Stratigraphic Data of the Middle – Late Permian on Russian Platform Données Stratigraphiques Sur Le Permien Moyen Et Supérieur De La Plate-Forme Russe

Total Page:16

File Type:pdf, Size:1020Kb

Stratigraphic Data of the Middle – Late Permian on Russian Platform Données Stratigraphiques Sur Le Permien Moyen Et Supérieur De La Plate-Forme Russe Geobios 36 (2003) 533–558 www.elsevier.com/locate/geobio Stratigraphic data of the Middle – Late Permian on Russian Platform Données stratigraphiques sur le Permien moyen et supérieur de la Plate-forme russe Vladimir P. Gorsky a, Ekaterina A. Gusseva a,†, Sylvie Crasquin-Soleau b,*, Jean Broutin c a All-Russian Geological Research Institute (VSEGEI), Sredny pr. 74, St. Petersburg, 199106, Russia b CNRS, FRE2400, université Pierre-et-Marie-Curie, département de géologie sédimentaire, T.15–25, E.4, case 104, 75252 Paris cedex 05, France c Université Pierre-et-Marie-Curie, laboratoire de paléobotanique et paléoécologie, IFR101–CNRS, 12, rue Cuvier, 75005 Paris, France Received 12 November 2001; accepted 2 December 2002 Abstract This paper presents the litho– and biostratigraphic data and correlations of the Middle and Late Permian (Ufimian, Kazanian and Tatarian) on the Russian Platform. The lithological descriptions and the paleontological content (foraminifera, bivalves, ostracods, brachiopods, vertebrates, plants and acritarchs) of the different units are exposed from the Barents Sea up to the Caspian Sea. © 2003 E´ ditions scientifiques et médicales Elsevier SAS. All rights reserved. Résumé Cet article présente les descriptions et les corrélations litho– et biostratigraphiques du Permien moyen et supérieur (Ufimien, Kazanien, Tatarien) de la Plate-forme russe depuis la mer de Barents jusqu’à la mer Caspienne. Les descriptions lithologiques et le contenu paléontologique (foraminifères, bivalves, ostracodes, brachiopodes, vertébrés, plantes et acritarches) des différentes unités sont exposés. © 2003 E´ ditions scientifiques et médicales Elsevier SAS. All rights reserved. Keywords: Stratigraphic data; Correlations; Middle and Late Permian; Russian Platform; Ostracods; Plants Mots clés : Données stratigraphiques ; Corrélations ; Permien moyen et supérieur ; Plate-forme russe ; Ostracodes ; Plantes 1. Introduction terial meeting on the regional stratigraphy concerning the Middle and Late Paleozoic of the Russian Platform: the During the International Peri-Tethys Programme (1995– Permian” (Gorsky and Gusseva, 1990). This report is here 2000) and for the realisation of the paleogeographic Atlas completed by the studies realized during the Programme. (Dercourt et al., 2000), very efficient collaborations were This paper presents the stratigraphy of the Middle and Late undertaken between the French and Russian scientists, and Permian. The Early Permian part, included in the Gorsky and particularly between the VSEGEI of St. Petersburg and the Gusseva report (1990), will be published later. Pierre et Marie Curie University in Paris. Several proposals The ostracod fauna is updated by the local works in South- of the Peri-Tethys Programme were focussed on the Permian ern Cis-Urals and Precaspian Depression (E. Gusseva† and S. of the Russian Platform. During the last years, both teams Crasquin-Soleau in this paper; Molostovskaya, 1997; Molos- worked together on the project of publishing in English the tovsky et al., 1997; Kukhtinov and Crasquin-Soleau, 1999; VSEGEI internal report of the “Decisions of the interminis- Crasquin-Soleau, 2003). The paleobotanical data are thor- oughly vetted by without systematic revision (i.e., synonymy * Corresponding author. is not keeping up to date).All the other fossil data are listed as E-mail address: [email protected] (S. Crasquin-Soleau). they were quoted in the original descriptions of sections. † Dr. Ekaterina A. Gusseva passed away at the end of 2000. These checklists have historical value. ©2003E´ ditions scientifiques et médicales Elsevier SAS. All rights reserved. doi:10.1016/S0016-6995(03)00057-3 534 V.P. Gorsky et al. / Geobios 36 (2003) 533–558 It is not possible to cite here all the bibliographic refer- ginal conditions (Gaetani, 2000). The final stages of the con- ences (all in Russian) used to draw up theVSEGEI report. We vergence between Laurussia, Kazakhstania and Angara re- refer to this report (Gorsky and Gusseva, 1990). sult in the Ural Orogenic belt. Between 20°E (Baltic Sea) and During the Middle – Late Permian time, almost all the 60°E (the Urals), the Russian Platform lies from the Barents Northern Peri-Tethyan platform is under continental or mar- Sea to the North up to the Caspian Sea to the South (Fig. 1). Fig. 1. Location of the geographical reference points Fig. 1. Localisation des repères géographiques V.P. Gorsky et al. / Geobios 36 (2003) 533–558 535 2. Middle – Late Permian stratigraphical correlations scale (IUGS 2000) and the Russian one are summarized on Table 1. The time slice considered here covered the Ufimian, Ka- Two main domains of sedimentation are distinguished zanian and Tatarian. The precise correlations with the inter- during the Middle and Late Permian: the Eastern European national scale (IUGS 2000) are not easy. Indeed, quite all the Basin (noted A on Fig. 2) and the Western European one Russian series are under continental environments and North (noted B on Fig. 2). They are subdivided in different facies American series (for the Middle Permian: Guadalupian) and belts presented on Figure 2. These two domains are heritage the Chinese series (for the Late Permian: Lopingian) are of the anterior paleogeographic configuration. The Baltic under marine environments. The main useful tool for the Shield extended eastwards with two major positive struc- correlations between the different scales could be the paleo- tures, namely the Voronezh High and the Ukrainian High. magnetism with the reversal between the Kiaman Permo- These highs separated the Eastern European Basin (Western Triassic superchron and the Illawara mixed polarity super- Urals, Precaspian and Dniepr-Donetz basins connected to- chron. The base of the Illawara mixed zone is recognized in gether) from the Western one which is related to the Polish the Tethyan domain (Haag and Heller, 1991; Baud et al., Basin (Gaetani et al., 2000). 