The Big Picture Book
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Osteichthyes: Sarcopterygii) Apex Predator from the Eifelian-Aged Dundee Formation of Ontario, Canada
Canadian Journal of Earth Sciences A large onychodontiform (Osteichthyes: Sarcopterygii) apex predator from the Eifelian-aged Dundee Formation of Ontario, Canada. Journal: Canadian Journal of Earth Sciences Manuscript ID cjes-2016-0119.R3 Manuscript Type: Article Date Submitted by the Author: 04-Dec-2016 Complete List of Authors: Mann, Arjan; Carleton University, Earth Sciences; University of Toronto Faculty of ArtsDraft and Science, Earth Sciences Rudkin, David; Royal Ontario Museum Evans, David C.; Royal Ontario Museum, Natural History; University of Toronto, Ecology and Evolutionary Biology Laflamme, Marc; University of Toronto - Mississauga, Chemical and Physical Sciences Keyword: Sarcopterygii, Onychodontiformes, Body size, Middle Devonian, Eifelian https://mc06.manuscriptcentral.com/cjes-pubs Page 1 of 34 Canadian Journal of Earth Sciences A large onychodontiform (Osteichthyes: Sarcopterygii) apex predator from the Eifelian- aged Dundee Formation of Ontario, Canada. Arjan Mann 1,2*, David Rudkin 1,2 , David C. Evans 2,3 , and Marc Laflamme 1 1, Department of Earth Sciences, University of Toronto, 22 Russell Street, Toronto, Ontario, M5S 3B1, Canada, [email protected], [email protected] 2, Department of Palaeobiology, Royal Ontario Museum, 100 Queen’s Park, Toronto, Ontario, Canada M5S 2C6 3, Department of Ecology and Evolutionary Biology, University of Toronto, 25 Willcocks Street, Toronto, Ontario, Canada M5S 3B2 *Corresponding author (e-mail: [email protected] ca). https://mc06.manuscriptcentral.com/cjes-pubs Canadian Journal of Earth Sciences Page 2 of 34 Abstract The Devonian marine strata of southwestern Ontario, Canada have been well documented geologically, but their vertebrate fossils are poorly studied. Here we report a new onychodontiform (Osteichthyes, Sarcopterygii) Onychodus eriensis n. -
Timeline of the Evolutionary History of Life
Timeline of the evolutionary history of life This timeline of the evolutionary history of life represents the current scientific theory Life timeline Ice Ages outlining the major events during the 0 — Primates Quater nary Flowers ←Earliest apes development of life on planet Earth. In P Birds h Mammals – Plants Dinosaurs biology, evolution is any change across Karo o a n ← Andean Tetrapoda successive generations in the heritable -50 0 — e Arthropods Molluscs r ←Cambrian explosion characteristics of biological populations. o ← Cryoge nian Ediacara biota – z ← Evolutionary processes give rise to diversity o Earliest animals ←Earliest plants at every level of biological organization, i Multicellular -1000 — c from kingdoms to species, and individual life ←Sexual reproduction organisms and molecules, such as DNA and – P proteins. The similarities between all present r -1500 — o day organisms indicate the presence of a t – e common ancestor from which all known r Eukaryotes o species, living and extinct, have diverged -2000 — z o through the process of evolution. More than i Huron ian – c 99 percent of all species, amounting to over ←Oxygen crisis [1] five billion species, that ever lived on -2500 — ←Atmospheric oxygen Earth are estimated to be extinct.[2][3] Estimates on the number of Earth's current – Photosynthesis Pong ola species range from 10 million to 14 -3000 — A million,[4] of which about 1.2 million have r c been documented and over 86 percent have – h [5] e not yet been described. However, a May a -3500 — n ←Earliest oxygen 2016 -
Origin and Beyond
EVOLUTION ORIGIN ANDBEYOND Gould, who alerted him to the fact the Galapagos finches ORIGIN AND BEYOND were distinct but closely related species. Darwin investigated ALFRED RUSSEL WALLACE (1823–1913) the breeding and artificial selection of domesticated animals, and learned about species, time, and the fossil record from despite the inspiration and wealth of data he had gathered during his years aboard the Alfred Russel Wallace was a school teacher and naturalist who gave up teaching the anatomist Richard Owen, who had worked on many of to earn his living as a professional collector of exotic plants and animals from beagle, darwin took many years to formulate his theory and ready it for publication – Darwin’s vertebrate specimens