Isotopic Evolution at San Pedro - Linzor Volcanic Chain, Central Andes

Total Page:16

File Type:pdf, Size:1020Kb

Isotopic Evolution at San Pedro - Linzor Volcanic Chain, Central Andes O EOL GIC G A D D A E D C E I H C I L E O S F u n 2 d 6 la serena octubre 2015 ada en 19 Isotopic evolution at San Pedro - Linzor volcanic chain, Central Andes. Benigno Godoy1*, Paula Martínez1, Gerhard Wörner2, Petrus Le Roux3, Shoji Kojima4, Shan de Silva5, Diego Morata1, Miguel Angel Parada1 1 Departamento de Geología, Centro de Excelencia en Geotermia de los Andes (CEGA), Facultad de Ciencas Físicas y Matemáticas, Universidad de Chile, Plaza Ercilla 803, Santiago, Chile 2 Abteilung Geochemie, GZG, Göttingen Universität, Goldschmidtstraße 1, Göttingen 37077, Germany 3 Department of Geological Sciences, University of Cape Town, Rondebosch 7701, South Africa 4 Departamento de Ciencias Geológicas, Universidad Católica del Norte, Avenida Angamos 0610, Antofagasta, Chile 5 College of Earth, Ocean, and Atmospheric Sciences, Oregon State University, Corvallis, OR 97331, USA *Contact e-mail: [email protected] Abstract. The San Pedro – Linzor volcanic chain located in volcanic front just north of the Atacama Basin and is the Central Andean volcanic zone runs along the western related to a system of NW-SE transcurrent faults. This new border of the Altiplano-Puna magma body (APMB). The dataset shows a shift in isotopic characteristics of Central APMB corresponds to a partially molten upper crustal (<25 Andean magmatism along the volcanic chain. km depth) MASH-type zone, now thought to be a crystal- mush, related to the eruption of ignimbrites and dacitic domes of the Altiplano-Puna Volcanic Complex. Eruption of Geology the San Pedro – Linzor volcanic chain started 2 Ma ago, generating the NW-SE trending volcanic edifices observed The San Pedro – Linzor volcanic chain is part of the Plio- within the chain. This volcanic chain shows a decrease in Pleistocene evolution of the Central Andean magmatic arc. 87Sr/86Sr isotope ratios in the orientation of the volcanic This volcanic chain is located at the western Border of the chain, from Toconce (>0.7075) to San Pedro (<0.7070) Altiplano-Puna magma Body (Figure 1). The volcanic volcanoes. Changes in the isotopic ratios would be chain includes the San Pedro – San Pablo complex, and the associated with different extends of interaction between Paniri, Cerro del Leon, Toconce and Linzor volcanoes. mantle-derived magmas and the APMB. Thus, erupted lavas in the SE would have assimilated more crustal The Chao Dacite and Chillahuita domes and the La Poruña material than those that evolved in the NW-most part of the scoria cone are also included in this volcanic chain (Figure volcanic chain. 1). Keywords. Isotopic variations, Geochronology; Central Andean magmatism; Altiplano-Puna magma body Introduction During its evolution, Central Andean volcanic front has migrated in an eastwards direction since the Jurassic to reach its present position (Coira et al., 1982). This eastwards migration has Been accompanied By an increase in the Sr-isotope ratios of erupted lavas caused, mainly, By the thickening of the continental crust in this magmatic arc (Haschke, 2002; Mamani et al., 2010). On the other hand, the Altiplano-Puna magma Body represents the remnants of an upper crustal MASH-type zone related to the eruption of ignimBrites and domes in the Central Andes (Zandt et al., 2003; Burns et al., 2015). Figure 1. Satellite image showing the location and components This generated a volcano-tectonic province which was of the San Pedro – Linzor volcanic chain. Locations of sampled denominated the Altiplano-Puna volcanic complex (de lavas with 87Sr/86Sr are indicated in the figure. Silva, 1989). In this study, new isotopic data for the San Pedro – Linzor