Miller Galleys.Indd
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Timeline of the Evolutionary History of Life
Timeline of the evolutionary history of life This timeline of the evolutionary history of life represents the current scientific theory Life timeline Ice Ages outlining the major events during the 0 — Primates Quater nary Flowers ←Earliest apes development of life on planet Earth. In P Birds h Mammals – Plants Dinosaurs biology, evolution is any change across Karo o a n ← Andean Tetrapoda successive generations in the heritable -50 0 — e Arthropods Molluscs r ←Cambrian explosion characteristics of biological populations. o ← Cryoge nian Ediacara biota – z ← Evolutionary processes give rise to diversity o Earliest animals ←Earliest plants at every level of biological organization, i Multicellular -1000 — c from kingdoms to species, and individual life ←Sexual reproduction organisms and molecules, such as DNA and – P proteins. The similarities between all present r -1500 — o day organisms indicate the presence of a t – e common ancestor from which all known r Eukaryotes o species, living and extinct, have diverged -2000 — z o through the process of evolution. More than i Huron ian – c 99 percent of all species, amounting to over ←Oxygen crisis [1] five billion species, that ever lived on -2500 — ←Atmospheric oxygen Earth are estimated to be extinct.[2][3] Estimates on the number of Earth's current – Photosynthesis Pong ola species range from 10 million to 14 -3000 — A million,[4] of which about 1.2 million have r c been documented and over 86 percent have – h [5] e not yet been described. However, a May a -3500 — n ←Earliest oxygen 2016 -
A Probable Case of Heterochrony in the Solutan
A probable case of heterochrony in the solutan Dendrocystites Barrande, 1887 (Echinodermata: Blastozoa) from the Upper Ordovician of the Prague Basin (Czech Republic) and a revision of the family Dendrocystitidae Bassler, 1938 FLEUR NOAILLES, BERTRAND LEFEBVRE & LIBOR KAIÈKA The morphology of the Late Ordovician solutan Dendrocystites is reevaluated based on more than 300 specimens from the Letná and Zahořany formations (Prague Basin, Czech Republic). This genus is reported for the first time from the Bohdalec Formation, and its presence is confirmed in the Vinice Formation. The morphology of all specimens of the stratigraphically older species D. barrandei (Sandbian) is identical to that of small to medium-size individuals of D. sedgwicki (Katian). Distinctive characters of D. sedgwicki occur only in the largest specimens, and are all size-related (more asymmetrical thecal outlines, stronger ornamentation, rosetting pattern of thecal plates, proliferation of platelets in the proxistele). Consequently, the transition from D. barrandei to D. sedgwicki is interpreted as the result of heterochronic processes, with the largest individuals of D. sedgwicki displaying hyperadult morphologies (hyper- morphosis). Dendrocystites is locally abundant in both the Letná and Zahořany formations, but extremely rare in the deeper deposits of the Vinice and Bohdalec formations. This pattern coincides closely with first order fluctuations of the sea-level in the Prague Basin. The life orientation and implied feeding strategy of Dendrocystites and other solutans are both critically discussed. Several independent lines of evidence suggest that solutans were more likely detritus-feeders. Finally, it is proposed that two morphologically distinct patterns of dististele organization were elaborated independently from the polyplated, undifferentiated stalk-like appendage of Coleicarpus (plesiomorphic condition). -
Contributions in BIOLOGY and GEOLOGY
MILWAUKEE PUBLIC MUSEUM Contributions In BIOLOGY and GEOLOGY Number 51 November 29, 1982 A Compendium of Fossil Marine Families J. John Sepkoski, Jr. MILWAUKEE PUBLIC MUSEUM Contributions in BIOLOGY and GEOLOGY Number 51 November 29, 1982 A COMPENDIUM OF FOSSIL MARINE FAMILIES J. JOHN SEPKOSKI, JR. Department of the Geophysical Sciences University of Chicago REVIEWERS FOR THIS PUBLICATION: Robert Gernant, University of Wisconsin-Milwaukee David M. Raup, Field Museum of Natural History Frederick R. Schram, San Diego Natural History Museum Peter M. Sheehan, Milwaukee Public Museum ISBN 0-893260-081-9 Milwaukee Public Museum Press Published by the Order of the Board of Trustees