WO 2017/184227 A2 26 October 2017 (26.10.2017) W !P O PCT

Total Page:16

File Type:pdf, Size:1020Kb

WO 2017/184227 A2 26 October 2017 (26.10.2017) W !P O PCT (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2017/184227 A2 26 October 2017 (26.10.2017) W !P O PCT (51) International Patent Classification: bridge, Massachusetts 02139 (US). RIOS, Xavier; 368 C12N 15/70 (2006.01) Riverway, Apt. 7, Boston, Massachusetts 021 15 (US). (21) International Application Number: (74) Agent: IWANICKI, John P.; Banner & Witcoff, Ltd., 28 PCT/US201 7/016 184 State Street, Suite 1800, Boston, Massachusetts 02109 (US). (22) International Filing Date: (81) Designated States (unless otherwise indicated, for every 02 February 2017 (02.02.2017) kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, (25) Filing Language: English CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, DO, (26) Publication Language: English DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KH, KN, KP, KR, (30) Priority Data: KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, 62/291,499 04 February 2016 (04.02.2016) US MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, 62/3 15,336 30 March 2016 (30.03.2016) US PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, (71) Applicant: PRESIDENT AND FELLOWS OF HAR¬ SD, SE, SG, SK, SL, SM, ST, SV, SY,TH, TJ, TM, TN, TR, VARD COLLEGE [US/US]; 17 Quincy Street, Cam TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. bridge, Massachusetts 02138 (US). (84) Designated States (unless otherwise indicated, for every (72) Inventors: CHURCH, George M.; 218 Kent Street, kind of regional protection available): ARIPO (BW, GH, Brookline, Massachusetts 02446 (US). GREGG, Christo¬ GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ, pher J.; 19 Walter Street, Roslindale, Massachusetts 02 131 UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, (US). LAJOIE, Marc J.; 308 Brookline Street, #1B, Cam TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, (54) Title: RECOMBINASE GENOME EDITING Γ ΤΤ 1 r IV < Enriched SEER Library Deep Sequencing 00 (57) Abstract: A method of altering a target nucleic acid sequence within a cell is provided including providing the cell with a donor nucleic acid, providing the cell with a single strand annealing protein, and providing the cell with a single strand DNA binding protein, wherein one or more or both of the single strand annealing protein and the single strand DNA binding protein is foreign to the cell, and o wherein the donor nucleic acid is recombined into the target nucleic acid. o [Continued on nextpage] WO 2017/184227 A2 llll II II 11III I II I II I III II I II III II I II EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, KM, ML, MR, NE, SN, TD, TG). Published: — without international search report and to be republished upon receipt of that report (Rule 48.2(g)) — with sequence listing part of description (Rule 5.2(a)) RECOMBINASE GENOME EDITING RELATED APPLICATION DATA This application claims priority to U.S. Provisional Application No. 62/291,499 filed on February 4, 2016 and to U.S. Provisional Application No. 62/315,336 filed on March 30, 2016 which are hereby incorporated herein by reference in their entirety for all purposes. STATEMENT OF GOVERNMENT INTERESTS This invention was made with government support under DE-FG02-02ER63445 awarded by the Department of Energy. The government has certain rights in the invention. SEQUENCE LISTING The instant application contains a Sequence Listing which has been submitted electronically in ASCII format and is hereby incorporated by reference in its entirety. Said ASCII copy, created on February 2, 2017, is named 010498_00906-WO_SL.txt and is 161,995 bytes in size. FIELD The present invention relates in general to genome editing methods that use foreign recombinases. BACKGROUND Oligonucleotide-mediated recombination is used for genome engineering (see Carr and Church 2009) where mutation-encoding oligonucleotides modify the genome without the need for site-specific DNA-binding proteins. Such techniques may be used to generate large complex libraries of genetic variants. Such techniques may also be used to generate complex, user-defined genotypes at high efficiency in E. coli. (see Wang et al., 2009). Oligo-mediated recombination has enabled multiple synthetic biology applications such as genetically recoded organisms (Lajoie et al., 2013) and sensor-based metabolic pathway optimization (Raman et al., 2014). Efforts at recombineering (i.e., recombination-mediated genetic engineering) ( are present in (VanPijkeren and Britton, 2012), (van Pijkeren et al., 2012), (van Kessel and Hatfull, 2007), (Binder et al., 2013), (Datta et al., 