Petrographically, the lava flows of the volcanoes vary from volcanic chain are presented. This chain runs along an Basaltic-andesite to hornBlende-dacite, with pyroxene offset and is oBlique to the general N-S trend of the active andesite as the main lithological type (Godoy et al., 2014 472 AT 1 GeoloGía ReGional y Geodinámica andina and references therein; Martínez, 2014). Small-volume Paniri, while even lower ratios (<0.7070) were obtained for pyroclastic flows related to the volcanoes, and the Chao San Pedro volcano (FiGures 1 and 3). On the other hand, Dacite and Chillahuita domes have the most evolved Toconce and Cerro del Leon lavas show significantly dacitic composition, while the scoria flows of La Poruña higher (>0.7075) 87Sr/86Sr signatures (FiGures 1 and 3), cone are the most mafic, varyinG from basaltic-andesite to amonGst the hiGhest in the arc front of the Central Andean andesite (Godoy et al., 2014). All lavas show consistently Volcanic Zone for mafic andesites (Godoy et al., 2014). low LREE/HREE ratios compared to maGmas that erupted further North. StronG HREE depletion is Generally considered to be the result of maGmatic evolution (differentiation and assimilation) at hiGh pressures in thickened crust (e.G. Mamani et al., 2010). Thus, the Geochemical characteristics of maGmas erupted alonG this volcanic chain is related to an AFC-type evolution of mantle-derived maGmas, with contamination by crustal material that most-probably occurred at shallow upper crustal levels (Godoy et al., 2014). Geochronology of the volcanic chain New 40Ar/39Ar datinG, and published K/Ar Figure 2. 40Ar/39Ar aGes (circles) vs. position of obtained aGes GeochronoloGical data of sampled lavas from Paniri, Cerro from lava samples from the volcanic chain. Also, K/Ar (squares), del Leon and Toconce volcanoes are Given in FiGure 2. and 3He (diamond) aGes are presented. 40 39 Ar/ Ar datinG has been carried out by us and EnerGía 40 39 Andina S.A. (pers. comm.). Ar/ Ar data were obtained 87 86 from Groundmass and amphibole of selected samples. Figure 3 plots Sr/ Sr isotope ratios against SiO2 content Also, a 3He age from the La Poruña scoria cone (Wörner et of selected lavas. It is clear from this fiGure that Toconce al., 2000) is presented in Figure 2. No age data has been and Cerro del Leon volcanoes, located at the SE extreme obtained for San Pedro volcano, however, accordinG to of the chain, have hiGher 87Sr/86Sr values than lavas O’Callaghan and Francis (1986) this volcano is younger erupted at Paniri and San Pedro volcanoes at similar SiO2 than San Pablo which pre-dated the last Glacial episode. content. FiGure 3 also shows that Toconce and Cerro del Also, historical and fumarolic activity has been reported Leon lavas have similar, and even higher, 87Sr/86Sr values for San Pedro volcano (Global Volcanism ProGram, 2013). than the domes recoGnized in the area. San Pedro and Thus a Pre-Holocene to Recent age is proposed for this Paniri volcanoes however have 87Sr/86Sr ratios similar to volcano (Figure 2). Literature and new aGe data indicate those obtained by Mamani et al. (2010) for La Poruña that the San Pedro – Linzor volcanic chain has evolved in scoria cone (Figure 2) the last 2 Ma (FiGure 2). This is consistent with the aGe of Toconce IGnimbrite (6.52 Ma, Salisbury et al., 2011) which constitutes the basement of this volcanic chain. Thus, construction of the main stratovolcanoes of the chain occurred between 1.9 and 0.1 Ma. On the other hand, eruption of both the most and the least differentiated magmas in the volcanic chain occurred at 100 ka (Chao Dacite and Chillahuita domes, and La Poruña scoria cone, respectively) (FiGure 2). Isotopic variations at San Pedro-Linzor volcanic chain 87Sr/86Sr isotope ratios for selected lavas from the San Pedro – Linzor