CONTENTS Abstract ---- ---------- -- - ----------------------- 2 Introduction -- --- -- ------ - - - ------- - ----------- - - - 2 Compendium ----------------------------- -- ------ 6 Protozoa ----- - ------- - - - -- -- - -------- - ------ - 6 Porifera------------- --- ---------------------- 9 Archaeocyatha -- - ------ - ------ - - -- ---------- - - - - 14 Coelenterata -- - -- --- -- - - -- - - - - -- - -- - -- - - -- -- - -- 17 Platyhelminthes - - -- - - - -- - - -- - -- - -- - -- -- --- - - - - - - 24 Rhynchocoela - ---- - - - - ---- --- ---- - - ----------- - 24 Priapulida ------ ---- - - - - -- - - -- - ------ - -- ------ 24 Nematoda - -- - --- --- -- - -- --- - -- --- ---- -- - - -- -- 24 Mollusca ------------- --- --------------- ------ 24 Sipunculida ---------- --- ------------ ---- -- --- - 46 Echiurida ------ - --- - - - - - --- --- - -- --- - -- - - --- -
Reinterpretation of the Enigmatic Ordovician Genus Bolboporites (Echinodermata)
Reinterpretation of the enigmatic Ordovician genus Bolboporites (Echinodermata). Emeric Gillet, Bertrand Lefebvre, Véronique Gardien, Emilie Steimetz, Christophe Durlet, Frédéric Marin To cite this version: Emeric Gillet, Bertrand Lefebvre, Véronique Gardien, Emilie Steimetz, Christophe Durlet, et al.. Reinterpretation of the enigmatic Ordovician genus Bolboporites (Echinodermata).. Zoosymposia, Magnolia Press, 2019, 15 (1), pp.44-70. 10.11646/zoosymposia.15.1.7. hal-02333918 HAL Id: hal-02333918 https://hal.archives-ouvertes.fr/hal-02333918 Submitted on 13 Nov 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. 1 Reinterpretation of the Enigmatic Ordovician Genus Bolboporites 2 (Echinodermata) 3 4 EMERIC GILLET1, BERTRAND LEFEBVRE1,3, VERONIQUE GARDIEN1, EMILIE 5 STEIMETZ2, CHRISTOPHE DURLET2 & FREDERIC MARIN2 6 7 1 Université de Lyon, UCBL, ENSL, CNRS, UMR 5276 LGL-TPE, 2 rue Raphaël Dubois, F- 8 69622 Villeurbanne, France 9 2 Université de Bourgogne - Franche Comté, CNRS, UMR 6282 Biogéosciences, 6 boulevard 10 Gabriel, F-2100 Dijon, France 11 3 Corresponding author, E-mail: [email protected] 12 13 Abstract 14 Bolboporites is an enigmatic Ordovician cone-shaped fossil, the precise nature and systematic affinities of 15 which have been controversial over almost two centuries. -
1 Tommotiids from the Early Cambrian (Series 2, Stage 3) of Morocco and the Evolution Of
1 1 Tommotiids from the early Cambrian (Series 2, stage 3) of Morocco and the evolution of 2 the tannuolinid scleritome and setigerous shell structures in stem group brachiopods 3 4 by CHRISTIAN B. SKOVSTED1, SÉBASTIEN CLAUSEN2, J. JAVIER ÁLVARO3 and 5 DEBORAH PONLEVÉ2 6 7 1 Department of Palaeozoology, Swedish Museum of Natural History, P.O. Box 50007, SE- 8 104 05 Stockholm, Sweden, [email protected]. 9 2 UMR 8217 Géosystèmes, UFR Sciences de la Terre, Université Lille 1, 10 [email protected], [email protected]. 11 3 Centro de Astrobiología (CSIC/INTA), Ctra. de Torrejón a Ajalvir km 4, 28850 Torrejón de 12 Ardoz, Spain, [email protected] 13 14 Abstract: An assemblage of tannuolinid sclerites is described from the Amouslek Formation 15 (Souss Basin) of the Anti-Atlas Mountains in Morocco. The assemblage contains two species, 16 Tannuolina maroccana n. sp. which is represented by a small number of mitral and sellate 17 sclerites and Micrina sp., represented by a single mitral sclerite. Tannuolina maroccana 18 differs from other species of the genus in the presence of both bilaterally symmetrical and 19 strongly asymmetrical sellate sclerites. This observation suggests that the scleritome of 20 Tannuolina was more complex than previously thought and that this tommotiid may have held 21 a more basal position in the brachiopod stem group than previously assumed. The shell 22 structure of both T. maroccana and Micrina sp. is well preserved and exhibits two 23 fundamentally different sets of tubular structures, only one of which was likely to contain 24 shell penetrating setae. -
The Big Picture Book
