions/ to subscribe to Geological Society of America Bulletin Permission request click http://www.geosociety.org/pubs/copyrt.htm#gsa to contact GSA Copyright not claimed on content prepared wholly by U.S. government employees within scope of their employment. Individual scientists are hereby granted permission, without fees or further requests to GSA, to use a single figure, a single table, and/or a brief paragraph of text in subsequent works and to make unlimited copies of items in GSA's journals for noncommercial use in classrooms to further education and science. This file may not be posted to any Web site, but authors may post the abstracts only of their articles on their own or their organization's Web site providing the posting includes a reference to the article's full citation. GSA provides this and other forums for the presentation of diverse opinions and positions by scientists worldwide, regardless of their race, citizenship, gender, religion, or political viewpoint. Opinions presented in this publication do not reflect official positions of the Society.
    [Show full text]
  • Evolución Del Sistema Volcánico Toconce (Región De Antofagasta, Chile) Mediante Interpretación Fotogeológica, Petrográfica Y Geoquímica
    Evolución del sistema Volcánico Toconce (Región de Antofagasta, Chile) mediante interpretación fotogeológica, petrográfica y geoquímica Cristopher López* 1, Felipe Aguilera 1, Benigno Godoy 2, Gerhard Wörner 3 y Shoji Kojima 4 1 Departamento de Geología, Universidad de Atacama, Chile 2 Doctorado en Ciencias mención Geología, Universidad Católica del Norte, Chile 3 Abteilung Geochemie, GZG, Universidad de Göttingen. Alemania 4 Departamento de Ciencias Geológicas, Universidad Católica del Norte, Chile * E-mail: [email protected] Resumen. La evolución del volcán Toconce, localizado en de la cadena volcánica San Pedro-Linzor (SPL), la cual se la cadena volcánica San Pedro-Linzor (SPL) en los Andes encuentra distribuida en orientación NW-SE, de manera Centrales, se divide en 3 etapas, todas de composición transversal al arco volcánico principal de los Andes andesítica-dacítica. La fase inicial estuvo dominada por la Centrales. El objetivo principal de este trabajo es emisión de flujos de lava que se depositaron sobre el determinar de forma preliminar los estados evolutivos de basamento correspondiente a la Ignimbrita Toconce. La fase intermedia se caracteriza por la formación de flujos de construcción de este sistema volcánico, mediante la lavas de gran potencia y diferenciada microscópicamente interpretación de fotografías aéreas, descripción macro y por la presencia de escasos cristales de cuarzo. La fase microscópica de rocas y caracterización geoquímica de las final corresponde a la construcción de la mayor parte del mismas. edifico volcánico, en la que también se encuentran depósitos de morrenas asociados a la última glaciación del Altiplano. Los datos geoquímicos indican un magma de 2 Área de estudio origen subalcalino, de la serie calcoalcalina de alto K, típico de un margen continental activo, donde posiblemente La cadena volcánica SPL tiene una longitud de ~65 km existe un fuerte influencia de procesos de contaminación cortical y/o mezcla con magmas originados en la corteza (Fig.
    [Show full text]
  • Descriptive Stats Craterdiam 1162Records
    This electronic thesis or dissertation has been downloaded from Explore Bristol Research, http://research-information.bristol.ac.uk Author: Ituarte, Lia S Title: Exploring differential erosion patterns using volcanic edifices as a proxy in South America General rights Access to the thesis is subject to the Creative Commons Attribution - NonCommercial-No Derivatives 4.0 International Public License. A copy of this may be found at https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode This license sets out your rights and the restrictions that apply to your access to the thesis so it is important you read this before proceeding. Take down policy Some pages of this thesis may have been removed for copyright restrictions prior to having it been deposited in Explore Bristol Research. However, if you have discovered material within the thesis that you consider to be unlawful e.g. breaches of copyright (either yours or that of a third party) or any other law, including but not limited to those relating to patent, trademark, confidentiality, data protection, obscenity, defamation, libel, then please contact [email protected] and include the following information in your message: •Your contact details •Bibliographic details for the item, including a URL •An outline nature of the complaint Your claim will be investigated and, where appropriate, the item in question will be removed from public view as soon as possible. ID Sample.ID Unit.sampled Unit.filter IAVCEI.ID Volcano.ID.Number Volcano.Name 130 -99 NP Volcano and eruption