2008). In E. coli, oligo-mediated targeting is most commonly done via λ Red recombineering, where an oligo preferentially anneals to the lagging strand of the genome during DNA replication and incorporates into the daughter strand (Ellis et al., 2001a). This system is based on the phage λ Red operon normally expressed during the phage's lytic growth (Poteete, 2001) and promotes high-efficiency, targeted recombination between linear, single-stranded (Mosberg et al., 2010) DNA (ssDNA) and the host chromosome. The λ Red operon is composed of Red α, β and γ , also known as exo (a 5' - 3' exonuclease), beta (a single stranded annealing protein [SSAP]), and gam (a RecBCD nuclease complex inhibitor), respectively λ β is necessary and sufficient to recombine ssDNA into the E. coli chromosome and itself improves recombination rates in by lE4-fold (Ellis et al., 2001b). The β-mediated recombination is based on the input ssDNAboth directing proper targeting and encoding mutations of interest. SUMMARY The disclosure provides methods of optimizing genome editing in organisms, such as bacteria. The disclosure provides for the identification of recombinases that can be used for genome editing in organisms, such as bacteria. A recombinase may also be referred to herein as a single strand annealing protein. Genome editing includes the use of a recombinase to recombine genomic DNA to include a donor nucleic acid sequence such as a single stranded DNA (ssDNA). Such genome editing may be known in the art as "recombineering." The disclosure provides for the identification and use of components sufficient to produce introduction of a foreign nucleic acid sequence into the genome of a cell. One or more or all of such components may be foreign to the cell. Such components include a recombinase (also referred to as a single strand annealing protein or SSAP) and a single-strand binding protein. The disclosure provides for the identification of one or more pairs of a recombinase and a single-stranded binding protein that can be used in genome editing to incorporate an ssDNA into a genome. A single stranded binding protein (SSB) or a single stranded annealing protein (SSAP) is one that participates in replication, repair or recombination. An exemplary recombinase used for recombineering is λ Red as described in (Carr et al., 2012; Lajoie et al., 2012; Miki et al., 2008; Mosberg et al., 2012; Wang et al., 2009, 2011). An exemplary single- stranded binding protein is single-strand DNA-binding protein (SSB), an example of which is found in E. coli. See Meyer RR, Laine PS (December 1990), Microbiol. Rev. 54 (4): 342-80. Other exemplary recombinases or single-strand DNA-binding proteins may be found in other bacteria and viruses. The disclosure provides that either one or both of a recombinase and a corresponding single-stranded binding protein is foreign to the organism which uses them for genome editing or into which they are provided. According to one aspect, the recombinase and a corresponding single-stranded binding protein are provided to a cell as native species or as a nucleic acid encoding the recombinase or the corresponding single-stranded binding protein for expression within the cell. The disclosure provides a method of genome editing by including one or more or both of a recombinase and a corresponding single-stranded DNA- binding protein into a cell where one or more or both of a recombinase and a corresponding single-stranded DNA binding protein is foreign to the cell and where a donor nucleic acid sequence is introduced into the genome of the cell. The disclosure provides that the combination of a recombinase and a corresponding single-stranded DNA binding protein provide the minimal functional units used by a cell to insert ssDNA into its genome. The recombinase and a corresponding single-stranded DNA binding protein may be evolved from the same or different organisms. However, at least one is foreign to the cell into which they are provided or are otherwise present. The disclosure provides a library-based method of identifying candidate single- stranded annealing proteins for use in oligo-recombination. The disclosure provides a library- based method of identifying candidate single-stranded annealing proteins from various and diverse organisms for use in oligo-recombination. The disclosure provides a method by which β anneals complementary ssDNA pre- coated with SSB which is dependent on the C-terminal 8 amino acid tail of SSB. The disclosure provides a method by which the C-terminus of λ β is involved in its interaction with SSB. The disclosure provides a method of co-expressing a low-activity SSAP and its corresponding SSB to achieve oligo recombination.
