[Italic Page Numbers Indicate Major References] Abra Pampa, 191

Total Page:16

File Type:pdf, Size:1020Kb

[Italic Page Numbers Indicate Major References] Abra Pampa, 191 Index [Italic page numbers indicate major references] Abra Pampa, 191 amygdules, 84, 97 andesine, 160 Absaroka Range, 206 Anallajchi stratovolcano, 248 andesites, 14, 39, 47, 52, 54, 59, 64, absarokites, 202, 204, 206, 208, 213, Ananea basin, 270 70, 94, 116, 122, 125, 127, 133, 267, 269 Ancasti, 197 135, 182, 221, 223, 227, 248, accretionary prism, 271 Ancud-Rio Chubut lineament, 30 251, 254, 267 acites, 268 Andean arc, central, 237 basaltic, 59, 63, 94, 98, 122, 125, Aconcagua Andean Batholith, 39 134, 234, 248, 249, 251, 268 andesite, 124, 133 Andean belt, 33 flows, 247, 251 lavas, 133 western margin, 31 hornblende, 135, 142 rocks, 117, 125 Andean Central Volcanic Zone, 139 parent, 221 Aeolian Arc, 268 Andean chain, 292, 293, 294, 295 silicic, 126 African plate, 280 paleomagnetic data, 291 tholeiitic, 181 African poles, 294 Andean convergent zone, 260 anomalies aggregates, 203, 253 Andean Cordillera, 35, 38, 39, 40, 41, Bouguer, 281, 285, 288 agglomerates, 47 89, 202, 260, 271 Eu, 52, 104, 106, 126, 127, 134, Agua de la Zorra region, 83, 84 central region, 116, 125,132, 134, 171 Agua del Milagro, 248 135 free-air, 281 Aguada de la Perdiz Formation, 186 eastern, 249 gravity, 283 Airy-Heishanen model, 283 main, 30 isostatic, 282, 288 albite, 160 northern region, 116, 125,133, magnetic, 260 Alcohuas pluton, 102 135 thermal, 76 Aleutian plutonic rocks, 124 southern region, 116, 117, 122, Antarctic Plate, 2, 54 Algarrobal Formation, 100 133, 135 Antarctic-Nazca Plate, 2 alkaline suites, 251 western, 245, 256 Antuco volcano, 240 allanite, 160 Andean crust, 115 apatite, 48, 101, 160 alluvial fan deposits, 81 central, 219 aplite, 160 Almafuerte Lava Flows, 292, 298 Andean margin, 140, 219 Appalachians, 80 Alota, 248 tectonic evolution, 39 Araucarioxylon sp., 83 Alpine foreland, 288 volcanic arc, 89 arcs, 280 Alps Andean Orogenic Cycle, 94 calc-alkaline, 267, 268 Bouguer anomaly, 281, 285, 288 Andean plateau, 289 continental margin, 15, 237, 238 eastern, 279, 281, 288 Andean subduction zone deep crust, 189 gravity anomalies, 283 flat-slab portion, 146 early Paleozoic, 189 isostatic anomaly, 279, 282, 288 modern, 114 flat-slab magmas, 134 mass budget estimations, 287 Andean trend, 31 intra-oceanic island, 237, 239 topographic, 285 Andean volcanic front, 57 magmatism, 1, 10, 15, 37, 41, 73, western, 280 Andes, 46, 54, 58, 207, 218, 219, 88, 100, 134, 158, 159, 191 alteration, 85, 97 239, 240, 259 plutonism, 4, 11 Altiplano, 157, 210, 233, 245, 249, basalts, 86 segmented, 4 260, 266, 267, 273, 289 Bouguer anomaly, 281, 285, 288 volcanics, 175, 238 geochemistry, 160 central, 4, 113, 179, 186, 217, 218, Arentica stratocones, 248 geochronology, 159 233, 234, 237, 240, 242, 255, Arequipa area, 234 modeling, 168 264,273,279, 289,291 Arequipa Massif, 245 plutonic complexes, 157 evolution, 39 Arequipa volcanics, 239 rock types, 160 fore-arc basins, 267 Argentina, 13, 87, 100, 117, 186 Altiplano Basin, 247 gravity anomalies, 283 central, 79 Altiplano belt, 175 isostatic anomaly, 279,282, 288 northwestern, 189,201, 260 Altiplano-Puna region, 289 magmas, 218, 233 Argentine foreland, 190, 191 Altiplano-Puna Volcanic Complex mantle, 115 Argentine sector, 36 (APVC), 218,227 mass budget estimations, 287 Argentinian Puna, 245 Altos de Pica Formation, 247 orogeny, 2, 4, 10, 16, 100 Argomedo Beds, 186 Amazon plain, 269, 273 plutonic cycle, 32 Arica Bend, 248, 249 Amazonian foothills, 260 plutonic rocks, 31 Arica deflection, 291 Amazonian slope, 268 shortening, 273 Arica elbow, 249 ammonites, 15, 17 south-central, 201 Arica lithospheric block, 249 Ampato-Sabancaya-Hualca volcanic southern, 13,15,16, 