BOOK PUBLISHERS Teachers Notes (Middle Years) by Dr John Long The Big Picture Book by Dr John Long, illustrated by Brian Choo ISBN 9781741143287 Recommended for ages 8-14 These notes may be reproduced free of charge for use and study within schools but they may not be reproduced (either in whole or in part) and offered for commercial sale. Introduction ............................................ 2 Science studies........................................ 2 Time........................................... 2 Astronomy .................................. 3 Geology ...................................... 3 Biology ....................................... 4 Science and the future .................. 6 Cultural studies ....................................... 6 Language................................................ 7 Meanings of some of the names featured in the book ........... 7 About the writer and illustrator .................. 7 Appendix: A ‘Bestiary’ of living things featured in the illustrations........................ 10 83 Alexander Street PO Box 8500 Crows Nest, Sydney St Leonards NSW 2065 NSW 1590 ph: (61 2) 8425 0100 [email protected] Allen & Unwin PTY LTD Australia Australia fax: (61 2) 9906 2218 www.allenandunwin.com ABN 79 003 994 278 INTRODUCTION This book was written to introduce to upper primary and lower secondary level children an outline of the three main themes that contribute towards our understanding of evolution: time, physical processes, and biological change. The book can be used to augment studies in general science (astronomy, geology, biology), but also to contribute to an understanding of the birth of human culture and to promote discussion of environmental issues confronting the world today. The writing is a simple, almost lyrical style to facilitate an easy level of reading, with pronunciation guide and glossary at the back of the book to help children say and understand the meaning of most of the technical words used in the text. -
The Weeks Formation Konservat-Lagerstätte and the Evolutionary Transition of Cambrian Marine Life
Downloaded from http://jgs.lyellcollection.org/ by guest on October 1, 2021 Review focus Journal of the Geological Society Published Online First https://doi.org/10.1144/jgs2018-042 The Weeks Formation Konservat-Lagerstätte and the evolutionary transition of Cambrian marine life Rudy Lerosey-Aubril1*, Robert R. Gaines2, Thomas A. Hegna3, Javier Ortega-Hernández4,5, Peter Van Roy6, Carlo Kier7 & Enrico Bonino7 1 Palaeoscience Research Centre, School of Environmental and Rural Science, University of New England, Armidale, NSW 2351, Australia 2 Geology Department, Pomona College, Claremont, CA 91711, USA 3 Department of Geology, Western Illinois University, 113 Tillman Hall, 1 University Circle, Macomb, IL 61455, USA 4 Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK 5 Museum of Comparative Zoology and Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA 02138, USA 6 Department of Geology, Ghent University, Krijgslaan 281/S8, B-9000 Ghent, Belgium 7 Back to the Past Museum, Carretera Cancún, Puerto Morelos, Quintana Roo 77580, Mexico R.L.-A., 0000-0003-2256-1872; R.R.G., 0000-0002-3713-5764; T.A.H., 0000-0001-9067-8787; J.O.-H., 0000-0002- 6801-7373 * Correspondence: [email protected] Abstract: The Weeks Formation in Utah is the youngest (c. 499 Ma) and least studied Cambrian Lagerstätte of the western USA. It preserves a diverse, exceptionally preserved fauna that inhabited a relatively deep water environment at the offshore margin of a carbonate platform, resembling the setting of the underlying Wheeler and Marjum formations. However, the Weeks fauna differs significantly in composition from the other remarkable biotas of the Cambrian Series 3 of Utah, suggesting a significant Guzhangian faunal restructuring. -
The Fossil Record of the Cambrian “Explosion”: Resolving the Tree of Life Critics As Posing Challenges to Evolution
Article The Fossil Record of the Cambrian “Explosion”: 1 Resolving the Tree of Life Keith B. Miller Keith B. Miller The Cambrian “explosion” has been the focus of extensive scientifi c study, discussion, and debate for decades. It has also received considerable attention by evolution critics as posing challenges to evolution. In the last number of years, fossil discoveries from around the world, and particularly in China, have enabled the reconstruction of many of the deep branches within the invertebrate animal tree of life. Fossils representing “sister groups” and “stem groups” for living phyla have been recognized within the latest Precambrian (Neoproterozoic) and Cambrian. Important transitional steps between living phyla and their common ancestors are preserved. These include the rise of mollusks