Recommended publications
  • Bartonella Apis Sp. Nov., a Honey Bee Gut Symbiont of the Class Alphaproteobacteria
    Serveur Academique´ Lausannois SERVAL serval.unil.ch Author Manuscript Faculty of Biology and Medicine Publication This paper has been peer-reviewed but does not include the final publisher proof-corrections or journal pagination. Published in final edited form as: Title: Bartonella apis sp. nov., a honey bee gut symbiont of the class Alphaproteobacteria. Authors: Keˇsnerov´aL, Moritz R, Engel P Journal: International journal of systematic and evolutionary microbiology Year: 2016 Jan Issue: 66 Volume: 1 Pages: 414-21 DOI: 10.1099/ijsem.0.000736 In the absence of a copyright statement, users should assume that standard copyright protection applies, unless the article contains an explicit statement to the contrary. In case of doubt, contact the journal publisher to verify the copyright status of an article. 1 Bartonella apis sp. nov., a honey bee gut symbiont of the 2 class Alphaproteobacteria 3 4 Lucie Kešnerová, Roxane Moritz, Philipp Engel* 5 6 Department of Fundamental Microbiology, University of Lausanne, CH-1015 7 Lausanne, Switzerland 8 9 Running title: Description of a bee gut symbiont 10 11 *Correspondence: 12 Prof. Philipp Engel 13 Department of Fundamental Microbiology 14 University of Lausanne, CH-1015 Lausanne, Switzerland 15 Tel.: +41 (0)21 692 56 12 16 e-mail: [email protected] 17 18 Category: New Taxa – Proteobacteria 19 Keywords: Apis mellifera; insect; Bartonella; gut microbiota; Alpha-1 20 21 Sequence deposition: The 16S rRNA gene sequences and protein-coding gene 22 sequences of the bacterial strains PEB0122T, PEB0149, PEB0150, BBC0104, and 23 BBC0108 from Apis mellifera, and the uncultured Rhizobiales bacterium from 24 Herpagnathos saltator are deposited in GenBank with accession numbers KP987849 25 – KP987886 and KT315729 – KT315734.
    [Show full text]
  • Detection and Partial Molecular Characterization of Rickettsia and Bartonella from Southern African Bat Species
    Detection and partial molecular characterization of Rickettsia and Bartonella from southern African bat species by Tjale Mabotse Augustine (29685690) Submitted in partial fulfillment of the requirements for the degree MAGISTER SCIENTIAE (MICROBIOLOGY) in the Department of Microbiology and Plant Pathology Faculty of Natural and Agricultural Sciences University of Pretoria Pretoria, South Africa Supervisor: Dr Wanda Markotter Co-supervisors: Prof Louis H. Nel Dr Jacqueline Weyer May, 2012 I declare that the thesis, which I hereby submit for the degree MSc (Microbiology) at the University of Pretoria, South Africa, is my own work and has not been submitted by me for a degree at another university ________________________________ Tjale Mabotse Augustine i Acknowledgements I would like send my sincere gratitude to the following people: Dr Wanda Markotter (University of Pretoria), Dr Jacqueline Weyer (National Institute for Communicable Diseases-National Health Laboratory Service) and Prof Louis H Nel (University of Pretoria) for their supervision and guidance during the project. Dr Jacqueline Weyer (Centre for Zoonotic and Emerging diseases (Previously Special Pathogens Unit), National Institute for Communicable Diseases (National Heath Laboratory Service), for providing the positive control DNA for Rickettsia and Dr Jenny Rossouw (Special Bacterial Pathogens Reference Unit, National Institute for Communicable Diseases-National Health Laboratory Service), for providing the positive control DNA for Bartonella. Dr Teresa Kearney (Ditsong Museum of Natural Science), Gauteng and Northern Region Bat Interest Group, Kwa-Zulu Natal Bat Interest Group, Prof Ara Monadjem (University of Swaziland), Werner Marias (University of Johannesburg), Dr Francois du Rand (University of Johannesburg) and Prof David Jacobs (University of Cape Town) for collection of blood samples.