22, 45, 273 assimilation, 70, 229, 268 complex, 261 tectonics, 29, 264 asthenosphere, 58, 59, 108 amphibole, 98, 105, 124, 193, 196, topographic heights, 285 Atacama, 202 205 volcanics, 45 Atacama fault system, 159, 280 amphibolite, 193 western, 245, 248, 249, 251, 252, Atajaña Formation, 295 garnet, 130 254, 255 Ataña Caldera collapse, 248 301 Downloaded from http://pubs.geoscienceworld.org/books/book/chapter-pdf/957756/spe265-bm.pdf by guest on 23 September 2021 302 Index Atana ignimbrite, 229 Bolivia, 202, 225, 245, 255 Cerro Chacay andesites, 117 augite, 84, 202, 203, 251 Bolivian Altiplano, 260, 266, 267, Cerro Chorrillos volcano, 202 Austroalpine region, 280 289 geochemistry, 207 avalanche deposits, 248 Bolivian oroclinal hypothesis, 292, mineralogy, 204 Avaroa Formation, 247, 251 295 petrography, 202 Avaroa horst, 249 Bolivian orocline, 245, 248, 249, Cerro Colorado, 84, 117, 122 Ayacara Formation, 31 255, 271, 291 lavas, 133 Ayacucho basin, 260, 266, 273 Bonete lavas, 251, 255 Cerro Corina caldera, 248 Ayacucho Formation, 266 Bouguer anomalies, 281, 285, 288 Cerro de las Tórtolas Formation, 116, Ayaviri area, 267 Bouguer gravity field, 281 117, 135, 144 Aysén region, 35 Brazil, 87 andesites, 122, 123 Azerbaijan, northern, 268 Brazilian shield, 263, 271, 274, 283 dacites, 125, 128 Azufre lavas, 63, 64 breccia, 18, 94, 180, 295 lavas, 132 Azurite mine, 251 rhyolite, 20 samples, 129 Cerro Galan, Argentina, 227, 235 banakites, 202, 203, 208, 269 Cabana Conde village, 261 Cerro Galan complex, 140 Bariloche area, 39 Cadillal Complex, 123 Cerro Guacha caldera, 225 Barranco volcano, 47 Caiti volcano, 248 Cerro Moromoroni, 267 B arrosa area, 234 Cajabamba basin, 266 shoshonites, 270 volcanics, 239 Calama fault, 202 Cerro Pabellón, 248 basalts, 15, 39, 48, 50, 54, 59, 60, calc-alkaline suites, 251 Cerro Pucara, 251 63, 79, 83, 89, 94, 108, 135, calcite, 94 Cerro Pulido andesites, 122, 133, 134 237, 239, 241, 249, 268 caldera collapse, 48, 247, 248 Cerro Pulido volcanic complex, 116 back-arc, 86, 134 caldera complexes, resurgent, 219 Cerro Zapata area, 16, 79 calc-alkaline, 267 Californian trench, 270 Cerros Bravos, 142, 143 flows, 267 Callejon de Huaylas, 267 Cerros del Vetado Complex, 159, 172, komatiitic, 181, 185, 186 Camaraca Formation, 293 174 mid-ocean ridge, 122 Camaraca Pole, 293 cesium, 48 middle ocean ridge (MORB), 48 Canal Baker area, 4, 10 Chacheuta Formation, 82 oceanic island (OIB), 48, 122, 123 Cantarito, 125 Chaitén, 35 olivine, 85, 87, 116 Cantarito ignimbrite, 117, 126 rhyolite, 48, 50, 54 parental, 70 Caiiani, 192 Chaitén volcano, 31, 46, 47, 48 pillow, 31, 181, 182 Cafiapa range, 248, 249 Chanaral Complex, 159, 172 plateau, 30 Cafiapa volcano, 248 Chanaral-El Salvador area, 158-160 sills, 83, 84 Capurata stratovolcano, 248 chert, 17 tholeiitic, 16, 86, 181 Carangas Massif, 251 chert-argillite, 17 true, 234 Carangas Quadrangle, 247 Chile, 13, 31, 41, 87, 249 basement carbonate, 189, 191 central, 93,99, 107 cratonic, 80 Caspana area, 219 northern, 157,179, 186, 225, 234, crystalline, 30, 31, 192, 245 Caspana ignimbrite, 218, 219, 226, 248 metamorphic, 30 229 northernmost 239 metasedimentary, 158, 165 Caspana magma chamber, 227 southern, 2 basins, See also specific basins Catreleo, 39 volcanics, 252 behind-arc, 158, 176 Cavilolen granitoid unit, 101, 106 Chile Margin triple junction, 2 extensional, 87 Cay volcanics, 54 Chile Rise Triple Junction, 2, 58 fore-arc, 271 Cayara Formation, 247 Chile Trench, 58 formation, 108 Cayutue unit, 36 Chilean Andes, 100, 103 inversion, 158 Cenozoic, 245,247 Chilean Central Valley, 58 marginal formation, 15 Central Andean margin, 271 Chilean Lake Region, 32, 35, 39 proto-marginal, 13, 22, 24 Central Patagonia Batholith, 38, 39, Chilean margin, 89 pull-apart, 158 41 Chilenia rhyolitic, 16 