volcanic chain are plotted in Figure 3, toGether with published values. Also, a previously sampled 87 86 87 86 lava from La Poruña scoria cone has a Sr/ Sr ratio of Figure 3. Sr/ Sr ratios vs. SiO2 (wt. %) diagram for selected 0.7066 (Mamani et al., 2010), while dacitic domes in the samples. Also included are data from Mamani et al. (2010) for SE yielded 87Sr/86Sr ratios of 0.70806 (Chao Dacite) and San Pedro (black squares) and La Poruña scoria cone (black 0.70805 (Chillahuita) (de Silva et al., 1994) (Figure 3). trianGle), as well as data for Chao Dacite (grey diamond) and The data show an increase in 87Sr/86Sr isotopic values for Chillahuita (white diamond) from de Silva et al. (1994). Grey 87 86 these volcanoes from NW to SE (FiGures 1 and 3). Low area indicates variation of Sr/ Sr vs. SiO2 for younG lavas (< 5 Ma) erupted in the Central Volcanic Zone (Mamani et al., 2010). 87Sr/86Sr ratios (<0.7080) are recoGnized in the NW at 473 ST 3 METAMORFISMO Y MAGMATISMO EN ZONAS DE SUBDUCCIÓN The 87Sr/86Sr compositions of lavas from the San Pedro – Therefore, the decrease in the 87Sr/86Sr composition of Linzor volcanic chain define a NW-SE trend (Figures 1 magmas erupted along the San Pedro – Linzor volcanic and 3). This westwards lateral migration of the 87Sr/86Sr chain can be associated with a progressive change in the ratios could be closely associated with the presence of the extent of the interaction of mantle-derived magmas with Altiplano-Puna magma body (Figure 4). Due its partially molten crustal material during stagnation at upper rheological characteristic, the APMB would act as a barrier crustal levels (< 25 km) (Figure 4). for mantle-derived magmas during their ascent causing mantle-derived magmas to pond below this partially Conclusions molten zone (25-30 km depth; de Silva et al., 2006) (Figure 4). The San Pedro – Linzor volcanic chain was erupted in the last 2 Ma in a NW-SE trending orientation over a Ponding of magmas rising from deeper sources are likely ignimbritic basement. During its construction, the to lead to interaction with the partially molten zone, evolution of this volcanic chain have been highly resulting in more radiogenic Sr in the eruptive products influenced by the presence of the Altiplano-Puna magma, (Figure 4).
Recommended publications
  • Chilean Notes, 1962-1963
    CHILEAN NOTES ' CHILEAN NOTES, 1962-1963 BY EVELIO ECHEVARRfA C. (Three illustrations: nos. 2I-23) HE mountaineering seasons of I 962 and I 963 have seen an increase in expeditionary activity beyond the well-trodden Central Andes of Chile. This activity is expected to increase in the next years, particularly in Bolivia and Patagonia. In the Central Andes, \vhere most of the mountaineering is concen­ trated, the following first ascents were reported for the summer months of I962: San Augusto, I2,o6o ft., by M. Acufia, R. Biehl; Champafiat, I3,I90 ft., by A. Diaz, A. Figueroa, G. and P. de Pablo; Camanchaca (no height given), by G. Fuchloger, R. Lamilla, C. Sepulveda; Los Equivo­ cados, I3,616 ft., by A. Ducci, E. Eglington; Puente Alto, I4,764 ft., by F. Roulies, H. Vasquez; unnamed, I4,935 ft., by R. Biehl, E. Hill, IVI. V ergara; and another unnamed peak, I 5,402 ft., by M. Acufia, R. Biehl. Besides the first ascent of the unofficially named peak U niversidad de Humboldt by the East German Expedition, previously reported by Mr. T. Crombie, there should be added to the credit of the same party the second ascent of Cerro Bello, I7,o6o ft. (K. Nickel, F. Rudolph, M. Zielinsky, and the Chilean J. Arevalo ), and also an attempt on the un­ climbed North-west face of Marmolejo, 20,0I3 ft., frustrated by adverse weather and technical conditions of the ice. In the same area two new routes were opened: Yeguas Heladas, I5,7I5 ft., direct by the southern glacier, by G.