    [Show full text]
  • Muricauda Ruestringensis Type Strain (B1T)
    Standards in Genomic Sciences (2012) 6:185-193 DOI:10.4056/sigs.2786069 Complete genome sequence of the facultatively anaerobic, appendaged bacterium Muricauda T ruestringensis type strain (B1 ) Marcel Huntemann1, Hazuki Teshima1,2, Alla Lapidus1, Matt Nolan1, Susan Lucas1, Nancy Hammon1, Shweta Deshpande1, Jan-Fang Cheng1, Roxanne Tapia1,2, Lynne A. Goodwin1,2, Sam Pitluck1, Konstantinos Liolios1, Ioanna Pagani1, Natalia Ivanova1, Konstantinos Mavromatis1, Natalia Mikhailova1, Amrita Pati1, Amy Chen3, Krishna Palaniappan3, Miriam Land1,4 Loren Hauser1,4, Chongle Pan1,4, Evelyne-Marie Brambilla5, Manfred Rohde6, Stefan Spring5, Markus Göker5, John C. Detter1,2, James Bristow1, Jonathan A. Eisen1,7, Victor Markowitz3, Philip Hugenholtz1,8, Nikos C. Kyrpides1, Hans-Peter Klenk5*, and Tanja Woyke1 1 DOE Joint Genome Institute, Walnut Creek, California, USA 2 Los Alamos National Laboratory, Bioscience Division, Los Alamos, New Mexico, USA 3 Biological Data Management and Technology Center, Lawrence Berkeley National Laboratory, Berkeley, California, USA 4 Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA 5 Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany 6 HZI – Helmholtz Centre for Infection Research, Braunschweig, Germany 7 University of California Davis Genome Center, Davis, California, USA 8 Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia *Corresponding author: Hans-Peter Klenk ([email protected]) Keywords: facultatively anaerobic, non-motile, Gram-negative, mesophilic, marine, chemo- heterotrophic, Flavobacteriaceae, GEBA Muricauda ruestringensis Bruns et al. 2001 is the type species of the genus Muricauda, which belongs to the family Flavobacteriaceae in the phylum Bacteroidetes. The species is of inter- est because of its isolated position in the genomically unexplored genus Muricauda, which is located in a part of the tree of life containing not many organisms with sequenced genomes.