    [Show full text]
  • A Geo-Referenced Visual Guide to 70 Chilean Volcanoes Photography by Gerard Prins Mission Impossible Corcovado Volcano (P
    Land of the living Mountains A geo-referenced visual guide to 70 Chilean volcanoes Photography by Gerard Prins Mission Impossible Corcovado volcano (p. 98) Ever since, in 1990, I laid eyes on “my first volcano” – Vol- that will likely take the rest of my life and still be grossly in- Additional handicaps are that I’m no mountaineer nor an ex- cán Villarrica in the Chilean South – I have been impressed by complete. pert by any measure and, thus, constantly fear to be wrong. their beauty as well as by the imposing forces that lie behind Especially because even detailed maps of the Chilean In- their creation, and have, willingly or unwillingly, pointed In the process, I have picked up some passing knowledge stituto Geográfico Militar – or Google Earth for that mat- my camera at them over and again. on geology and volcanism. However, “passing” is the opera- ter – provide precious little info on mountain names and Unwillingly, because in a country that is part of the Pacific tive word here, which is why I am relying on shameless (but locations. Ring of Fire and counts with over 600 volcanic phenomena, often edited) copy/paste from the Global Volcanism Program Moreover, I have been chasing the González-Ferrán Chil- it is virtually impossible to look towards the Andes Cordill- Web site to textually accompany the images, and generate at ean volcano “Bible” for the last ten years or so, to no avail. era and not capture something that is somehow related with least some sort of context. Still, I hope this document will be a source of entertain- the incessant subduction of the Nazca Plate under the South Although this presentation visually documents roughly ment and reason enough for travellers to either get a good tour American- and Antarctica Plates.
    [Show full text]
  • Geological Evolution of Paniri Volcano, Central Andes, Northern
    Journal of South American Earth Sciences 84 (2018) 184–200 Contents lists available at ScienceDirect Journal of South American Earth Sciences journal homepage: www.elsevier.com/locate/jsames Geological evolution of Paniri volcano, Central Andes, northern Chile T ∗ Benigno Godoya, , José Lazcanob,1, Inés Rodríguezc, Paula Martíneza,2, Miguel Angel Paradaa, Petrus Le Rouxd, Hans-Gerhard Wilkeb, Edmundo Polancoe,3 a Departamento de Geología y Centro de Excelencia en Geotermia de los Andes (CEGA), Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Plaza Ercilla 803, Santiago, Chile b Departamento de Ciencias Geológicas, Facultad de Ingeniería y Ciencias Geológicas, Universidad Católica del Norte. Avenida Angamos 0610, Antofagasta, Chile c Red Nacional de Vigilancia Volcánica, Servicio Nacional de Geología y Minería, Avenida Santa María 0104, Providencia, Santiago, Chile d Department of Geological Sciences, University of Cape Town, Rondebosch 7701, South Africa e Energía Andina S.A., Cerro El Plomo 5630, Las Condes, Santiago, Chile ARTICLE INFO ABSTRACT Keywords: Paniri volcano, in northern Chile, belongs to a volcanic chain trending across the main orientation of the Central Central Andes Andean volcanic province. Field work mapping, stratigraphic sequences, and one new 40Ar/39Ar and eleven Paniri volcano previous published 40Ar/39Ar, and K/Ar ages, indicate that the evolution of Paniri involved eruption of seven AFC-Like evolution volcanic units (Malku, Los Gordos, Las Lenguas, Las Negras, Viscacha, Laguna, and Llareta) during four main Plagioclase fractionation stages occurring over more than 1 Myr: Plateau Shield (> 800 ka); Main Edifice (800–400 ka); Old Cone Physical volcanology (400–250 ka); and New Cone (250–100 ka).