    [Show full text]
  • Geología De La Cadena Volcánica Paniri-Toconce, Zona Volcánica Central, Altiplano De La Región De Antofagasta, Chile
    Geología de la cadena volcánica Paniri-Toconce, Zona Volcánica Central, Altiplano de la Región de Antofagasta, Chile Edmundo Polanco 1*, Jorge Clavero 1 y Aldo Giavelli 1 1 Energía Andina S.A. Darío Urzúa 2165, Providencia, Santiago, Chile *E-mail: [email protected] conformado por los volcanes del León (5.753 m s.n.m.) y Resumen. La cadena volcánica del Paniri-Toconce (NW- Lagunita (5.404 m s.n.m.) que se ubican al W del volcán SE) localizada en el Altiplano de la Región de Antofagasta Toconce. El Volcán Lagunita corresponde a un se caracteriza por un fuerte control estructural a través de estratovolcán más antiguo fuertemente erosionado, de más su evolución durante el Pleistoceno. Esta cadena volcánica de 7 km de diámetro en dirección E-W que presenta de más de 30 km de longitud es dominada por dacitas de anfíbola y biotita y subordinadamente por andesita de importantes zonas afectadas por procesos de alteración piroxeno±anfíbola±biotita e incluye al domo torta más hidrotermal y está constituido por coladas de lava voluminoso del planeta, el Domo Chao, donde nuevas andesíticas y dacíticas (59 y 65-66% en peso de SiO2) y dataciones Ar/Ar señalan su actividad culminaría en el depósitos piroclásticos de bloques y ceniza. El Volcán del Pleistoceno Superior. Evidencias de terreno, petrográficas León es un estratovolcán de más de 6 km de diámetro y geoquímicas indican la cristalización fraccionada como conformado principalmente por coladas de lava andesíticas proceso dominante durante la evolución de los magmas y dacíticas de piroxeno y anfíbola aunque también tiene que dieron origen a las rocas a los distintos centros depósitos piroclásticos de bloques y ceniza asociados.
    [Show full text]
  • Constraining Upper Crustal Magmas in the N. Chilean Andes Chuck
    Constraining Upper Crustal Magmas in the N. Chilean Andes Chuck Lewis College of Earth, Ocean, and Atmospheric Sciences Oregon State University Senior thesis June 3rd 2020 Advisor: Professor Shanaka de Silva Abstract The 4.59-4.18 Ma Caspana ignimbrite, found within the Altiplano-Puna Volcanic Complex (APVC), is the result of an ~8km3 eruption that took place during the Neogene Ignimbrite Flare- up in the N. Chilean Andes. While most of the eruptions during this flare up are large, monogenetic eruptions, the Caspana that is characterized by a compositional gap of ~16% SiO2 between the parental andesite and daughter rhyolite. The rhyolitic plinian fallout is distinct in composition from the majority rhyolite but is also the result of fractionation from andesite. The andesitic magma in the Caspana system are shown to represent some of the most mafic magma that was recharging the upper crustal chambers in the APVC, though all the andesites seem to share a similar signature. Depth estimates and spatial locality place the chamber at the edge of the large thermal anomaly known as the Altiplano-Puna Magma Body (APMB), where cooling would allow for dense solidification during the waning stages of mantle flux. During an initial period of cooling, the system rapidly fractionated along a shallow cotectic and produced the first of two rhyolites. The system was remobilized following recharge and renewed convection produced the second of two rhyolites and fractionation models are shown for both crystallization sequences. The bulk rhyolitic pumice contains fayalite, amongst other Fe-rich minerals, that indicate low Fe3+/Fe2+. Oxidation state in the rhyolite was likely due to the crystallization of orthopyroxene in the presence of magnetite in the parental andesite.
