The Evolution of a Gene Cluster Containing a Plant-Like Protein In

Total Page:16

File Type:pdf, Size:1020Kb

The Evolution of a Gene Cluster Containing a Plant-Like Protein In EVOLUTION OF A PLANT-LIKE GENE ANCIENTLY ACQUIRED AS PART OF A GENOMIC ISLAND IN XANTHOMONAS A DISSERTATION SUBMITTED TO THE GRADUATE DIVISION OF THE UNIVERSITY OF HAWAI‘I AT MᾹNOA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY IN MOLECULAR BIOSCIENCES AND BIOENGINEERING May 2012 BY KEVIN SCHNEIDER DISSERTATION COMMITTEE GERNOT PRESTING, CHAIRPERSON ANNE ALVAREZ YANGRAE CHO GUYLAINE POISSON SEAN CALLAHAN Dedicated to my Parents! i Acknowledgments I want to give my biggest thanks to Dr Gernot Presting for providing me with so many opportunities during my career at UH Manoa. The teaching assistantship I received on an unexpected short notice that began my PhD to working and publishing on exciting and interesting topics from corn centromeres to bacterial genomes. I am forever grateful for the time, patience, and energy he has spent mentoring me. This work would not have been possible without Dr Anne Alvarez. She has provided not only her knowledge of plant pathology, but also her collection of bacterial strains that the majority of my research required. Also, I thank Asoka Da Silva whom has provided his expertise and skills to culture and purify the hundreds of strains used in this study. The analysis in this work would not have begun without the initial phylogenomic analysis of Arabidopsis completed by Aren Ewing. His work laid the foundation to stick with studying bacterial genomic evolution in light of all of the wonderful work to study the genomic evolution of the centromeres of Zea mays in our lab. I also thank all of my lab mates Anupma Sharma, Thomas Wolfgruber, Jamie Allison, Jeffrey Lai, Megan Nakashima, Ronghui Xu, Zidian Xie, Grace Kwan, Margaret Ruzicka, Krystle Salazar and Erin Mitsunaga from the past and the present for their advice, help, discussions and their friendship and casual chit-chat. The work presented in this dissertation was supported by USDA #2005-34135-15972. My special thanks go to my supportive father Bruce, mother Judy, brother Robbie and sister Carrie who have been there throughout my career as a graduate student. I also thank the many friends and colleagues that have provided an unforgettable graduate school experience. ii Abstract In this thesis, I determine that XAC3314, a plant-like gene, was anciently transferred to Xanthomonas axonopodis pv. citri strain 306 (Xac_306). An XAC3314 homolog has also been reported in the sequenced strain Xanthomonas axonopodis pv. vesicatoria strain 85-10, but is absent from three sequenced strains of X. campestris and three sequenced strains of X. oryzae. XAC3314 may have been lost in these species. The genetic diversity of XAC3314 and the evolution of this gene in Xanthomonas were characterized. Furthermore, I show that XAC3314 was acquired by an ancestral genome and transferred to Xanthomonas as part of a genomic island. Anciently acquired genes are expected to have ameliorated to the native genome; therefore, these genes cannot be identified using characteristics common to a horizontal transfer event. I compared Xac_306 to other sequenced genomes to identify potential gene clusters in the vicinity of XAC3314. Analysis of these genomes revealed that XAC3314 was likely acquired as a small gene cluster, which inserted in Xanthomonas after the split of X. albilineans. Xanthomonas albilineans and Stenotrophomonas have unique gene clusters inserted at the same region as those in X. axonopodis. XAC3314 homologs were also identified in the sequenced strains of X. vasicola and X. gardneri. The diversity of XAC3314 was analyzed in Xanthomonas strains from the Pacific Bacterial Collection. A total of 307 Xanthomonas strains were classified with the RIF marker. Trees constructed from Xanthomonas RIF sequences are similar in structure to a completed multi-locus analysis of the genus [Young et al., 2008]. XAC3314 homologs are present in 98 of the 307 strains in the Pacific Bacterial Collection. The XAC3314 sequences revealed that HGT may have occurred among some strains of X. axonoodis. This work expands our understanding of bacterial genome evolution and anciently acquired gene clusters. iii Table of Contents Acknowledgments ............................................................................................................................ ii Abstract ............................................................................................................................................. iii List of Tables ..................................................................................................................................... v List of Figures................................................................................................................................... vi Chapter 1: General Introduction ............................................................................................... 