Central Valley, 30, 31 accretion, 198 rift, 22, 80, 87 Central Volcanic Zone (CVZ), 116, basement, 104 submarine, 13, 16 122, 139,140, 143, 218, 219, rocks, 100 batholith 233, 260 chlorite, 85, 94, 192 development, 4 geochemistry, 143, 234 Choiyoi complex, 133 southern Patagonian, I igneous rocks, 238 Choiyoi granite-rhyolite province, 80, Beazley basin, 80, 82 ignimbrites, 218 88 belemnites, 15, 17 lavas, 131, 237 Choiyoi Group, 81, 88 Belén area, 234 magmas, 234, 237, 238 Choiyoi rhyolites, 88 Belén-Choquipina terrains, 245 northern, 234 Choiyoi series, 38 Benioff Zone, 58, 245, 251 petrogenesis, 241 Chollay unit, 100, 101, 102 Benioff-Wadati zone, 260 southern, 133, 144, 234 Chon-Aike series, 38, 40 Berenguela Sandstone Formation, 247 southernmost, 149, 152 Choshuenco volcano, 240 Berlin group, 160 tectonics, 140 Chulee Formation, 297 biotite, 36, 94, 101, 160, 167, 174, volcanic rocks, 237, 240 Cifuncho Complex, 159, 166, 171, 192, 225, 234, 249, 251 Cerke stratovolcano, 248 174 blastomylonites, 101 Cerro Aconcagua volcanic rocks, 136 cinder cones, 47, 241 Bohemian Massif, 280 Cerro Cadillal volcanic complex, 117 Cladophlebis sp., 83 Downloaded from http://pubs.geoscienceworld.org/books/book/chapter-pdf/957756/spe265-bm.pdf by guest on 23 September 2021 Index 303 clastic-flow deposits, 19 deformation, 261 Descabezado Grande rhyolite, 52 clasts, 20, 21 growth, 237 detritus, 17 clays, 247 lower, 54, 59, 70, 73, 76, 89, 130, epiclastic, 17 clinopyroxene, 36, 48, 62, 64, 74, 84, 134, 135, 146, 210, 289 diabases, 94 129, 181, 182, 203, 204, 251 magmatic differentiation, 140 diastrophism, 247 Coast Belt, 99, 101,106, 108 melting, 89, 108 Dicroidium, 83 Coast Ranges, 30, 40, 41, 99, 101 middle, 89 odontopteroides, 83 Coastal Range, 157, 175 movement (vertical), 288 differentiation, 210,234,239 geochemistry, 160 oceanic, 58, 59, 235, 280 crustal, 145, 146, 152 geochronology, 159 quasioceanic, 98 deep-level processes, 239 modeling, 168 radiogenic, 4 high-pressure, 70 plutonic complexes, 157 recycling, 58 low-pressure, 68 rock types, 160 sources, 131 magmatic, 140, 186, 237, 238 Coastal Volcanics, 294, 295 subducting, 58 mantle-to-crust
Recommended publications
  • Leader in Metals That Facilitate the Future
    Chile Leader in metals that facilitate the future Chile Leader in metals that facilitate the future The Projects section of this document has been prepared based on information provided by third parties. The Ministry of Mining has conducted a review limited to validate the existence and ownership of the projects, but the scope of this process does not confirm the accuracy or veracity of the technical data submitted by the parties. Therefore, the information on each project remains the exclusive responsibility of the interested parties identified on each data sheet. The Ministry of Mining is not responsible for the use and/or misuse of this information, and takes no responsibility for any commercial conditions that may be agreed between sellers and potential purchasers. Second edition Santiago, 2020 Editorial board Francisco Jofré, Ministry of Mining Bastián Espinosa, Ministry of Mining Javier Jara, Ministry of Mining We thank the collaboration of Empresa Nacional de Minería (Enami). Invest Chile. Instituto de Ingenieros en Minas. Colegio de Geólogos. Kura Minerals. Minería Activa. Design, layout and illustration Motif Diseño Integral SpA Photographs Ministry of Mining Printing Imprex Chile Leader in metals that facilitate the future 3 Table of Contents Letter from the Authorities ................................................................ 6 Prologue ............................................................................................. 9 Acknowledgments ...........................................................................