    [Show full text]
  • Descriptive Stats Height 1239Records
    This electronic thesis or dissertation has been downloaded from Explore Bristol Research, http://research-information.bristol.ac.uk Author: Ituarte, Lia S Title: Exploring differential erosion patterns using volcanic edifices as a proxy in South America General rights Access to the thesis is subject to the Creative Commons Attribution - NonCommercial-No Derivatives 4.0 International Public License. A copy of this may be found at https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode This license sets out your rights and the restrictions that apply to your access to the thesis so it is important you read this before proceeding. Take down policy Some pages of this thesis may have been removed for copyright restrictions prior to having it been deposited in Explore Bristol Research. However, if you have discovered material within the thesis that you consider to be unlawful e.g. breaches of copyright (either yours or that of a third party) or any other law, including but not limited to those relating to patent, trademark, confidentiality, data protection, obscenity, defamation, libel, then please contact [email protected] and include the following information in your message: •Your contact details •Bibliographic details for the item, including a URL •An outline nature of the complaint Your claim will be investigated and, where appropriate, the item in question will be removed from public view as soon as possible. ID Sample.ID Unit.sampled Unit.filter IAVCEI.ID Volcano.ID.Number 115 -99 NP Volcano and eruption 355806 355806
    [Show full text]
  • Informe Cal-Ll Final
    GOBIERNO DE CHILE MINISTERIO DE OBRAS PUBLICAS DIRECCIÓN GENERAL DE AGUAS INFORME TÉCNICO EVALUACIÓN DE LOS RECURSOS HÍDRICOS SECTORES CALAMA y LLALQUI CUENCA DEL RÍO LOA ELABORADO POR: DEPARTAMENTO DE ESTUDIOS Y PLANIFICACIÓN S.I.T. Nº 85 Mayo 2003 2 EQUIPO DE TRABAJO Departamento de Estudios y Planificación (DEP) Jefe Depto. Ing. Sr. Carlos Salazar Méndez Ingenieros: Sra. Ana María Gangas Sr. Rodrigo Rojas Mujica Sr. Luis Rojas Badilla Asesora: Ing. Sra. Damaris Orphanópoulos 3 TABLA DE CONTENIDO Pág. 1. INTRODUCCIÓN .................................................................................. 5 2. OBJETIVO Y ALCANCE DEL ESTUDIO .................................................. 5 2.1.- OBJETIVOS DEL ESTUDIO.................................................................5 2.2.- ALCANCE DEL ESTUDIO....................................................................5 3. ANTECEDENTES GENERALES............................................................... 9 3.1.- REFERENCIAS BIBLIOGRÁFICAS........................................................9 3.2.- MARCO GEOLÓGICO GENERAL.........................................................10 3.3.- DESCRIPCIÓN GENERAL DEL CLIMA ..................................................15 3.4.- MARCO HIDROGEOQUÍMICO GENERAL..............................................16 3.4.1.- Composición química y vías evolutivas.................................17 3.4.2.- Origen de los componentes disueltos...................................17 4. BALANCE HIDROLÓGICO .................................................................
    [Show full text]
  • Linzor Volcanic Chain, N. Chile: Tracking the Influence Of
    Journal of Volcanology and Geothermal Research 341 (2017) 172–186 Contents lists available at ScienceDirect Journal of Volcanology and Geothermal Research journal homepage: www.elsevier.com/locate/jvolgeores Sr- and Nd- isotope variations along the Pleistocene San Pedro – Linzor volcanic chain, N. Chile: Tracking the influence of the upper crustal Altiplano-Puna Magma Body Benigno Godoy a,⁎,GerhardWörnerb,PetrusLeRouxc, Shanaka de Silva d, Miguel Ángel Parada a, Shoji Kojima e, Osvaldo González-Maurel f, Diego Morata a, Edmundo Polanco g,1, Paula Martínez a,2 a Centro de Excelencia en Geotermia de los Andes (CEGA), Departamento de Geología, Facultad de Ciencas Físicas y Matemáticas, Universidad de Chile, Plaza Ercilla 803, Santiago, Chile b Abteilung Geochemie, GZG, Göttingen Universität, Goldschmidtstraße 1, Göttingen 37077, Germany c Department of Geological Sciences, University of Cape Town, Rondebosch 7701, South Africa d College of Earth, Ocean, and Atmospheric Sciences, Oregon State University, Corvallis, OR 97331, USA e Departamento de Ciencias Geológicas, Universidad Católica del Norte, Avenida Angamos 0610, Antofagasta, Chile f Programa de Doctorado en Ciencias, Mención Geología. Departamento de Ciencias Geólogicas, Universidad Católica del Norte, Avenida Angamos 0610, Antofagasta, Chile g Energía Andina S.A. Cerro El Plomo 5630, Las Condes, Santiago, Chile article info abstract Article history: Subduction-related magmas that erupted in the Central Andes during the past 10 Ma are strongly affected by Received 13 January 2017 crustal assimilation as revealed by an increase in 87Sr/86Sr isotope ratios with time that in turn are correlated Received in revised form 29 May 2017 with increased crustal thickening during the Andean orogeny.
    [Show full text]