1 Chapter 2: Literature Review ..................................................................................................... 2 Chapter 3: Analysis of XAC3314 within sequenced genomes .......................................... 22 3.1 Introduction ............................................................................................................................ 22 3.2 Hypothesis .............................................................................................................................. 23 3.3 Methods .................................................................................................................................. 24 3.4 Results .................................................................................................................................... 26 3.5 Discussion .............................................................................................................................. 46 3.5 Conclusion .............................................................................................................................. 49 Chapter 4: Classification of Xanthomonas strains using RIF, a computationally derived DNA marker 50 4.1 Introduction ............................................................................................................................ 50 4.2 Hypothesis .............................................................................................................................. 51 4.3 Methods .................................................................................................................................. 52 4.4 Results .................................................................................................................................... 57 4.5 Discussion .............................................................................................................................. 71 4.5 Conclusion .............................................................................................................................. 75 Chapter 5: XAC3314 diversity in the PBC ............................................................................. 76 5.1 Introduction ............................................................................................................................ 76 5.3 Methods .................................................................................................................................. 78 5.4 Results .................................................................................................................................... 80 5.5 Discussion .............................................................................................................................. 88 5.5 Conclusion .............................................................................................................................. 90 Chapter 6: Summary ................................................................................................................. 91 Appendix A: Design of RIF primers for other plant associated bacteria ........................ 92 Appendix B: Identification of Clavibacter with RIF ............................................................. 96 Appendix C: Identification of Ralstonia with RIF ................................................................ 99 Appendix D: Identification of Enterobacteriaceae with RIF ............................................ 103 Appendix E: Supplemental Figures ..................................................................................... 108 Appendix F: Supplemental Tables....................................................................................... 113 References ..................................................................................................................................... 194 iv List of Tables Table 2.1. Sequenced strains used in this study ...................................................................... 16 Table 3.1. The gene cluster in Xac_306 that includes XAC3314 ............................................. 30 Table 4.1. Genes in Xoo_311018 and Xcc_33913 containing regions that match criteria for potential markers ...................................................................................................... 60 Table 4.2. In silico comparison of Xanthomonas with the RIF marker resolves one pair of closely related strains that is unresolved with four other housekeeping genes and the ITS ................................................................................................................ 64 Table 4.3. Abbreviations for Xanthomonas
Recommended publications
  • Chemical Structures of Some Examples of Earlier Characterized Antibiotic and Anticancer Specialized