    [Show full text]
  • Sr–Pb Isotopes Signature of Lascar Volcano (Chile): Insight Into Contamination of Arc Magmas Ascending Through a Thick Continental Crust N
    Sr–Pb isotopes signature of Lascar volcano (Chile): Insight into contamination of arc magmas ascending through a thick continental crust N. Sainlot, I. Vlastélic, F. Nauret, S. Moune, F. Aguilera To cite this version: N. Sainlot, I. Vlastélic, F. Nauret, S. Moune, F. Aguilera. Sr–Pb isotopes signature of Lascar volcano (Chile): Insight into contamination of arc magmas ascending through a thick continental crust. Journal of South American Earth Sciences, Elsevier, 2020, 101, pp.102599. 10.1016/j.jsames.2020.102599. hal-03004128 HAL Id: hal-03004128 https://hal.uca.fr/hal-03004128 Submitted on 13 Nov 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Copyright Manuscript File Sr-Pb isotopes signature of Lascar volcano (Chile): Insight into contamination of arc magmas ascending through a thick continental crust 1N. Sainlot, 1I. Vlastélic, 1F. Nauret, 1,2 S. Moune, 3,4,5 F. Aguilera 1 Université Clermont Auvergne, CNRS, IRD, OPGC, Laboratoire Magmas et Volcans, F-63000 Clermont-Ferrand, France 2 Observatoire volcanologique et sismologique de la Guadeloupe, Institut de Physique du Globe, Sorbonne Paris-Cité, CNRS UMR 7154, Université Paris Diderot, Paris, France 3 Núcleo de Investigación en Riesgo Volcánico - Ckelar Volcanes, Universidad Católica del Norte, Avenida Angamos 0610, Antofagasta, Chile 4 Departamento de Ciencias Geológicas, Universidad Católica del Norte, Avenida Angamos 0610, Antofagasta, Chile 5 Centro de Investigación para la Gestión Integrada del Riesgo de Desastres (CIGIDEN), Av.
    [Show full text]
  • Lawrence Berkeley National Laboratory Recent Work
    Lawrence Berkeley National Laboratory Recent Work Title Assessment of high enthalpy geothermal resources and promising areas of Chile Permalink https://escholarship.org/uc/item/9s55q609 Authors Aravena, D Muñoz, M Morata, D et al. Publication Date 2016 DOI 10.1016/j.geothermics.2015.09.001 Peer reviewed eScholarship.org Powered by the California Digital Library University of California Assessment of high enthalpy geothermal resources and promising areas of Chile Author links open overlay panel DiegoAravena ab MauricioMuñoz ab DiegoMorata ab AlfredoLahsen ab Miguel ÁngelParada ab PatrickDobson c Show more https://doi.org/10.1016/j.geothermics.2015.09.001 Get rights and content Highlights • We ranked geothermal prospects into measured, Indicated and Inferred resources. • We assess a comparative power potential in high-enthalpy geothermal areas. • Total Indicated and Inferred resource reaches 659 ± 439 MWe divided among 9 areas. • Data from eight additional prospects suggest they are highly favorable targets. • 57 geothermal areas are proposed as likely future development targets. Abstract This work aims to assess geothermal power potential in identified high enthalpy geothermal areas in the Chilean Andes, based on reservoir temperature and volume. In addition, we present a set of highly favorable geothermal areas, but without enough data in order to quantify the resource. Information regarding geothermal systems was gathered and ranked to assess Indicated or Inferred resources, depending on the degree of confidence that a resource may exist as indicated by the geoscientific information available to review. Resources were estimated through the USGS Heat in Place method. A Monte Carlo approach is used to quantify variability in boundary conditions.