    [Show full text]
  • Table S5. the Information of the Bacteria Annotated in the Soil Community at Species Level
    Table S5. The information of the bacteria annotated in the soil community at species level No. Phylum Class Order Family Genus Species The number of contigs Abundance(%) 1 Firmicutes Bacilli Bacillales Bacillaceae Bacillus Bacillus cereus 1749 5.145782459 2 Bacteroidetes Cytophagia Cytophagales Hymenobacteraceae Hymenobacter Hymenobacter sedentarius 1538 4.52499338 3 Gemmatimonadetes Gemmatimonadetes Gemmatimonadales Gemmatimonadaceae Gemmatirosa Gemmatirosa kalamazoonesis 1020 3.000970902 4 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas indica 797 2.344876284 5 Firmicutes Bacilli Lactobacillales Streptococcaceae Lactococcus Lactococcus piscium 542 1.594633558 6 Actinobacteria Thermoleophilia Solirubrobacterales Conexibacteraceae Conexibacter Conexibacter woesei 471 1.385742446 7 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas taxi 430 1.265115184 8 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas wittichii 388 1.141545794 9 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas sp. FARSPH 298 0.876754244 10 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sorangium cellulosum 260 0.764953367 11 Proteobacteria Deltaproteobacteria Myxococcales Polyangiaceae Sorangium Sphingomonas sp. Cra20 260 0.764953367 12 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas panacis 252 0.741416341
    [Show full text]
  • Bacterial Oxygen Production in the Dark
    HYPOTHESIS AND THEORY ARTICLE published: 07 August 2012 doi: 10.3389/fmicb.2012.00273 Bacterial oxygen production in the dark Katharina F. Ettwig*, Daan R. Speth, Joachim Reimann, Ming L. Wu, Mike S. M. Jetten and JanT. Keltjens Department of Microbiology, Institute for Water and Wetland Research, Radboud University Nijmegen, Nijmegen, Netherlands Edited by: Nitric oxide (NO) and nitrous oxide (N2O) are among nature’s most powerful electron Boran Kartal, Radboud University, acceptors. In recent years it became clear that microorganisms can take advantage of Netherlands the oxidizing power of these compounds to degrade aliphatic and aromatic hydrocar- Reviewed by: bons. For two unrelated bacterial species, the “NC10” phylum bacterium “Candidatus Natalia Ivanova, Lawrence Berkeley National Laboratory, USA Methylomirabilis oxyfera” and the γ-proteobacterial strain HdN1 it has been suggested Carl James Yeoman, Montana State that under anoxic conditions with nitrate and/or nitrite, monooxygenases are used for University, USA methane and hexadecane oxidation, respectively. No degradation was observed with *Correspondence: nitrous oxide only. Similarly, “aerobic” pathways for hydrocarbon degradation are employed − Katharina F.Ettwig, Department of by (per)chlorate-reducing bacteria, which are known to produce oxygen from chlorite (ClO ). Microbiology, Institute for Water and 2 Wetland Research, Radboud In the anaerobic methanotroph M. oxyfera, which lacks identifiable enzymes for nitrogen University Nijmegen, formation, substrate activation in the presence of nitrite was directly associated with both Heyendaalseweg 135, 6525 AJ oxygen and nitrogen formation. These findings strongly argue for the role of NO, or an Nijmegen, Netherlands. e-mail: [email protected] oxygen species derived from it, in the activation reaction of methane.
    [Show full text]
  • Detecting Phylogenetic Signals from Deep Roots of the Tree of Life
    UNIVERSITY OF CALIFORNIA,MERCED Detecting Phylogenetic Signals From Deep Roots of the Tree of Life A dissertation submitted in partial fulfillment of the requirements for the degree Doctor of Philosophy in Quantitative and Systems Biology by Katherine Colleen Harris Amrine Committee in charge: Professor Carolin Frank, Chair Professor David Ardell Professor Meng-Lin Tsao Professor Suzanne Sindi August 2013 Copyright Katherine C. Amrine All Rights Reserved UNIVERSITY OF CALIFORNIA,MERCED Graduate Division The Dissertation of Katherine Colleen Harris Amrine is approved, and it is acceptable in quality and form for publication on microfilm and electronically: Faculty Advisor: David H. Ardell Committee Members: Chair: Carolin Frank Meng-Lin Tsao Suzanne Sindi Date iii Contents List of Figures ................................................................. vi List of Tables .................................................................. ix Acknowledgements ............................................................. x Vita ........................................................................... xi Abstract ...................................................................... xii 1 Shifting focus in evolutionary biology – identifying a new signal for phylogenetic tree reconstruction and taxonomic classification 1 1.1 The evolution of bacterial classification and phylogeny . .1 1.2 The historical marker – 16S . .2 1.3 Complications in bacterial classification and phylogeny . .2 1.3.1 Horizontal gene transfer . .2 1.3.2 Does a true tree exist? . .3 1.4 Methods for phylogenetic tree reconstruction . .3 1.4.1 DNA . .3 1.4.2 RNA . .4 1.4.3 Proteins . .4 1.4.4 Data compilation . .5 1.5 Bias in tree-building . .5 1.6 Biological bias in biological data . .6 1.7 The tRNA interaction network . .6 1.8 Information theory . .8 1.9 Machine Learning for bacterial classification . .9 2 tRNA signatures reveal polyphyletic origins of streamlined SAR11 genomes among the Alphaproteobacteria 12 2.1 Abstract .