    Supplementary figure S1: Chemical structures of some examples of earlier characterized antibiotic and anticancer specialized metabolites: (A) salinilactam, (B) lactocillin, (C) streptochlorin, (D) abyssomicin C and (E) salinosporamide K. Figure S2. Heat map representing hierarchical classification of the SMGCs detected in all the metagenomes in the dataset. Table S1: The sampling locations of each of the sites in the dataset. Sample Sample Bio-project Site depth accession accession Samples Latitude Longitude Site description (m) number in SRA number in SRA AT0050m01B1-4C1 SRS598124 PRJNA193416 Atlantis II water column 50, 200, Water column AT0200m01C1-4D1 SRS598125 21°36'19.0" 38°12'09.0 700 and above the brine N "E (ATII 50, ATII 200, 1500 pool water layers AT0700m01C1-3D1 SRS598128 ATII 700, ATII 1500) AT1500m01B1-3C1 SRS598129 ATBRUCL SRS1029632 PRJNA193416 Atlantis II brine 21°36'19.0" 38°12'09.0 1996– Brine pool water ATBRLCL1-3 SRS1029579 (ATII UCL, ATII INF, N "E 2025 layers ATII LCL) ATBRINP SRS481323 PRJNA219363 ATIID-1a SRS1120041 PRJNA299097 ATIID-1b SRS1120130 ATIID-2 SRS1120133 2168 + Sea sediments Atlantis II - sediments 21°36'19.0" 38°12'09.0 ~3.5 core underlying ATII ATIID-3 SRS1120134 (ATII SDM) N "E length brine pool ATIID-4 SRS1120135 ATIID-5 SRS1120142 ATIID-6 SRS1120143 Discovery Deep brine DDBRINP SRS481325 PRJNA219363 21°17'11.0" 38°17'14.0 2026– Brine pool water N "E 2042 layers (DD INF, DD BR) DDBRINE DD-1 SRS1120158 PRJNA299097 DD-2 SRS1120203 DD-3 SRS1120205 Discovery Deep 2180 + Sea sediments sediments 21°17'11.0"
    [Show full text]
  • Bartonella Apis Sp. Nov., a Honey Bee Gut Symbiont of the Class Alphaproteobacteria
    Serveur Academique´ Lausannois SERVAL serval.unil.ch Author Manuscript Faculty of Biology and Medicine Publication This paper has been peer-reviewed but does not include the final publisher proof-corrections or journal pagination. Published in final edited form as: Title: Bartonella apis sp. nov., a honey bee gut symbiont of the class Alphaproteobacteria. Authors: Keˇsnerov´aL, Moritz R, Engel P Journal: International journal of systematic and evolutionary microbiology Year: 2016 Jan Issue: 66 Volume: 1 Pages: 414-21 DOI: 10.1099/ijsem.0.000736 In the absence of a copyright statement, users should assume that standard copyright protection applies, unless the article contains an explicit statement to the contrary. In case of doubt, contact the journal publisher to verify the copyright status of an article. 1 Bartonella apis sp. nov., a honey bee gut symbiont of the 2 class Alphaproteobacteria 3 4 Lucie Kešnerová, Roxane Moritz, Philipp Engel* 5 6 Department of Fundamental Microbiology, University of Lausanne, CH-1015 7 Lausanne, Switzerland 8 9 Running title: Description of a bee gut symbiont 10 11 *Correspondence: 12 Prof. Philipp Engel 13 Department of Fundamental Microbiology 14 University of Lausanne, CH-1015 Lausanne, Switzerland 15 Tel.: +41 (0)21 692 56 12 16 e-mail: [email protected] 17 18 Category: New Taxa – Proteobacteria 19 Keywords: Apis mellifera; insect; Bartonella; gut microbiota; Alpha-1 20 21 Sequence deposition: The 16S rRNA gene sequences and protein-coding gene 22 sequences of the bacterial strains PEB0122T, PEB0149, PEB0150, BBC0104, and 23 BBC0108 from Apis mellifera, and the uncultured Rhizobiales bacterium from 24 Herpagnathos saltator are deposited in GenBank with accession numbers KP987849 25 – KP987886 and KT315729 – KT315734.
    [Show full text]
  • Leaf-Associated Shifts in Bacterial and Fungal Communities in Response to Chicken Rearing Under Moso Bamboo Forests in Subtropical China
    Article Leaf-Associated Shifts in Bacterial and Fungal Communities in Response to Chicken Rearing Under Moso Bamboo Forests in Subtropical China Xiaoping Zhang 1, Zheke Zhong 1,*, Xu Gai 1, Jiafu Ying 2, Weifen Li 2, Xuhua Du 1, Fangyuan Bian 1 and Chuanbao Yang 1 1 China National Bamboo Research Center, Key Laboratory of Resources and Utilization of Bamboo of State Forestry Administration, Hangzhou 310012, China; [email protected] (X.Z.); [email protected] (X.G.); [email protected] (X.D.); [email protected] (F.B.); [email protected] (C.Y.) 2 College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; [email protected] (J.Y.); wfl[email protected] (W.L.) * Correspondence: [email protected]; Tel.: +86-0571-88860734 Received: 25 January 2019; Accepted: 25 February 2019; Published: 1 March 2019 Abstract: Integrated bamboo-chicken farming (BCF) systems are a traditional agroforestry pattern with large economic benefits in subtropical China. However, little is known regarding the effect of this integration on the bamboo leaf-associated microbiome, which can be very important for disease control and nutrient turnover. In the present study, we compared the leaf-associated bacterial and fungal communities of moso bamboo (Phyllostachys edulis) in a BCF system and an adjacent moso bamboo forest (MBF). The results showed that Cyanobacteria and Ascomycota were the predominant microbial phyla associated with bamboo leaves. Chicken farming under the bamboo forest significantly increased the bacterial and fungal alpha diversity (observed operational taxonomic units (OTUs) and Simpson’s index) associated with bamboo leaves. Principal components analysis (PCoA) further confirmed the shifts in the bacterial and fungal communities caused by chicken farming.