    [Show full text]
  • Seasonal Patterns of Atmospheric Mercury in Tropical South America As Inferred by a Continuous Total Gaseous Mercury Record at Chacaltaya Station (5240 M) in Bolivia
    Atmos. Chem. Phys., 21, 3447–3472, 2021 https://doi.org/10.5194/acp-21-3447-2021 © Author(s) 2021. This work is distributed under the Creative Commons Attribution 4.0 License. Seasonal patterns of atmospheric mercury in tropical South America as inferred by a continuous total gaseous mercury record at Chacaltaya station (5240 m) in Bolivia Alkuin Maximilian Koenig1, Olivier Magand1, Paolo Laj1, Marcos Andrade2,7, Isabel Moreno2, Fernando Velarde2, Grover Salvatierra2, René Gutierrez2, Luis Blacutt2, Diego Aliaga3, Thomas Reichler4, Karine Sellegri5, Olivier Laurent6, Michel Ramonet6, and Aurélien Dommergue1 1Institut des Géosciences de l’Environnement, Université Grenoble Alpes, CNRS, IRD, Grenoble INP, Grenoble, France 2Laboratorio de Física de la Atmósfera, Instituto de Investigaciones Físicas, Universidad Mayor de San Andrés, La Paz, Bolivia 3Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, Helsinki, 00014, Finland 4Department of Atmospheric Sciences, University of Utah, Salt Lake City, UT 84112, USA 5Université Clermont Auvergne, CNRS, Laboratoire de Météorologie Physique, UMR 6016, Clermont-Ferrand, France 6Laboratoire des Sciences du Climat et de l’Environnement, LSCE-IPSL (CEA-CNRS-UVSQ), Université Paris-Saclay, Gif-sur-Yvette, France 7Department of Atmospheric and Oceanic Sciences, University of Maryland, College Park, MD 20742, USA Correspondence: Alkuin Maximilian Koenig ([email protected]) Received: 22 September 2020 – Discussion started: 28 October 2020 Revised: 20 January 2021 – Accepted: 21 January 2021 – Published: 5 March 2021 Abstract. High-quality atmospheric mercury (Hg) data are concentrations were linked to either westerly Altiplanic air rare for South America, especially for its tropical region. As a masses or those originating from the lowlands to the south- consequence, mercury dynamics are still highly uncertain in east of CHC.
    [Show full text]
  • Evolution of Ice-Dammed Proglacial Lakes in Última Esperanza, Chile: Implications from the Late-Glacial R1 Eruption of Reclús Volcano, Andean Austral Volcanic Zone
    Andean Geology 38 (1): 82-97. January, 2011 Andean Geology formerly Revista Geológica de Chile www.scielo.cl/andgeol.htm Evolution of ice-dammed proglacial lakes in Última Esperanza, Chile: implications from the late-glacial R1 eruption of Reclús volcano, Andean Austral Volcanic Zone Charles R. Stern1, Patricio I. Moreno2, Rodrigo Villa-Martínez3, Esteban A. Sagredo2, 4, Alfredo Prieto5, Rafael Labarca6* 1 Department of Geological Sciences, University of Colorado, Boulder, CO 80309-0399, USA. [email protected] 2 Depto. de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Casilla 653, Santiago, Chile. [email protected] 3 Centro de Estudios del Cuaternario (CEQUA), Av. Bulnes 01890, Punta Arenas, Chile. [email protected] 4 Department of Geology, University of Cincinnati, Cincinnati, OH 45221, USA. [email protected] 5 Centro de Estudios del Hombre Austral, Instituto de la Patagonia, Universidad de Magallanes, Casilla 113-D, Punta Arenas, Chile. [email protected] 6 Programa de Doctorado Universidad Nacional del Centro de la Provincia de Buenos Aires (UNCPBA), Argentina. [email protected] * Permanent address: Juan Moya 910, Ñuñoa, Santiago, Chile. ABsTracT. Newly described outcrops, excavations and sediment cores from the region of Última Esperanza, Magalla- nes, contain tephra derived from the large late-glacial explosive R1 eruption of the Reclús volcano in the Andean Austral Volcanic Zone. New radiocarbon dates associated to these deposits refine previous estimates of the age, to 14.9 cal kyrs BP (12,670±240 14C yrs BP), and volume, to >5 km3, of this tephra. The geographic and stratigraphic distribution of R1 also place constraints on the evolution of the ice-dammed proglacial lake that existed east of the cordillera in this area between the termination of the Last Glacial Maximum (LGM) and the Holocene.