    [Show full text]
  • Mitigation of Environmental Extremes As a Possible Indicator of Extended Habitat Sustainability for Lakes on Early Mars
    Invited Paper Mitigation of Environmental Extremes as a Possible Indicator of Extended Habitat Sustainability for Lakes on Early Mars Nathalie A. Cabrol*a, Edmond A. Grina, Andrew N. Hockb aNASA Ames Research Center/SETI Carl Sagan Center, Space Science Division, MS 245-3. Moffett Field, CA 94035- 1000, USA; bUCLA. Dpt. of Earth & Space Sciences. 595 Charles Young Drive East, Los Angeles, CA 90095-1567. ABSTRACT The impact of individual extremes on life, such as UV radiation (UVR), temperatures, and salinity is well documented. However, their combined effect in nature is not well-understood while it is a fundamental issue controlling the evolution of habitat sustainability within individual bodies of water. Environmental variables combine in the Bolivian Altiplano to produce some of the highest, least explored and most poorly understood lakes on Earth. Their physical environment of thin atmosphere, high ultraviolet radiation, high daily temperature amplitude, ice, sulfur-rich volcanism, and hydrothermal springs, combined with the changing climate in the Andes and the rapid loss of aqueous habitat provide parallels to ancient Martian lakes at the Noachian/Hesperian transition 3.7-3.5 Ga ago. Documenting this analogy is one of the focuses of the High-Lakes Project (HLP). The geophysical data we collected on three of them located up to 5,916 m elevation suggests that a combination of extreme factors does not necessarily translate into a harsher environment for life. Large and diverse ecosystems adapt to UVR reaching 200%-216% that of sea level in bodies of water sometimes no deeper than 50 cm, massive seasonal freeze-over, and unpredictable daily evolution of UVR and temperature.
    [Show full text]
  • VOCALS Site Survey Report
    VOCALS Site Survey 30 September – 12 October 2007 Arica, Iquique, Santiago, Chile Brigitte Baeuerle, Henry Boynton, Bob Hannigan, José Meitín, Vidal Salazar, Rob Wood, Pete Daum, Juan Aravena GENERAL INFORMATION: Area 756,950 sq. km Population: 16,284,741 (2007 estimate) Government Type Republic President Michelle Bachelet Jeria Capital City Santiago GDP per capita $12,600 Unemployment Rate 7.8% Life expectancy 77 years Infant Mortality Rate 8.36 death / 1000 life births Currency unit Peso Highest point 22,572 ft (Nevado Ojos del Salado) Main cities Concepción, Viña del Mar, Valparaiso National Holiday Independence Day, 18 September OVERVIEW Chile is unique for its very long (2,650 miles) and comparatively narrow (maximum 250 miles) shape and for its great variety of natural features. It extends from latitudes 18 to 56 degrees south and contains one of the driest regions in the world and one of the wettest areas in South America. It is bound on the north by Peru, on the northeast by Bolivia, on its long eastern border (3,200 miles) by Argentina and on the west by the Pacific Ocean. In its economy and public services, Chile is one of the most developed countries in the Andean region. Climate: Extending over 38 degrees of latitude, from the tropics to the vicinity of Antarctica, and from sea level to altitudes of over 20,000 feet, Chile has a wide variety of climatic conditions. Extreme aridity prevails over the northern part of the country; the average annual rainfall in this region is 0.04 inches. Temperatures are moderate along the coast throughout the year and more extreme inland, especially in the central basin.