    [Show full text]
  • Indoor Microbiome, Environmental Characteristics and Asthma Among Junior High
    Indoor microbiome, environmental characteristics and asthma among junior high school students in Johor Bahru, Malaysia Xi Fu1, Dan Norbäck2, Qianqian Yuan3,4, Yanling Li3,4, Xunhua Zhu3,4,Yiqun Deng3,4, Jamal Hisham Hashim5,6, Zailina Hashim7, Yi-Wu Zheng8, Xu-Xin Lai8, Michael Dho Spangfort8, Yu Sun3,4 * 1Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, PR China. 2Occupational and Environmental Medicine, Dept. of Medical Science, University Hospital, Uppsala University, 75237 Uppsala, Sweden. 3Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong, 510642, PR China. 4Key Laboratory of Zoonosis of Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, Guangdong, 510642, PR China. 5United Nations University-International Institute for Global Health, Kuala Lumpur, Malaysia, 6Department of Community Health, National University of Malaysia, Kuala Lumpur, Malaysia 7Department of Environmental and Occupational Health, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, UPM, Serdang, Selangor, Malaysia 8Asia Pacific Research, ALK-Abello A/S, Guanzhou, China *To whom corresponds should be addressed: Yu Sun [email protected], Key words: bacteria, fungi, microbial community, absolute quantity, wheezing, breathlessness, adolescence, dampness/visible mold Abstract Indoor microbial diversity and composition are suggested to affect the prevalence and severity of asthma, but no microbial association study has been conducted in tropical countries. In this study, we collected floor dust and environmental characteristics from 21 classrooms, and health data related to asthma symptoms from 309 students, in junior high schools in Johor Bahru, Malaysia.
    [Show full text]
  • FUNCTIONAL STUDIES on Csis and Csps
    FUNCTIONAL STUDIES ON CSIs AND CSPs FUNCTIONAL SIGNIFICANCE OF NOVEL MOLECULAR MARKERS SPECIFIC FOR DEINOCOCCUS AND CHLAMYDIAE SPECIES BY F M NAZMUL HASSAN, B.Sc. A Thesis Submitted to the School of Graduate Studies in Partial Fulfillment of the Requirements for the Degree Master of Science McMaster University © Copyright by F M Nazmul Hassan, December, 2017 MASTER OF SCIENCE (2017) McMaster University (Biochemistry) Hamilton, Ontario TITLE: Functional Significance of Novel Molecular Markers Specific for Deinococcus and Chlamydiae Species AUTHOR: F M Nazmul Hassan, B.Sc. (Khulna University) SUPERVISOR: Professor Radhey S. Gupta NUMBER OF PAGES: xv, 108 ii This thesis is dedicated to my mom and dad. I lost my mother when I was a high school student. She always liked to share stories about science and inspired me to do something for the beneficial of human being. Her dream was guided by my father. I was always encouraged by my father to do higher education. I have lost my father this year. It was most critical moment of my life. But, I have continued to do research because of fulfill his dream. iii THESIS ABSTRACT The Deinococcus species are highly resistant to oxidation, desiccation, and radiation. Very few characteristics explain these unique features of Deinococcus species. This study reports the results of detailed comparative genomics, structural and protein-protein interactions studies on the DNA repair proteins from Deinococcus species. Comparative genomics studies have identified a large number of conserved signature indels (CSIs) in the DNA repair proteins that are specific for Deinococcus species. In parallel, I have carried out the structural and protein-protein interactions studies of CSIs which are present in nucleotide excision repair (NER), UV damage endonuclease (UvsE)-dependent excision repair (UVER) and homologous recombination (HR) pathways proteins.