    [Show full text]
  • Hoyas Hidrográficas De Chile: Segunda Región
    HOYAS HIDROGRÁFICAS DE CHILE: SEGUNDA REGIÓN REALIZADO POR: HANS NIEMEYER F. HOVA DEL RlO LOA La hoya hidrográfica del río Loa~ con una superf! cie tota~'de 33 570 km2 , se desarrolla en el tercio norte de la IIa R~ gión de Chile, entre latitudes extremas 20Q52' y 22Q57' L.S. ylongit~ des 68QOO' y 7oQ02' L.o. El río Loa nace en la falda norte del Vn. Mi­ ño~ en los Ojos del Hiño, casi en los límites entre la la y IIa Regio­ nes de Chile, en 21Q15' L.S. y 70Q L.O~ Su longitud total se acerca a 440 km. A pesar de su extensa hoya, los recursos h!dricos provienen de la cuenca alta que comprende alrededor del 20% de la su~ perficie total. Con curso aproximadamente norte-sur~ el Loa reco­ rre casi 150 km en un profundo cañón de altura variable, desde su nací miento hasta el oasis de Chiu ~hiu, pueblo que se levanta en su margen izquierda. En este trayecto recibe sus dos tributarios más importantes que le caen del este: el río San Pedro o Inacaliri y el río Salado. En Chiu Chiu dobla su curso sensiblemente hacia el oeste para alcanzar en un recorrido de 115 km el punto denominado Chacance. En él se le reúne por la derecha el río San Salvador. En Chacance,el Loa toma franca di= recci6n sur-norte hasta fertilizar el oasis de Quillagua, despu~s de una trayectoria de 80 km. A partir de Quillagua el Loa describe un gran arco y luego desemboca en el Pacífico~ en Caleta Huel~n, despu~8 de trasponer el macizo costero en un tajo profundo~ de más de 500 m de al­ tura.
    [Show full text]
  • Processes Culminating in the 2015 Phreatic Explosion at Lascar Volcano, Chile, Evidenced by Multiparametric Data
    Nat. Hazards Earth Syst. Sci., 20, 377–397, 2020 https://doi.org/10.5194/nhess-20-377-2020 © Author(s) 2020. This work is distributed under the Creative Commons Attribution 4.0 License. Processes culminating in the 2015 phreatic explosion at Lascar volcano, Chile, evidenced by multiparametric data Ayleen Gaete1, Thomas R. Walter1, Stefan Bredemeyer1,2, Martin Zimmer1, Christian Kujawa1, Luis Franco Marin3, Juan San Martin4, and Claudia Bucarey Parra3 1GFZ German Research Centre for Geosciences, Telegrafenberg, 14473 Potsdam, Germany 2GEOMAR Helmholtz Centre for Ocean Research Kiel, 24148 Kiel, Germany 3Observatorio Volcanológico de Los Andes del Sur (OVDAS), Servicio Nacional de Geología y Minería (SERNAGEOMIN), Temuco, Chile 4Physics Science Department, Universidad de la Frontera, Casilla 54-D, Temuco, Chile Correspondence: Ayleen Gaete ([email protected]) Received: 13 June 2019 – Discussion started: 25 June 2019 Accepted: 5 December 2019 – Published: 4 February 2020 Abstract. Small steam-driven volcanic explosions are com- marole on the southern rim of the Lascar crater revealed a mon at volcanoes worldwide but are rarely documented or pronounced change in the trend of the relationship between monitored; therefore, these events still put residents and the CO2 mixing ratio and the gas outlet temperature; we tourists at risk every year. Steam-driven explosions also oc- speculate that this change was associated with the prior pre- cur frequently (once every 2–5 years on average) at Lascar cipitation event. An increased thermal anomaly inside the ac- volcano, Chile, where they are often spontaneous and lack tive crater as observed in Sentinel-2 images and drone over- any identifiable precursor activity.
    [Show full text]
  • Application of PIXE to the Characterization of Vitreous Dacites from Archaeolgical Sites in the Atacama Region in Northern Chile
    Available online at www.sciencedirect.com NIM B Beam Interactions with Materials & Atoms Nuclear Instruments and Methods in Physics Research B 264 (2007) 333–339 www.elsevier.com/locate/nimb Application of PIXE to the characterization of vitreous dacites from archaeolgical sites in the Atacama region in northern Chile J.R. Morales a, S. Cancino a, P. Miranda a,*, M.I. Dinator a, A. Seelenfreund b a Departamento de Fı´sica, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Nun˜oa, Santiago 1, Chile b Universidad Academia de Humanismo Cristiano, Condell 343, Providencia, Santiago, Chile Received 13 April 2007; received in revised form 17 August 2007 Available online 11 September 2007 Abstract Geochemical characterization studies using PIXE were carried out on 21 vitreous dacite artifacts from early formative archaeological sites in the Atacama region, in northern Chile, and on 13 samples taken from two potential volcanic sources located within the region. Performing statistical analyses it was possible to obtain elemental concentration patterns for the archaeological samples of this material and match some of these artifacts with the geological source samples. Ó 2007 Elsevier B.V. All rights reserved. PACS: 39.10.+j; 29.17.+w; 29.30.Kv Keywords: PIXE; Archaeology; Vitreous dacite; Atacama region; Chile 1. Introduction performed more systematically beginning in the early 1990s. Studies have been centered on obsidian analysis In northern Chile, since the work of Aldunate et al. and using mainly instrumental neutron activation analysis, others [1–4], the upper Salado river Basin, the main tribu- (INAA) or energy dispersive X-ray fluorescence, tary of the Loa River in the Atacama region, has been con- (EDXRF).