and, in 1842, had “invented” the tropics. He collected extensively in South America, and from 1854 in the so long, in fact, that he was almost beaten to publication. nevertheless, when it dinosaurs as a separate category of reptiles. islands of the Malay archipelago. From these experiences, Wallace realized By 1842, Darwin’s evolutionary ideas were sufficiently emerged, darwin’s work had a profound effect. that species exist in variant advanced for him to produce a 35-page sketch and, by forms and that changes in 1844, a 250-page synthesis, a copy of which he sent in 1847 the environment could lead During a long life, Charles After his five-year round the world voyage, Darwin arrived Darwin saw himself largely as a geologist, and published to the botanist, Joseph Dalton Hooker. This trusted friend to the loss of any ill-adapted Darwin wrote numerous back at the family home in Shrewsbury on 5 October 1836. -
Re-Description of the Sauropod Dinosaur Amanzia (“Ornithopsis
Schwarz et al. Swiss J Geosci (2020) 113:2 https://doi.org/10.1186/s00015-020-00355-5 Swiss Journal of Geosciences ORIGINAL PAPER Open Access Re-description of the sauropod dinosaur Amanzia (“Ornithopsis/Cetiosauriscus”) greppini n. gen. and other vertebrate remains from the Kimmeridgian (Late Jurassic) Reuchenette Formation of Moutier, Switzerland Daniela Schwarz1* , Philip D. Mannion2 , Oliver Wings3 and Christian A. Meyer4 Abstract Dinosaur remains were discovered in the 1860’s in the Kimmeridgian (Late Jurassic) Reuchenette Formation of Moutier, northwestern Switzerland. In the 1920’s, these were identifed as a new species of sauropod, Ornithopsis greppini, before being reclassifed as a species of Cetiosauriscus (C. greppini), otherwise known from the type species (C. stewarti) from the late Middle Jurassic (Callovian) of the UK. The syntype of “C. greppini” consists of skeletal elements from all body regions, and at least four individuals of diferent sizes can be distinguished. Here we fully re-describe this material, and re-evaluate its taxonomy and systematic placement. The Moutier locality also yielded a theropod tooth, and fragmen- tary cranial and vertebral remains of a crocodylomorph, also re-described here. “C.” greppini is a small-sized (not more than 10 m long) non-neosauropod eusauropod. Cetiosauriscus stewarti and “C.” greppini difer from each other in: (1) size; (2) the neural spine morphology and diapophyseal laminae of the anterior caudal vertebrae; (3) the length-to-height proportion in the middle caudal vertebrae; (4) the presence or absence of ridges and crests on the middle caudal cen- tra; and (5) the shape and proportions of the coracoid, humerus, and femur. -
A Stable Isotopic Investigation of Resource Partitioning Among Neosauropod Dinosaurs of the Upper Jurassic Morrison Formation
A stable isotopic investigation of resource partitioning among neosauropod dinosaurs of the Upper Jurassic Morrison Formation Benjamin T. Breeden, III SID: 110305422 [email protected] GEOL394H University of Maryland, College Park, Department of Geology 29 April 2011 Advisors: Dr. Thomas R. Holtz1, Jr., Dr. Alan Jay Kaufman1, and Dr. Matthew T. Carrano2 1: University of Maryland, College Park, Department of Geology 2: National Museum of Natural History, Department of Paleobiology ABSTRACT For more than a century, morphological studies have been used to attempt to understand the partitioning of resources in the Morrison Fauna, particularly between members of the two major clades of neosauropod (long-necked, megaherbivorous) dinosaurs: Diplodocidae and Macronaria. While it is generally accepted that most macronarians fed 3-5m above the ground, the feeding habits of diplodocids are somewhat more enigmatic; it is not clear whether diplodocids fed higher or lower than macronarians. While many studies exploring sauropod resource portioning have focused on differences in the morphologies of the two groups, few have utilized geochemical evidence. Stable isotope geochemistry has become an increasingly common and reliable means of investigating paleoecological questions, and due to the resistance of tooth enamel to diagenetic alteration, fossil teeth can provide invaluable paleoecological and behavioral data that would be otherwise unobtainable. Studies in the Ituri Rainforest in the Democratic Republic of the Congo, have shown that stable isotope ratios measured in the teeth of herbivores reflect the heights at which these animals fed in the forest due to isotopic variation in plants with height caused by differences in humidity at the forest floor and the top of the forest exposed to the atmosphere. -