    [Show full text]
  • Characterization of the Interaction Between R. Conorii and Human
    Louisiana State University LSU Digital Commons LSU Doctoral Dissertations Graduate School 4-5-2018 Characterization of the Interaction Between R. Conorii and Human Host Vitronectin in Rickettsial Pathogenesis Abigail Inez Fish Louisiana State University and Agricultural and Mechanical College, [email protected] Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_dissertations Part of the Bacteria Commons, Bacteriology Commons, Biology Commons, Immunology of Infectious Disease Commons, and the Pathogenic Microbiology Commons Recommended Citation Fish, Abigail Inez, "Characterization of the Interaction Between R. Conorii and Human Host Vitronectin in Rickettsial Pathogenesis" (2018). LSU Doctoral Dissertations. 4566. https://digitalcommons.lsu.edu/gradschool_dissertations/4566 This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Doctoral Dissertations by an authorized graduate school editor of LSU Digital Commons. For more information, please [email protected]. CHARACTERIZATION OF THE INTERACTION BETWEEN R. CONORII AND HUMAN HOST VITRONECTIN IN RICKETTSIAL PATHOGENESIS A Dissertation Submitted to the Graduate Faculty of the Louisiana State University and Agricultural and Mechanical College in partial fulfillment of the requirements for the degree of Doctor of Philosophy in The Interdepartmental Program in Biomedical and Veterinary Medical Sciences Through the Department of Pathobiological Sciences by Abigail Inez
    [Show full text]
  • Sanguineus Bacterial Communities Rhipicephalus
    Composition and Seasonal Variation of Rhipicephalus turanicus and Rhipicephalus sanguineus Bacterial Communities Itai Lalzar, Shimon Harrus, Kosta Y. Mumcuoglu and Yuval Gottlieb Appl. Environ. Microbiol. 2012, 78(12):4110. DOI: 10.1128/AEM.00323-12. Published Ahead of Print 30 March 2012. Downloaded from Updated information and services can be found at: http://aem.asm.org/content/78/12/4110 These include: SUPPLEMENTAL MATERIAL Supplemental material http://aem.asm.org/ REFERENCES This article cites 44 articles, 17 of which can be accessed free at: http://aem.asm.org/content/78/12/4110#ref-list-1 CONTENT ALERTS Receive: RSS Feeds, eTOCs, free email alerts (when new articles cite this article), more» on June 10, 2013 by guest Information about commercial reprint orders: http://journals.asm.org/site/misc/reprints.xhtml To subscribe to to another ASM Journal go to: http://journals.asm.org/site/subscriptions/ Composition and Seasonal Variation of Rhipicephalus turanicus and Rhipicephalus sanguineus Bacterial Communities Itai Lalzar,a Shimon Harrus,a Kosta Y. Mumcuoglu,b and Yuval Gottlieba Koret School of Veterinary Medicine, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel,a and Department of Microbiology and Molecular Genetics, The Kuvin Center for the Study of Infectious and Tropical Diseases, Hadassah Medical School, The Institute for Medical Research Israel-Canada, The Hebrew University of Jerusalem, Jerusalem, Israelb A 16S rRNA gene approach, including 454 pyrosequencing and quantitative PCR (qPCR), was used to describe the bacterial com- munity in Rhipicephalus turanicus and to evaluate the dynamics of key bacterial tenants of adult ticks during the active questing season.
    [Show full text]
  • Bordetella Petrii Clinical Isolate Isolates of This Species Have Been Previously Reported from 4
    routine laboratory protocols. Initial susceptibility testing Bordetella petrii using disk diffusion indicated apparent susceptibility of the isolate to erythromycin, gentamicin, ceftriaxone, and Clinical Isolate piperacillin/tazobactam. The isolate was resistant to amox- icillin, co-amoxiclav, tetracycline, clindamycin, ciproflo- Norman K. Fry,* John Duncan,* Henry Malnick,* xacin, and metronidazole. After initial sensitivity results, a Marina Warner,* Andrew J. Smith,† 6-week course of oral clarithromycin (500 mg, 8 hourly) Margaret S. Jackson,† and Ashraf Ayoub† was begun. We describe the first clinical isolate of Bordetella petrii At follow-up appointments 3 months and 6 months from a patient with mandibular osteomyelitis. The only pre- after antimicrobial drug therapy ceased, clinical and radi- viously documented isolation of B. petrii occurred after the ographic findings were not unusual, and the infected area initial culture of a single strain from an environmental healed successfully. Despite the successful clinical out- source. come, the isolate was subsequently shown to be resistant to clarithromycin in vitro (Table). Improvement of the 67-year-old man visited an emergency dental clinic, osteomyelitis may also have been facilitated by the biopsy Awhere he complained of toothache in the lower right procedure, during which a sequestrum of bone was mandibular quadrant. Examination showed a root-filled removed. lower right canine tooth that was mobile and tender to per- The gram-negative bacillus (designated strain cussion. The tooth was extracted uneventfully under local GDH030510) was submitted to the Health Protection anesthesia. The patient returned after several days with Agency, Centre for Infections, London, for identification. pain at the extraction site. A localized alveolar osteitis was Preliminary tests results were consistent with those diagnosed, and local debridement measures were institut- described for members of the genus Bordetella.