    [Show full text]
  • Gamonal S.Pdf
    Indice 1. Introducción …………………………………………………………………………. 6 1.1 Objetivos ………………………………………………………………...................... 7 1.2 Ubicación y accesos ..………………………………………………………………… 8 1.3 Clima y vegetación ………………………………………………………………….. 10 1.4 Metodología …………………………………………………………………………. 10 1.5 Historia de la propiedad y trabajos anteriores ……………………………………….. 11 2. Marco Geológico Regional ………………………………………………………...... 12 2.1 Basamento …………………………………………………………………………… 12 2.2 Volcanismo Cenozoico ……………………………………………………………… 14 2.3 Tectónica y estructuras ………………………………………………………………. 15 2.4 Alteración y mineralización ………………………………………………………… 18 3. Geología local ………………………………………………………………………… 19 3.1 Rocas estratificadas e intrusivas …………………………………………………….. 20 3.1.1 Formación Pantanoso (Pz) …………………………………………………...... 21 3.1.2 Lavas de Quebrada de Tapia (Kt) ……………………………………………… 21 3.1.3 Formación Astaburuaga (FAs) ………………………………………………… 21 3.1.4 Complejos de domos y depósitos volcánicos asociados (CDDV)………………. 23 3.1.4.1 Depósitos volcánicos y volcanoclásticos (CDv) …………………………… 23 3.1.4.2 Cuerpos Intrusivos (CDIn) ……………………………………………….. 24 3.1.4.3 Brechas freatomagmáticas (Bfm) ………………………………………… 25 3.1.5 Estratos de Sierra de la Sal (ESS) ……………………………………………… 26 3.1.6 Unidad Ignimbrítica I (UIg1) ………………………………………………….. 27 3.1.7 Unidad Tobácea (UTo) ………………………………………………………… 27 3.1.8 Unidad Andesítica Superior (UAS) …………………………………………… 28 3.1.9 Unidad Ignimbrítica II (UIg2) …………………………………………………. 29 3.2 Depósitos No consolidados ………………………………………………………… 29 3.2.1 Depósitos Aluviales de gravas
    [Show full text]
  • Freshwater Diatoms in the Sajama, Quelccaya, and Coropuna Glaciers of the South American Andes
    Diatom Research ISSN: 0269-249X (Print) 2159-8347 (Online) Journal homepage: http://www.tandfonline.com/loi/tdia20 Freshwater diatoms in the Sajama, Quelccaya, and Coropuna glaciers of the South American Andes D. Marie Weide , Sherilyn C. Fritz, Bruce E. Brinson, Lonnie G. Thompson & W. Edward Billups To cite this article: D. Marie Weide , Sherilyn C. Fritz, Bruce E. Brinson, Lonnie G. Thompson & W. Edward Billups (2017): Freshwater diatoms in the Sajama, Quelccaya, and Coropuna glaciers of the South American Andes, Diatom Research, DOI: 10.1080/0269249X.2017.1335240 To link to this article: http://dx.doi.org/10.1080/0269249X.2017.1335240 Published online: 17 Jul 2017. Submit your article to this journal Article views: 6 View related articles View Crossmark data Full Terms & Conditions of access and use can be found at http://www.tandfonline.com/action/journalInformation?journalCode=tdia20 Download by: [Lund University Libraries] Date: 19 July 2017, At: 08:18 Diatom Research,2017 https://doi.org/10.1080/0269249X.2017.1335240 Freshwater diatoms in the Sajama, Quelccaya, and Coropuna glaciers of the South American Andes 1 1 2 3 D. MARIE WEIDE ∗,SHERILYNC.FRITZ,BRUCEE.BRINSON, LONNIE G. THOMPSON & W. EDWARD BILLUPS2 1Department of Earth and Atmospheric Sciences, University of Nebraska-Lincoln, Lincoln, NE, USA 2Department of Chemistry, Rice University, Houston, TX, USA 3School of Earth Sciences and Byrd Polar and Climate Research Center, The Ohio State University, Columbus, OH, USA Diatoms in ice cores have been used to infer regional and global climatic events. These archives offer high-resolution records of past climate events, often providing annual resolution of environmental variability during the Late Holocene.