    [Show full text]
  • 17-S. Prabhu Rekha.Indd
    Polish Journal of Microbiology 2014, Vol. 63, No 1, 115–119 SHORT COMMUNICATION Zeaxanthin Biosynthesis by Members of the Genus Muricauda SUDHARSHAN PRABHU, P.D. REKHA and A.B. ARUN* Yenepoya Research Centre, Yenepoya University, Deralakatte, Mangalore, Karnataka State, India Submitted 3 March 2013, revised 3 May 2013, accepted 16 November 2013 Abstract Zeaxanthin, a C40 xanthophyll carotenoid, has potential biological applications in nutrition and human health. In this study we characterized carotenoid composition in 5 taxonomically related marine bacterial isolates from the genus Muricauda. The pigment was characterized using high performance liquid chromatography (HPLC) and mass spectrometry, which confirmed the presence of all-trans-zeaxanthin. Muricauda strains produced zeaxanthin as a predominant carotenoid. M. flavescens JCM 11812T produced highest yield (4.4 ± 0.2 mg L–1) when cultured on marine broth at 32°C for 72 h. This is the first report on the presence of zeaxanthin among the majority of species from the genus Muricauda. K e y w o r d s: Flavobacteriaceae, Muricauda, marine bacteria, zeaxanthin Zeaxanthin is a potential biomolecule having anti- duce characteristic orange-yellow pigmented colonies oxidant, anticancer properties and is known to prevent (Lee et al., 2012; Arun et al., 2009; Hwang et al., 2009; age related macular degeneration (Krinsky et al., 2003). Lee et al., 2012). M. lutaonensis CC-HSB-11T isolated Apart from plant sources, microbes have been found as from a coastal hot-spring was first reported to produce an important source of carotenoids particularly zeaxan- high amounts of zeaxanthin (Hameed et al., 2011). thin (Hameed et al., 2011).
    [Show full text]
  • Flavobacterium Gliding Motility: from Protein Secretion to Cell Surface Adhesin Movements
    University of Wisconsin Milwaukee UWM Digital Commons Theses and Dissertations August 2019 Flavobacterium Gliding Motility: From Protein Secretion to Cell Surface Adhesin Movements Joseph Johnston University of Wisconsin-Milwaukee Follow this and additional works at: https://dc.uwm.edu/etd Part of the Biology Commons, Microbiology Commons, and the Molecular Biology Commons Recommended Citation Johnston, Joseph, "Flavobacterium Gliding Motility: From Protein Secretion to Cell Surface Adhesin Movements" (2019). Theses and Dissertations. 2202. https://dc.uwm.edu/etd/2202 This Dissertation is brought to you for free and open access by UWM Digital Commons. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of UWM Digital Commons. For more information, please contact [email protected]. FLAVOBACTERIUM GLIDING MOTILITY: FROM PROTEIN SECRETION TO CELL SURFACE ADHESIN MOVEMENTS by Joseph J. Johnston A Dissertation Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in Biological Sciences at The University of Wisconsin-Milwaukee August 2019 ABSTRACT FLAVOBACTERIUM GLIDING MOTILITY: FROM PROTEIN SECRETION TO CELL SURFACE ADHESIN MOVEMENTS by Joseph J. Johnston The University of Wisconsin-Milwaukee, 2019 Under the Supervision of Dr. Mark J. McBride Flavobacterium johnsoniae exhibits rapid gliding motility over surfaces. At least twenty genes are involved in this process. Seven of these, gldK, gldL, gldM, gldN, sprA, sprE, and sprT encode proteins of the type IX protein secretion system (T9SS). The T9SS is required for surface localization of the motility adhesins SprB and RemA, and for secretion of the soluble chitinase ChiA. This thesis demonstrates that the gliding motility proteins GldA, GldB, GldD, GldF, GldH, GldI and GldJ are also essential for secretion.