from their common ancestor with the annelids, the evolution of arthropods from lobopods and priapulid worms, the likely evolution of brachiopods from tommotiids, and the rise of chordates and echinoderms from early deuterostomes. With continued new discoveries, the early evolutionary record of the animal phyla is becoming ever better resolved. The tree of life as a model for the diversifi cation of life over time remains robust, and strongly supported by the Neoproterozoic and Cambrian fossil record. he most fundamental claim of bio- (such as snails, crabs, or sea urchins) as it logical evolution is that all living does to the fi rst appearance and diversi- T organisms represent the outer tips fi cation of dinosaurs, birds, or mammals. of a diversifying, upward- branching tree This early diversifi cation of invertebrates of life. The “Tree of Life” is an extreme- apparently occurred around the time of ly powerful metaphor that captures the the Precambrian/Cambrian boundary over essence of evolution. -
Decoding the Fossil Record of Early Lophophorates
Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology 1284 Decoding the fossil record of early lophophorates Systematics and phylogeny of problematic Cambrian Lophotrochozoa AODHÁN D. BUTLER ACTA UNIVERSITATIS UPSALIENSIS ISSN 1651-6214 ISBN 978-91-554-9327-1 UPPSALA urn:nbn:se:uu:diva-261907 2015 Dissertation presented at Uppsala University to be publicly examined in Hambergsalen, Geocentrum, Villavägen 16, Uppsala, Friday, 23 October 2015 at 13:15 for the degree of Doctor of Philosophy. The examination will be conducted in English. Faculty examiner: Professor Maggie Cusack (School of Geographical and Earth Sciences, University of Glasgow). Abstract Butler, A. D. 2015. Decoding the fossil record of early lophophorates. Systematics and phylogeny of problematic Cambrian Lophotrochozoa. (De tidigaste fossila lofoforaterna. Problematiska kambriska lofotrochozoers systematik och fylogeni). Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology 1284. 65 pp. Uppsala: Acta Universitatis Upsaliensis. ISBN 978-91-554-9327-1. The evolutionary origins of animal phyla are intimately linked with the Cambrian explosion, a period of radical ecological and evolutionary innovation that begins approximately 540 Mya and continues for some 20 million years, during which most major animal groups appear. Lophotrochozoa, a major group of protostome animals that includes molluscs, annelids and brachiopods, represent a significant component of the oldest known fossil records of biomineralised animals, as disclosed by the enigmatic ‘small shelly fossil’ faunas of the early Cambrian. Determining the affinities of these scleritome taxa is highly informative for examining Cambrian evolutionary patterns, since many are supposed stem- group Lophotrochozoa. The main focus of this thesis pertained to the stem-group of the Brachiopoda, a highly diverse and important clade of suspension feeding animals in the Palaeozoic era, which are still extant but with only with a fraction of past diversity. -
Paleontological Contributions
THE UNIVERSITY OF KANSAS PALEONTOLOGICAL CONTRIBUTIONS July 14, 1988 Paper 120 HOMALOZOAN ECHINODERMS OF THE WHEELER FORMATION (MIDDLE CAMBRIAN) OF WESTERN UTAH' Georges Ubaghs and R. A. Robison Laboratoire de Paléontologie Animale, Université de Liége, B-4000, Liége, Belgium Department of Geology, The University of Kansas, Lawrence, Kansas 66045 Abstract. —Three new species, representing three of the four homalozoan classes, are described from the upper Wheeler Formation of middle Middle Cambrian age in west- central Utah. Ctenocystis colodon n. sp. is only the fifth species of Ctenocystoidea to be described. The new order Ctenocystida is defined. The solutan Castericystis? sprinklei n. sp. is the fifth species of Homoiostelea to be reported from Cambrian strata. The cornute Cothurnocystis? bifida n. sp. is the fifth species of Stylophora to be reported from Middle Cambrian strata worldwide and only the second from North America. This homalozoan fauna is among the most diverse known from any Cambrian formation. AMONG ECHINODERMS, homalozoans are un House Range, and the stylophoran Cothur- usual in their complete lack of radial symmetry. nocystis? bifida from the House Range. Representatives are relatively rare, especially in Each homalozoan species