    [Show full text]
  • And Gas-Based Geochemical Prospecting Of
    Water- and gas-based geochemical prospecting of geothermal reservoirs in the Tarapacà and Antofagasta regions of northern Chile Tassi, F.1, Aguilera, F.2, Vaselli, O.1,3, Medina, E.2, Tedesco, D.4,5, Delgado Huertas, A.6, Poreda, R.7 1) Department of Earth Sciences, University of Florence, Via G. La Pira 4, 50121, Florence, Italy 2) Departamento de Ciencias Geológicas, Universidad Católica del Norte, Av. Angamos 0610, 1280, Antofagasta, Chile 3) CNR-IGG Institute of Geosciences and Earth Resources, Via G. La Pira 4, 50121, Florence, Italy 4)Department of Environmental Sciences, 2nd University of Naples, Via Vivaldi 43, 81100 Caserta, Italy 5) CNR-IGAG National Research Council, Institute of Environmental Geology and Geo-Engineering, Pzz.e A. Moro, 00100 Roma, Italy. 6) CSIS Estacion Experimental de Zaidin, Prof. Albareda 1, 18008, Granada, Spain. 7) Department of Earth and Environmental Sciences, 227 Hutchinson Hall, Rochester, NY 14627, U.S.A.. Studied area The Andean Central Volcanic Zone, which runs parallel the Central Andean Cordillera crossing from North to This study is mainly focused on the geochemical characteristics of water and gas South the Tarapacà and Antofagasta regions of northern Chile, consists of several volcanoes that have shown phases of thermal fluids discharging in several geothermal areas of northern Chile historical and present activity (e.g. Tacora, Guallatiri, Isluga, Ollague, Putana, Lascar, Lastarria). Such an intense (Fig. 1); volcanism is produced by the subduction process thrusting the oceanic Nazca Plate beneath the South America Plate. The anomalous geothermal gradient related to the geodynamic assessment of this extended area gives El Tatio, Apacheta, Surire, Puchuldiza-Tuya also rise to intense geothermal activity not necessarily associated with the volcanic structures.
    [Show full text]
  • Muntean/Einaudi
    Economic Geology Vol. 95, 2000, pp. 1445–1472 Porphyry Gold Deposits of the Refugio District, Maricunga Belt, Northern Chile JOHN L. MUNTEAN†,* AND MARCO T. EINAUDI Department of Geological and Environmental Sciences, Stanford University, Stanford, California 94305-2115 Abstract The porphyry gold deposits of the Refugio district and similar deposits in the Maricunga belt contain the lowest known copper to gold ratios (% Cu/ppm Au = ~0.03) of any porphyry-type deposit. The gold deposits are associated with subvolcanic andesitic to dacitic intrusions emplaced into coeval volcanic rocks. Both the Verde and Pancho deposits are zoned in space from a deeper zone of banded quartz veinlets associated with chlorite-magnetite-albite and/or pyrite-albite-clay alteration to a shallow zone of pyrite-albite-clay and local quartz-alunite ledges. Pancho contains an additional, deepest, porphyry copperlike zone, with quartz veinlets (A-veinlets) and potassic alteration. Relative to Verde, Pancho is telescoped, with all three zones present within a 400-m-vertical interval. The porphyry copperlike zone at Pancho is characterized by A-veinlets and pervasive potassic alteration, both restricted to intrusive rocks. A-veinlets range from hairline streaks of magnetite ± biotite with minor quartz and chalcopyrite, and K feldspar alteration envelopes to sugary quartz veinlets <1 cm in width with mag- netite and chalcopyrite and no alteration envelopes. Hypersaline liquid inclusions coexisting with vapor-rich in- clusions indicate temperatures above 600°C and salinities as high as 84 wt percent NaCl equiv. A pressure es- timate of 250 bars indicates a depth of 1,000 m, assuming lithostatic pressure.
    [Show full text]
  • Full-Text PDF (Final Published Version)
    Pritchard, M. E., de Silva, S. L., Michelfelder, G., Zandt, G., McNutt, S. R., Gottsmann, J., West, M. E., Blundy, J., Christensen, D. H., Finnegan, N. J., Minaya, E., Sparks, R. S. J., Sunagua, M., Unsworth, M. J., Alvizuri, C., Comeau, M. J., del Potro, R., Díaz, D., Diez, M., ... Ward, K. M. (2018). Synthesis: PLUTONS: Investigating the relationship between pluton growth and volcanism in the Central Andes. Geosphere, 14(3), 954-982. https://doi.org/10.1130/GES01578.1 Publisher's PDF, also known as Version of record License (if available): CC BY-NC Link to published version (if available): 10.1130/GES01578.1 Link to publication record in Explore Bristol Research PDF-document This is the final published version of the article (version of record). It first appeared online via Geo Science World at https://doi.org/10.1130/GES01578.1 . Please refer to any applicable terms of use of the publisher. University of Bristol - Explore Bristol Research General rights This document is made available in accordance with publisher policies. Please cite only the published version using the reference above. Full terms of use are available: http://www.bristol.ac.uk/red/research-policy/pure/user-guides/ebr-terms/ Research Paper THEMED ISSUE: PLUTONS: Investigating the Relationship between Pluton Growth and Volcanism in the Central Andes GEOSPHERE Synthesis: PLUTONS: Investigating the relationship between pluton growth and volcanism in the Central Andes GEOSPHERE; v. 14, no. 3 M.E. Pritchard1,2, S.L. de Silva3, G. Michelfelder4, G. Zandt5, S.R. McNutt6, J. Gottsmann2, M.E. West7, J. Blundy2, D.H.