    [Show full text]
  • BD™ Gardnerella Selective Agar with 5% Human Blood
    INSTRUCTIONS FOR USE – READY-TO-USE PLATED MEDIA PA-254094.06 Rev.: July 2014 BD Gardnerella Selective Agar with 5% Human Blood INTENDED USE BD Gardnerella Selective Agar with 5% Human Blood is a partially selective and differential medium for the isolation of Gardnerella vaginalis from clinical specimens. PRINCIPLES AND EXPLANATION OF THE PROCEDURE Microbiological method. Gardnerella vaginalis is considered to be one of the organisms causing vaginitis.1-4 Although the organism may be present in a high percentage of normal women in the vaginal flora, its importance as a cause of non-specific vaginitis (also called bacterial vaginosis) has never been questioned. In symptomatic women, G. vaginalis frequently is associated with anaerobes such as Prevotella bivia, P. disiens, Mobiluncus, Peptostreptococcus, and/or others which are a regular part of the urethral or intestinal, but not vaginal flora. In non-specific vaginitis, normal Lactobacillus flora is reduced or absent. Gardnerella vaginalis is considered to be the indicator organism for non-specific vaginitis which, in fact, is a polymicrobial infection.3,4 Although non- culture methods such as a direct Gram stain have been recommended in recent years for genital specimens, culture is still preferred by many laboratories.1,5 G. vaginalis may also be responsible for a variety of other diseases such as preterm birth, chorioamnionitis, urinary tract infections, newborn infections, and septicemia.6 The detection of the organism on routinely used media is difficult since Gardnerella and other
    [Show full text]
  • The Mysterious Orphans of Mycoplasmataceae
    The mysterious orphans of Mycoplasmataceae Tatiana V. Tatarinova1,2*, Inna Lysnyansky3, Yuri V. Nikolsky4,5,6, and Alexander Bolshoy7* 1 Children’s Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, 90027, California, USA 2 Spatial Science Institute, University of Southern California, Los Angeles, 90089, California, USA 3 Mycoplasma Unit, Division of Avian and Aquatic Diseases, Kimron Veterinary Institute, POB 12, Beit Dagan, 50250, Israel 4 School of Systems Biology, George Mason University, 10900 University Blvd, MSN 5B3, Manassas, VA 20110, USA 5 Biomedical Cluster, Skolkovo Foundation, 4 Lugovaya str., Skolkovo Innovation Centre, Mozhajskij region, Moscow, 143026, Russian Federation 6 Vavilov Institute of General Genetics, Moscow, Russian Federation 7 Department of Evolutionary and Environmental Biology and Institute of Evolution, University of Haifa, Israel 1,2 [email protected] 3 [email protected] 4-6 [email protected] 7 [email protected] 1 Abstract Background: The length of a protein sequence is largely determined by its function, i.e. each functional group is associated with an optimal size. However, comparative genomics revealed that proteins’ length may be affected by additional factors. In 2002 it was shown that in bacterium Escherichia coli and the archaeon Archaeoglobus fulgidus, protein sequences with no homologs are, on average, shorter than those with homologs [1]. Most experts now agree that the length distributions are distinctly different between protein sequences with and without homologs in bacterial and archaeal genomes. In this study, we examine this postulate by a comprehensive analysis of all annotated prokaryotic genomes and focusing on certain exceptions.