    [Show full text]
  • Viewed to Possess Different Related Sequences Or Outliers and N-Gram-Based Dot Languages
    Osmanbeyoglu and Ganapathiraju BMC Bioinformatics 2011, 12:12 http://www.biomedcentral.com/1471-2105/12/12 RESEARCHARTICLE Open Access N-gram analysis of 970 microbial organisms reveals presence of biological language models Hatice Ulku Osmanbeyoglu, Madhavi K Ganapathiraju* Abstract Background: It has been suggested previously that genome and proteome sequences show characteristics typical of natural-language texts such as “signature-style” word usage indicative of authors or topics, and that the algorithms originally developed for natural language processing may therefore be applied to genome sequences to draw biologically relevant conclusions. Following this approach of ‘biological language modeling’, statistical n-gram analysis has been applied for comparative analysis of whole proteome sequences of 44 organisms. It has been shown that a few particular amino acid n-grams are found in abundance in one organism but occurring very rarely in other organisms, thereby serving as genome signatures. At that time proteomes of only 44 organisms were available, thereby limiting the generalization of this hypothesis. Today nearly 1,000 genome sequences and corresponding translated sequences are available, making it feasible to test the existence of biological language models over the evolutionary tree. Results: We studied whole proteome sequences of 970 microbial organisms using n-gram frequencies and cross- perplexity employing the Biological Language Modeling Toolkit and Patternix Revelio toolkit. Genus-specific signatures were observed even in a simple unigram distribution. By taking statistical n-gram model of one organism as reference and computing cross-perplexity of all other microbial proteomes with it, cross-perplexity was found to be predictive of branch distance of the phylogenetic tree.
    [Show full text]
  • The Role of Territorial Grazers in Coral Reef Trophic Dynamics from Microbes to Apex Predators
    ResearchOnline@JCU This file is part of the following reference: Casey, Jordan Marie (2015) The role of territorial grazers in coral reef trophic dynamics from microbes to apex predators. PhD thesis, James Cook University. Access to this file is available from: http://researchonline.jcu.edu.au/41148/ The author has certified to JCU that they have made a reasonable effort to gain permission and acknowledge the owner of any third party copyright material included in this document. If you believe that this is not the case, please contact [email protected] and quote http://researchonline.jcu.edu.au/41148/ The role of territorial grazers in coral reef trophic dynamics from microbes to apex predators Thesis submitted by Jordan Marie Casey April 2015 For the degree of Doctor of Philosophy ARC Centre of Excellence for Coral Reef Studies College of Marine and Environmental Sciences James Cook University ! Acknowledgements First and foremost, I thank my supervisory team, Sean Connolly, J. Howard Choat, and Tracy Ainsworth, for their continuous intellectual support throughout my time at James Cook University. It was invaluable to draw upon the collective insights and constructive criticisms of an ecological modeller, an ichthyologist, and a microbiologist. I am grateful to each of my supervisors for their unique contributions to this PhD thesis. I owe many thanks to all of the individuals that assisted me in the field: Kristen Anderson, Andrew Baird, Shane Blowes, Simon Brandl, Ashley Frisch, Chris Heckathorn, Mia Hoogenboom, Oona Lönnstedt, Chris Mirbach, Chiara Pisapia, Justin Rizzari, and Melanie Trapon. I also thank the directors and staff of Lizard Island Research Station and the Research Vessel James Kirby for efficiently facilitating my research trips.