    [Show full text]
  • Event History of the Santiago Area (Chile): the Sedimentological Archive of Lago Lo Encañado
    Event History of the Santiago area (Chile): the sedimentological archive of Lago Lo Encañado Thomas Pille 1 2 Acknowledgements Om te beginnen zou ik graag mijn promotor, Prof. Dr. Marc De Batist, bedanken voor dit interessante onderwerp en voor de tijd die u hierin gestoken hebt, voor de snelle verbeteringen en de veelbetekende tips en commentaren. Ook Maarten, mijn begeleider, verdient een welgemeende bedanking. Terwijl je het dit jaar zelf heel druk had (een doctoraat dat afgemaakt moest worden, je eerste kindje, een nieuw onderzoeksproject) vond je toch altijd de tijd om mij bij te staan. Vooral je enthousiasme en je doorzettingsvermogen zullen me bijblijven. Voor ieder klein vraagje waarmee ik kwam waren we een paar uur bezig, en vertrok ik niet enkel met een antwoord, maar ook met een hoofd vol extra ideeën. Philipp, obwohl ich ursprünglich nicht dein Thesis-Student war, hast du in der Abwesenheit von Maarten sehr viel Zeit in mein Project investiert. Was mir vor allem gefallen hat war das du bei einer Frage nicht einfach die Antwort gegeben hast, sondern auch versucht hast mir das Prinzip dahinter zu erklären. Vielen Dank für al deine Hilfe, und für eine schöne Reise nach Brest. Ich wünsche dir alles Gute bei deiner Doktorarbeit. I would also like to thank the rest of the RCMG staff, especially to Thomas, Mario, Willem, Oscar, Stan, Katrien and Koen. You were always there to help me if needed, or for a chat during a coffee break. The RCMG is a fantastic working environment. Mijn familie heeft er dit jaar (en eigenlijk doorheen mijn 5-jarige universitaire carrier) altijd voor mij gestaan.
    [Show full text]
  • Universidad Nacional De San Agustín Facultad De Ingeniería Geológica Geofísica Y Minas Escuela Profesional De Ingeniería Geológica
    UNIVERSIDAD NACIONAL DE SAN AGUSTÍN FACULTAD DE INGENIERÍA GEOLÓGICA GEOFÍSICA Y MINAS ESCUELA PROFESIONAL DE INGENIERÍA GEOLÓGICA “ESTUDIO GEOLÓGICO, PETROGRÁFICO Y GEOQUÍMICO DEL COMPLEJO VOLCÁNICO AMPATO - SABANCAYA (Provincia Caylloma, Dpto. Arequipa)” Tesis presentada por: Bach. Rosmery Delgado Ramos Para Optar el Grado Académico de Ingeniero Geólogo AREQUIPA – PERÚ 2012 AGRADECIMIENTOS Quiero manifestar mis más sinceros agradecimientos a todas las personas que fueron parte esencial en mi formación profesional, personal y toda mi vida. Agradezco a mis padres, Victor R. Delgado Delgado y Rosa Luz Ramos Vega, por su constante apoyo y que a pesar de las dificultades y caídas siempre estaban conmigo para cuidarme, ayudarme y sobre todo amarme. A mis hermanos Renzo R. y Angela V. Delgado Ramos que con su optimismo y perseverancia me ayudaron a enfrentar los caminos difíciles de la vida y seguir con mis ideales. Agradezco también a mis asesores al Dr. Marco Rivera y Dr. Pablo Samaniego, que con su paciencia, consejos, regaños, apoyo incondicional y sus grandes enseñanzas, cultivaron en mí la pasión por la investigación y las ganas de alcanzar mis objetivos. Agradezco al Instituto Geológico Minero y Metalúrgico y al convenio de colaboración con el IRD a cargo del Dr. Pablo Samaniego, por la beca que me otorgó durante el período en el cual realice mi tesis. Gracias a mi asesor de tesis el Dr. Fredy García de la Universidad Nacional de San Agustín que por su revisión detallada y gran apoyo benefició en este trabajo. Agradezco al SENAMHI por proporcionarme los datos de clima, fundamentales para el desarrollo de esta tesis.