    [Show full text]
  • Bacterial Community Structure in High-Arctic Snow and Freshwater As Revealed by Pyrosequencing of 16S Rrna Genes and Cultivation Annette K
    RESEARCH/REVIEW ARTICLE Bacterial community structure in High-Arctic snow and freshwater as revealed by pyrosequencing of 16S rRNA genes and cultivation Annette K. Møller,1 Ditte A. Søborg,1 Waleed Abu Al-Soud,2 Søren J. Sørensen2 & Niels Kroer1 1 Department of Environmental Science, Aarhus University, Frederiksborgvej 399, DK-4000 Roskilde, Denmark 2 Department of Biology, University of Copenhagen, Sølvgade 83H, DK-1307 K Copenhagen, Denmark Keywords Abstract Taxonomic diversity; microbial assemblages; bacterial density; DOC. The bacterial community structures in High-Arctic snow over sea ice and an ice-covered freshwater lake were examined by pyrosequencing of 16S rRNA Correspondence genes and 16S rRNA gene sequencing of cultivated isolates. Both the Niels Kroer, pyrosequence and cultivation data indicated that the phylogenetic composition Department of Environmental Science, of the microbial assemblages was different within the snow layers and between Aarhus University, snow and freshwater. The highest diversity was seen in snow. In the middle Frederiksborgvej 399, and top snow layers, , and dominated, DK-4000 Roskilde, Denmark. Proteobacteria Bacteroidetes Cyanobacteria E-mail: [email protected] although Actinobacteria and Firmicutes were relatively abundant also. High numbers of chloroplasts were also observed. In the deepest snow layer, large percentages of Firmicutes and Fusobacteria were seen. In freshwater, Bacter- oidetes, Actinobacteria and Verrucomicrobia were the most abundant phyla while relatively few Proteobacteria and Cyanobacteria were present. Possibly, light intensity controlled the distribution of the Cyanobacteria and algae in the snow while carbon and nitrogen fixed by these autotrophs in turn fed the heterotrophic bacteria. In the lake, a probable lower light input relative to snow resulted in low numbers of Cyanobacteria and chloroplasts and, hence, limited input of organic carbon and nitrogen to the heterotrophic bacteria.
    [Show full text]
  • Supplementary Information for Microbial Electrochemical Systems Outperform Fixed-Bed Biofilters for Cleaning-Up Urban Wastewater
    Electronic Supplementary Material (ESI) for Environmental Science: Water Research & Technology. This journal is © The Royal Society of Chemistry 2016 Supplementary information for Microbial Electrochemical Systems outperform fixed-bed biofilters for cleaning-up urban wastewater AUTHORS: Arantxa Aguirre-Sierraa, Tristano Bacchetti De Gregorisb, Antonio Berná, Juan José Salasc, Carlos Aragónc, Abraham Esteve-Núñezab* Fig.1S Total nitrogen (A), ammonia (B) and nitrate (C) influent and effluent average values of the coke and the gravel biofilters. Error bars represent 95% confidence interval. Fig. 2S Influent and effluent COD (A) and BOD5 (B) average values of the hybrid biofilter and the hybrid polarized biofilter. Error bars represent 95% confidence interval. Fig. 3S Redox potential measured in the coke and the gravel biofilters Fig. 4S Rarefaction curves calculated for each sample based on the OTU computations. Fig. 5S Correspondence analysis biplot of classes’ distribution from pyrosequencing analysis. Fig. 6S. Relative abundance of classes of the category ‘other’ at class level. Table 1S Influent pre-treated wastewater and effluents characteristics. Averages ± SD HRT (d) 4.0 3.4 1.7 0.8 0.5 Influent COD (mg L-1) 246 ± 114 330 ± 107 457 ± 92 318 ± 143 393 ± 101 -1 BOD5 (mg L ) 136 ± 86 235 ± 36 268 ± 81 176 ± 127 213 ± 112 TN (mg L-1) 45.0 ± 17.4 60.6 ± 7.5 57.7 ± 3.9 43.7 ± 16.5 54.8 ± 10.1 -1 NH4-N (mg L ) 32.7 ± 18.7 51.6 ± 6.5 49.0 ± 2.3 36.6 ± 15.9 47.0 ± 8.8 -1 NO3-N (mg L ) 2.3 ± 3.6 1.0 ± 1.6 0.8 ± 0.6 1.5 ± 2.0 0.9 ± 0.6 TP (mg
    [Show full text]