Redalyc.Angolatitan Adamastor, a New Sauropod Dinosaur and the First Record from Angola
Anais da Academia Brasileira de Ciências ISSN: 0001-3765 [email protected] Academia Brasileira de Ciências Brasil MATEUS, OCTÁVIO; JACOBS, LOUIS L.; SCHULP, ANNE S.; POLCYN, MICHAEL J.; TAVARES, TATIANA S.; BUTA NETO, ANDRÉ; MORAIS, MARIA LUÍSA; ANTUNES, MIGUEL T. Angolatitan adamastor, a new sauropod dinosaur and the first record from Angola Anais da Academia Brasileira de Ciências, vol. 83, núm. 1, marzo, 2011, pp. 221-233 Academia Brasileira de Ciências Rio de Janeiro, Brasil Available in: http://www.redalyc.org/articulo.oa?id=32717681011 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative “main” — 2011/2/10 — 15:47 — page 221 — #1 Anais da Academia Brasileira de Ciências (2011) 83(1): 221-233 (Annals of the Brazilian Academy of Sciences) Printed version ISSN 0001-3765 / Online version ISSN 1678-2690 www.scielo.br/aabc Angolatitan adamastor, a new sauropod dinosaur and the first record from Angola , OCTÁVIO MATEUS1 2, LOUIS L. JACOBS3, ANNE S. SCHULP4, MICHAEL J. POLCYN3, TATIANA S. TAVARES5, ANDRÉ BUTA NETO5, MARIA LUÍSA MORAIS5 and MIGUEL T. ANTUNES6 1CICEGe, Faculdade de Ciências e Tecnologia, FCT, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal 2Museu da Lourinhã, Rua João Luis de Moura, 2530-157 Lourinhã, Portugal 3Huffington Department of Earth Sciences, Southern Methodist University, Dallas, TX, 75275, USA 4Natuurhistorisch Museum Maastricht, de Bosquetplein 6-7, NL6211 KJ Maastricht, The Netherlands 5Geology Department, Universidade Agostinho Neto, Av. -
Physical and Environmental Drivers of Paleozoic Tetrapod Dispersal Across Pangaea
ARTICLE https://doi.org/10.1038/s41467-018-07623-x OPEN Physical and environmental drivers of Paleozoic tetrapod dispersal across Pangaea Neil Brocklehurst1,2, Emma M. Dunne3, Daniel D. Cashmore3 &Jӧrg Frӧbisch2,4 The Carboniferous and Permian were crucial intervals in the establishment of terrestrial ecosystems, which occurred alongside substantial environmental and climate changes throughout the globe, as well as the final assembly of the supercontinent of Pangaea. The fl 1234567890():,; in uence of these changes on tetrapod biogeography is highly contentious, with some authors suggesting a cosmopolitan fauna resulting from a lack of barriers, and some iden- tifying provincialism. Here we carry out a detailed historical biogeographic analysis of late Paleozoic tetrapods to study the patterns of dispersal and vicariance. A likelihood-based approach to infer ancestral areas is combined with stochastic mapping to assess rates of vicariance and dispersal. Both the late Carboniferous and the end-Guadalupian are char- acterised by a decrease in dispersal and a vicariance peak in amniotes and amphibians. The first of these shifts is attributed to orogenic activity, the second to increasing climate heterogeneity. 1 Department of Earth Sciences, University of Oxford, South Parks Road, Oxford OX1 3AN, UK. 2 Museum für Naturkunde, Leibniz-Institut für Evolutions- und Biodiversitätsforschung, Invalidenstraße 43, 10115 Berlin, Germany. 3 School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham B15 2TT, UK. 4 Institut -
A New Middle Jurassic Diplodocoid Suggests an Earlier Dispersal and Diversification of Sauropod Dinosaurs
ARTICLE DOI: 10.1038/s41467-018-05128-1 OPEN A new Middle Jurassic diplodocoid suggests an earlier dispersal and diversification of sauropod dinosaurs Xing Xu1, Paul Upchurch2, Philip D. Mannion 3, Paul M. Barrett 4, Omar R. Regalado-Fernandez 2, Jinyou Mo5, Jinfu Ma6 & Hongan Liu7 1234567890():,; The fragmentation of the supercontinent Pangaea has been suggested to have had a profound impact on Mesozoic terrestrial vertebrate distributions. One current paradigm is that geo- graphic isolation produced an endemic biota in East Asia during the Jurassic, while simul- taneously preventing diplodocoid sauropod dinosaurs and several other tetrapod groups from reaching this region. Here we report the discovery of the earliest diplodocoid, and the first from East Asia, to our knowledge, based on fossil material comprising multiple individuals and most parts of the skeleton of an early Middle Jurassic dicraeosaurid. The new discovery challenges conventional biogeographical ideas, and suggests that dispersal into East Asia occurred much earlier than expected. Moreover, the age of this new taxon indicates that many advanced sauropod lineages originated at least 15 million years earlier than previously realised, achieving a global distribution while Pangaea was still a coherent landmass. 