    [Show full text]
  • Explora Atacama І Hikes
    ATACAMA explorations explora Atacama І Hikes T2 Reserva Tatio T4 Cornisas Nights of acclimatization Nights of acclimatization needed: 2 needed: 0 Type: Half day Type: Half day Duration: 1h Duration: 2h 30 min Distance: 2,3 km / 1,4 mi Distance: 6,7 kms / 4,2 mi Max. Altitude: 4.321 m.a.s.l / Max. Altitude: 2.710 m.a.s.l / HIKES 14.176 f.a.s.l 8.891 f.a.s.l Description: This exploration Description: Departing by van, we offers a different way of visiting head toward the Catarpe Valley Our hikes have been designed according the Tatio geysers, a geothermal by an old road. From there, we to different interests and levels of skill. field with over 80 boiling water hike along the ledges of La Sal They vary in length and difficulty so we sources. In this trip there are Mountains, with panoramic views always recommend travelers to talk to their excellent opportunities of studying of the oasis, the Atacama salt flat, guides before choosing an exploration. the highlands fauna, which includes and The, La Sal, and Domeyko Every evening, guides brief travelers vicuñas, flamingos and foxes, Mountains, three mountain ranges on the different explorations, so that among others. We walk through the that shape the region’s geography. they can choose one that best fit their reserve with views of The Mountains By the end of the exploration we interests. Exploration times do not consider and steaming hot water sources. descend through Marte Valley’s sand transportation. Return to the hotel by van.
    [Show full text]
  • Report on Cartography in the Republic of Chile 2011 - 2015
    REPORT ON CARTOGRAPHY IN CHILE: 2011 - 2015 ARMY OF CHILE MILITARY GEOGRAPHIC INSTITUTE OF CHILE REPORT ON CARTOGRAPHY IN THE REPUBLIC OF CHILE 2011 - 2015 PRESENTED BY THE CHILEAN NATIONAL COMMITTEE OF THE INTERNATIONAL CARTOGRAPHIC ASSOCIATION AT THE SIXTEENTH GENERAL ASSEMBLY OF THE INTERNATIONAL CARTOGRAPHIC ASSOCIATION AUGUST 2015 1 REPORT ON CARTOGRAPHY IN CHILE: 2011 - 2015 CONTENTS Page Contents 2 1: CHILEAN NATIONAL COMMITTEE OF THE ICA 3 1.1. Introduction 3 1.2. Chilean ICA National Committee during 2011 - 2015 5 1.3. Chile and the International Cartographic Conferences of the ICA 6 2: MULTI-INSTITUTIONAL ACTIVITIES 6 2.1 National Spatial Data Infrastructure of Chile 6 2.2. Pan-American Institute for Geography and History – PAIGH 8 2.3. SSOT: Chilean Satellite 9 3: STATE AND PUBLIC INSTITUTIONS 10 3.1. Military Geographic Institute - IGM 10 3.2. Hydrographic and Oceanographic Service of the Chilean Navy – SHOA 12 3.3. Aero-Photogrammetric Service of the Air Force – SAF 14 3.4. Agriculture Ministry and Dependent Agencies 15 3.5. National Geological and Mining Service – SERNAGEOMIN 18 3.6. Other Government Ministries and Specialized Agencies 19 3.7. Regional and Local Government Bodies 21 4: ACADEMIC, EDUCATIONAL AND TRAINING SECTOR 21 4.1 Metropolitan Technological University – UTEM 21 4.2 Universities with Geosciences Courses 23 4.3 Military Polytechnic Academy 25 5: THE PRIVATE SECTOR 26 6: ACKNOWLEDGEMENTS AND ACRONYMS 28 ANNEX 1. List of SERNAGEOMIN Maps 29 ANNEX 2. Report from CENGEO (University of Talca) 37 2 REPORT ON CARTOGRAPHY IN CHILE: 2011 - 2015 PART ONE: CHILEAN NATIONAL COMMITTEE OF THE ICA 1.1: Introduction 1.1.1.
    [Show full text]