    [Show full text]
  • Bartonella Spp. Isolated from Wild and Domestic Ruminants in North America1
    Dispatches Bartonella spp. Isolated from Wild and Domestic Ruminants in North America1 Chao-chin Chang,* Bruno B. Chomel,* Rickie W. Kasten,* Remy Heller,† Katherine M. Kocan,‡ Hiroshi Ueno,§ Kazuhiro Yamamoto,* Vernon C. Bleich,¶ Becky M. Pierce,¶ Ben J. Gonzales,¶ Pamela K. Swift,¶ Walter M. Boyce,* Spencer S. Jang,* Henri-Jean Boulouis,# and Yves Piémont† *School of Veterinary Medicine, University of California, Davis, California, USA; †Institut de Bactériologie, Université Louis Pasteur, Strasbourg, France; ‡College of Veterinary Medicine, Oklahoma State University, Stillwater, Oklahoma, USA; §School of Veterinary Medicine, Rakuno-Gakuen University, Ebetsu, Hokkaido, Japan; ¶California Department of Fish and Game, Bishop, Rancho Cordova, California, USA; #Ecole Nationale Vétérinaire d’Alfort, 94704 Maisons-Alfort, France Bartonella species were isolated from 49% of 128 cattle from California and Oklahoma, 90% of 42 mule deer from California, and 15% of 100 elk from California and Oregon. Isolates from all 63 cattle, 14 deer, and 1 elk had the same polymerase chain reaction/restriction fragment length polymorphism profiles. Our findings indicate potential for inter- and intraspecies transmission among ruminants, as well as risk that these Bartonella spp. could act as zoonotic agents. Bartonella species have been identified as rRNA and citrate synthase genes (14). Modes of important zoonotic agents (1,2). Cats are the transmission in these ruminants need to be main reservoir of Bartonella henselae, the agent established. Tick transmission has been suspect- that causes cat scratch disease in humans (1). ed but not yet proven for dogs infected with Long-term bacteremia in cats and flea transmis- B. vinsonii subsp. berkhoffii (16). Since fleas are sion from cat to cat, as confirmed by experimental less likely than ticks to infest cattle (17), ticks infection, support a vectorborne transmission (3).
    [Show full text]
  • Human Bartonellosis: an Underappreciated Public Health Problem?
    Tropical Medicine and Infectious Disease Review Human Bartonellosis: An Underappreciated Public Health Problem? Mercedes A. Cheslock and Monica E. Embers * Division of Immunology, Tulane National Primate Research Center, Tulane University Health Sciences, Covington, LA 70433, USA; [email protected] * Correspondence: [email protected]; Tel.: +(985)-871-6607 Received: 24 March 2019; Accepted: 16 April 2019; Published: 19 April 2019 Abstract: Bartonella spp. bacteria can be found around the globe and are the causative agents of multiple human diseases. The most well-known infection is called cat-scratch disease, which causes mild lymphadenopathy and fever. As our knowledge of these bacteria grows, new presentations of the disease have been recognized, with serious manifestations. Not only has more severe disease been associated with these bacteria but also Bartonella species have been discovered in a wide range of mammals, and the pathogens’ DNA can be found in multiple vectors. This review will focus on some common mammalian reservoirs as well as the suspected vectors in relation to the disease transmission and prevalence. Understanding the complex interactions between these bacteria, their vectors, and their reservoirs, as well as the breadth of infection by Bartonella around the world will help to assess the impact of Bartonellosis on public health. Keywords: Bartonella; vector; bartonellosis; ticks; fleas; domestic animals; human 1. Introduction Several Bartonella spp. have been linked to emerging and reemerging human diseases (Table1)[ 1–5]. These fastidious, gram-negative bacteria cause the clinically complex disease known as Bartonellosis. Historically, the most common causative agents for human disease have been Bartonella bacilliformis, Bartonella quintana, and Bartonella henselae.
    [Show full text]