    [Show full text]
  • The Causes and Effect of Temporal Changes in Magma Generation Processes in Space and Time Along the Central Andes (13°S – 25°S)
    The causes and effect of temporal changes in magma generation processes in space and time along the Central Andes (13°S – 25°S) Dissertation zur Erlangung des mathematisch-naturwissenschaftlichen Doktorgrades "Doctor rerum naturalium" der Georg-August-Universität Göttingen im Promotionsprogramm Geowissenschaften / Geographie der Georg-August University School of Science (GAUSS) vorgelegt von Rosanne Marjoleine Heistek aus Nederland/Niederlande Göttingen 2015 Betreuungsausschuss: Prof. Dr. Gerhard Wörner, Abteilung Geochemie, GZG Prof. Dr. Andreas Pack, Abteilung Isotopengeologie, GZG Referent: Prof. Dr. Gerhard Wörner Prof. Dr. Andreas Pack Weitere Mitglieder der Prüfungskommission: Prof. Dr. Sharon Webb Prof. Dr. Hilmar von Eynatten Prof. Dr. Jonas Kley Dr. John Hora Tag der mündlichen Prüfung: 25.06.2015 TABLE OF CONTENTS Acknowledgements .................................................................................................................................1 Abstracts .................................................................................................................................................2 Chapter 1: Introduction .........................................................................................................................7 1.1.The Andean volcanic belt .............................................................................................................................. 7 1.2. The Central volcanic zone ...........................................................................................................................
    [Show full text]
  • Volcanology and Petrology of Volcán Miño, Andean Central Volcanic Zone
    AN ABSTRACT OF THE THESIS OF Claire M. McKee for the degree of Master of Science in Geology presented on June 29, 2001. Title: Volcanology and Petrology of VolcáIi Miño, Andean Central Volcanic Zone. Redacted for Privacy Anitá'L. Grunder Volcán Miño (21011'S) is located on the westernmost periphery of a long- lived complex of stratovolcarioes and domes called the Aucanquilcha Complex. The Aucanquilcha Complex ranges in age from 11 Ma to 1-lolocene and lies along the main N-S trending axis of Quaternary volcanoes in the Andean Central Volcanic Zone (CVZ). Volcán Aucanquitcha lies at the center of the complex and forms a ridge extending 10 km in an east-west direction; defined by a distinct cluster of andesite and dacite stratocones, dacite domes and a prominent collapse structure and two debris avalanche deposits. In contrast to the main edifice, Volcán Miño (5611 m) is a steep-sided, symmetric andesitic stratovolcano. Volcán Miño lavas range in age from 3.0 to 3.7 Ma and eruptive products are dominantly two-pyroxene ± hornblende andesites. Basaltic andesites and dacites are rare. - ----- - ------ ---I, ..--.- __, IuIVULJ, LII Volcán Miño lavas conform to regional med- to high-potassium caic-alkaline trends and are characterized by subduction-related light rare earth and large ion lithophile-element enrichments and high field strength element depletions. Miño lavas are distinctive in that they display a restricted range in whole-rock composition, 60±2 weight percent Si02. Despite this whole- rock compositional homogeneity, lavas are texturally and mineralogically diverse as evidenced by variations of proportions and textures of clinopyroxene, orthopyroxene, and amphibole in assemblages with similar weight percent Si02.
    [Show full text]