1 Key Laboratory of Evolutionary Systematics of Vertebrates, Institute of Vertebrate Paleontology & Paleoanthropology, Chinese Academy of Sciences, 100044 Beijing, China. 2 Department of Earth Sciences, University College London, Gower Street, London WC1E 6BT, UK. 3 Department of Earth Science and Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, UK. 4 Department of Earth Sciences, Natural History Museum, Cromwell Road, London SW7 5BD, UK. 5 Natural History Museum of Guangxi, 530012 Nanning, Guangxi, China. -
The First Specimen of Camarasaurus (Dinosauria: Sauropoda) from Montana: the Northernmost Occurrence of the Genus
RESEARCH ARTICLE The first specimen of Camarasaurus (Dinosauria: Sauropoda) from Montana: The northernmost occurrence of the genus D. Cary Woodruff1,2,3*, John R. Foster4 1 Great Plains Dinosaur Museum and Field Station, Malta, Montana, United States of America, 2 Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada, 3 Royal Ontario Museum, Toronto, Ontario, Canada, 4 Museum of Moab, Moab, Utah, United States of America * [email protected] a1111111111 a1111111111 a1111111111 Abstract a1111111111 a1111111111 A partial skeleton from the Little Snowy Mountains of central Montana is the first referable specimen of the Morrison Formation macronarian sauropod Camarasaurus. This specimen also represents the northernmost occurrence of a sauropod in the Morrison. Histological study indicates that, although the specimen is relatively small statured, it is skeletally OPEN ACCESS mature; this further emphasizes that size is not a undeviating proxy to maturity in dinosaurs, Citation: Woodruff DC, Foster JR (2017) The first and that morphologies associated with an individual's age and stature may be more nebu- specimen of Camarasaurus (Dinosauria: lous in sauropods. Sauropoda) from Montana: The northernmost occurrence of the genus. PLoS ONE 12(5): e0177423. https://doi.org/10.1371/journal. pone.0177423 Editor: David Carrier, University of Utah, UNITED Introduction STATES The macronarian sauropod Camarasaurus (represented by the species C. lentus, C. grandis, C. Received: July 16, 2016 supremus, and C. lewisi) is far and away the most abundant Morrison Formation (North Amer- Accepted: March 13, 2017 ica; latest Oxfordian±Early Tithonian) sauropod to date (n > 175; [1]). While classically repre- Published: May 31, 2017 sented at such famous dinosaur localities such as Dinosaur National Monument, Utah, and Como Bluff, Wyoming, the genus is homogeneously distributed throughout the known extent Copyright: © 2017 Woodruff, Foster. -
I Ecomorphological Change in Lobe-Finned Fishes (Sarcopterygii
Ecomorphological change in lobe-finned fishes (Sarcopterygii): disparity and rates by Bryan H. Juarez A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science (Ecology and Evolutionary Biology) in the University of Michigan 2015 Master’s Thesis Committee: Assistant Professor Lauren C. Sallan, University of Pennsylvania, Co-Chair Assistant Professor Daniel L. Rabosky, Co-Chair Associate Research Scientist Miriam L. Zelditch i © Bryan H. Juarez 2015 ii ACKNOWLEDGEMENTS I would like to thank the Rabosky Lab, David W. Bapst, Graeme T. Lloyd and Zerina Johanson for helpful discussions on methodology, Lauren C. Sallan, Miriam L. Zelditch and Daniel L. Rabosky for their dedicated guidance on this study and the London Natural History Museum for courteously providing me with access to specimens. iii TABLE OF CONTENTS ACKNOWLEDGEMENTS ii LIST OF FIGURES iv LIST OF APPENDICES v ABSTRACT vi SECTION I. Introduction 1 II. Methods 4 III. Results 9 IV. Discussion 16 V. Conclusion 20 VI. Future Directions 21 APPENDICES 23 REFERENCES 62 iv LIST OF TABLES AND FIGURES TABLE/FIGURE II. Cranial PC-reduced data 6 II. Post-cranial PC-reduced data 6 III. PC1 and PC2 Cranial and Post-cranial Morphospaces 11-12 III. Cranial Disparity Through Time 13 III. Post-cranial Disparity Through Time 14 III. Cranial/Post-cranial Disparity Through Time 15 v LIST OF APPENDICES APPENDIX A. Aquatic and Semi-aquatic Lobe-fins 24 B. Species Used In Analysis 34 C. Cranial and Post-Cranial Landmarks 37 D. PC3 and PC4 Cranial and Post-cranial Morphospaces 38 E. PC1 PC2 Cranial Morphospaces 39 1-2. -