in the Wheeler Cambrian strata. Three new Cambrian spe- Formation is from a different locality. Such low cies, which represent three of the four homa- diversity is typical of most Cambrian echi- lozoan classes, are described here. All are noderm faunas, although locally each species from the upper Wheeler Formation of west- may be represented by numerous individuals. central Utah and include the ctenocystoid For several years, knowledge of the class Ctenocystis colodon from the Drum Mountains, Ctenocystoidea was limited to the single species the homoiostelean Castericystis? sprinklei from the Ctenocystis utahensis Robison and Sprinkle, 1969, which is locally abundant in the Spence Shale of Manuscript received 15 November 1987. -
Wolf Calls Are One of the Sounds of the Wilderness, Which Some Fear and Some Love Because It Brings Them Into Contact with Nature
Wolf calls are one of the sounds of the wilderness, which some fear and some love because it brings them into contact with nature. Wolves Removed from the Endangered Species Act - Sucq~~~ or Failure in the Conservation of an Endangered Species? SITO'( Aced,rcling to zoologist Susan Crockford, at the Umversjfy; o(Yktoria, British Columbia, Canada, who is-an autfu;©rlt;y on the evolution ofdogs from wolves, . "wolves ~'~tiack and killlivestock and dogs, arid they w#~' kiJ} pe@ile/under the right conditions," so people do ~ave/:i g()0d¥tr<'1~on to fear them. Md s_Reaking more generally, people have always loved the gn~at.. <iliv ~r:§ity of life and have admired its wonderful animals, including the big predators. But nature also has been.somethiag. to fear, and wolves somehow bring out that fear in people, as we know from children's stories and folk: stories, like "Peter and the Wolf." With this strong duality of feelings about wolves, we confront the basic questions about biological diversity: What does it mean to us, what role does diversity play in sustaining life on Earth, and how can that diversity be conserved? The chapter is an introduction to these issues.' CHAPTER 7 BIOLOGICAL DIVERSITY people ever since nature and its diversity have been writ• 7.1 What Is Biological ten about, an uplifting often perceived as a religious expe• Diversity? rience. Creative refers to the fact that artists, writers, and musicians find stimulation for their creativity from nature Biological diversity refers to the variety of life-forms, and its diversity. -
Early Cambrian Problematic Lophotrochozoans and Dilemmas of Scleritome Reconstructions
Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology 967 Early Cambrian Problematic Lophotrochozoans and Dilemmas of Scleritome Reconstructions CECILIA M LARSSON ACTA UNIVERSITATIS UPSALIENSIS ISSN 1651-6214 ISBN 978-91-554-8462-0 UPPSALA urn:nbn:se:uu:diva-180195 2012 Dissertation presented at Uppsala University to be publicly examined in Hambergsalen, Geocentrum, Villavägen 16, Uppsala, Friday, October 19, 2012 at 09:00 for the degree of Doctor of Philosophy. The examination will be conducted in English. Abstract Larsson, C. M. 2012. Early Cambrian Problematic Lophotrochozoans and Dilemmas of Scleritome Reconstructions. Acta Universitatis Upsaliensis. Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology 967. 47 pp. Uppsala. ISBN 978-91-554-8462-0. The emergence and radiation of metazoan body plans around the Precambrian/Cambrian boundary, some 500-600 million years ago, seems to be concordant with the appearance and diversification of preservable hard parts. Several Precambrian soft-bodied, multicellular organisms most likely represent stem-group bilaterians, but their fossil record is rather sparse. In contrast, the Cambrian fossil record is comparably rich – comprising hard part, trace fossil and delicate soft tissue preservation – and most animal phyla that we know of today had evolved by the end of the Cambrian. Consequently, this time represents an important period in the early evolution of metazoan life forms. Most skeletal remnants of invertebrate organisms from this period are preserved in incomplete, disarticulated sclerite assemblages, and the true architecture of the original skeletal structure, the scleritome, may therefore be hard to discern. Many scleritomous taxa have been suggested to be members of the lophotrochozoan clade, while their exact position within this group remains unclear.