Ancient Southern China Fish May Have Evolved Prior to the 'Age of Fish' 8 March 2017
Ancient southern China fish may have evolved prior to the 'Age of Fish' 8 March 2017 (443.7 - 419.2 million years ago). Until recently, the Silurian fossil record of jawed vertebrates has been based on highly fragmentary remains, limiting our understanding of their early evolution. Recent discoveries from the Kuanti Formation of Yunnan, southwestern China, have dramatically enhanced our knowledge, with several superbly preserved fish species described in recent years. The fish- bearing sediments of the Kuanti Formation have been dated to the latter part of the Silurian, about 423 million years ago. Now, Choo and colleagues have described a new genus and species of Kuanti fish, Sparalepis tingi, which represents only the second Silurian bony fish based on more than isolated fragments. This new form, along with its contemporary Guiyu and the slightly more recent Psarolepis, possesses spine- bearing pectoral and pelvic girdles, features once thought to be restricted to the armored placoderm fishes. Sparalepis and its kin may represent an early radiation of stem-sarcopterygians, ancient cousins of modern lungfish, coelacanths and tetrapods. Life restoration of Sparalepis tingi (foreground) and other But Sparalepis also has an unusual scale fauna from the Kuanti Formation. Credit: Brian Choo morphology which distinguishes it from its cousins. The scales are particularly tall, thick and narrow, with the ones at the front having interlocking mechanisms on both the outer and inner surfaces. An ancient fish species with unusual scales and The closely packed squamation resembles a wall of teeth from the Kuanti Formation in southern China shields, giving rise to the genus name of may have evolved prior to the "Age of Fish", Sparalepis, a mixture of ancient Persian and Greek according to a study published March 8, 2017 in meaning "shield scale". -
Stratigraphic Data of the Middle – Late Permian on Russian Platform Données Stratigraphiques Sur Le Permien Moyen Et Supérieur De La Plate-Forme Russe
Geobios 36 (2003) 533–558 www.elsevier.com/locate/geobio Stratigraphic data of the Middle – Late Permian on Russian Platform Données stratigraphiques sur le Permien moyen et supérieur de la Plate-forme russe Vladimir P. Gorsky a, Ekaterina A. Gusseva a,†, Sylvie Crasquin-Soleau b,*, Jean Broutin c a All-Russian Geological Research Institute (VSEGEI), Sredny pr. 74, St. Petersburg, 199106, Russia b CNRS, FRE2400, université Pierre-et-Marie-Curie, département de géologie sédimentaire, T.15–25, E.4, case 104, 75252 Paris cedex 05, France c Université Pierre-et-Marie-Curie, laboratoire de paléobotanique et paléoécologie, IFR101–CNRS, 12, rue Cuvier, 75005 Paris, France Received 12 November 2001; accepted 2 December 2002 Abstract This paper presents the litho– and biostratigraphic data and correlations of the Middle and Late Permian (Ufimian, Kazanian and Tatarian) on the Russian Platform. The lithological descriptions and the paleontological content (foraminifera, bivalves, ostracods, brachiopods, vertebrates, plants and acritarchs) of the different units are exposed from the Barents Sea up to the Caspian Sea. © 2003 E´ ditions scientifiques et médicales Elsevier SAS. All rights reserved. Résumé Cet article présente les descriptions et les corrélations litho– et biostratigraphiques du Permien moyen et supérieur (Ufimien, Kazanien, Tatarien) de la Plate-forme russe depuis la mer de Barents jusqu’à la mer Caspienne. Les descriptions lithologiques et le contenu paléontologique (foraminifères, bivalves, ostracodes, brachiopodes, vertébrés, plantes et acritarches) des différentes unités sont exposés. © 2003 E´ ditions scientifiques et médicales Elsevier SAS. All rights reserved. Keywords: Stratigraphic data; Correlations; Middle and Late Permian; Russian Platform; Ostracods; Plants Mots clés : Données stratigraphiques ; Corrélations ; Permien moyen et supérieur ; Plate-forme russe ; Ostracodes ; Plantes 1.