1996). The K/I boundary is also recognized on the Russian The correlations are presented by a series of Tables Platform in the northernmost part of western Urals, the west- (Tables 2 to 11) from North to South, belt by belt, for the ern and central part of the Syktyokar area, in Perm – Viatka Eastern European basin (Tables 2 to 10 p.p.) and after for the area and in Samara area (Gorsky and Gusseva, 1990). Gi- Western European Basin (Tables 10 p.p. and 11). The litho- alanella et al. (1997) published developed results obtained in logical descriptions (when the room was not sufficient in the Tataria (Kazan area) and presented the correlations with the Table an asterisk refers to the Table explanation) and the Tethyan domain. The limit is located at the boundary be- paleontological content (the list is always in the Table expla- tween the Urzhumian and the Severodvinian series i.e. at the nation and is refers by a number in the Table) are given for all boundary between early and late Tatarian (Table 2)asitwas the intervals. The member “aleurolite” is often used in the presented by Lozovsky and Yaroshenko (1994) for the Mos- facies description. “Aleurolite” is equivalent to siltstone in cow syncline. The correlations between the international Russian literature. Table 1 Correlations of International, Tethyan and Russian Middle and Late Permian scales. No vertical scale. 1.After the International stratigraphic Chart (IUGS 2000). 2. After Baud et al. (1993) and Davidov (1996) Corrélations des échelles internationales, téthysienne et russe pour le Permien moyen et supérieur. Pas d’échelle verticale. 1.D’après la Charte stratigraphique internationale (IUGS 2000). 2.D’après Baud et al. (1993) et Davidov (1996) 536 V.P. Gorsky et al. / Geobios 36 (2003) 533–558 Fig. 2. Regional distribution of Middle and Late Permian deposits on the Russian Platform (on a present day geographical map, identical to Fig. 1. For clarity of the map, a lot of geographic names, present on Figure 1 are not reported here). Fig. 2. Répartition régionale des dépôts du Permien moyen et supérieur de la Plate-forme russe (sur un fond géographique actuel, identique à celui de la Fig. 1). Par souci de clarté, bon nombre de noms géographiques présents sur la Figure 1 ne sont pas reportés ici. V.P. Gorsky et al. / Geobios 36 (2003) 533–558 537 • A. Eastern European sedimentation basin. I. Arkhangelsk Belt (Arkhangelsk – Narian-Mar – Adz’Va – Pechora – Ukhta) (Tables 3 and 4); I.1. North of Arkhangelsk (lower courses of Mezen and Pinega rivers, Kouloi river); Kanin Peninsula; I.2. North East of Mezen area (Pesa river area; Beluse – Safonovo area); I.3. West of Pechora depression (Indiga – Izma river – Ukhta area); I.4. Upper course of Pechora river; south-eastern part of Pechora depression; I.5. North East of Pechora depression (Narian Mar – Adz’Va – Usinsk area); NE of Pechora syneclise; I.6. Tchernishova chain (Adak – Usinsk – Pechora area; Adz’va river). II. Syktyokar Belt (South of Pechora and Mezen syneclises and Northern part of Volga and Urals anteclises) (Table 5). II.1.a. South of Arkhangelsk area and West of Vologda area, North East of Moscow syneclise, lower course of the Dvina river; II.1.b. South East of Arkhangelsk area and East of Vologda area (Sukona river, upper courses of Pinega and Dvina rivers); South of axial part of Mezen syneclise and NE of Moscow syneclise; II.2. South of Komi Republic, North of Viatka (ex Kirov) area, upper course of Vycegda river; II.3. South East of Komi Republic, North of Perm area, West of Ural chain, South of Pechora syneclise. III. Perm belt (South East of Moscow syneclise and North of Volgaand Ural syneclises) (Table 6); III.1. Volgaarea between Nijni Novgorod (ex Gorky) and Iaroslav (between Volga and Oka rivers, lower course of Kostroma river); South West and central Moscow syneclise; III.2. East of Unja river, North of Nijni Novgorod – Tcheboksary area (lower and middle course of Unja river and Vetlonga river area), East of Moscow syneclise; III.3. Area of Viatka (upper and middle course of Viatka river and Kobra river), structural shoulder of Viatka; III.4.
Recommended publications
  • Therapsida: Dinocephalia) Christian F
    This article was downloaded by: [University of Guelph] On: 30 April 2012, At: 12:37 Publisher: Taylor & Francis Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK Journal of Systematic Palaeontology Publication details, including instructions for authors and subscription information: http://www.tandfonline.com/loi/tjsp20 Systematics of the Anteosauria (Therapsida: Dinocephalia) Christian F. Kammerer a a Department of Vertebrate Paleontology, American Museum of Natural History, New York, 10024-5192, USA Available online: 13 Dec 2010 To cite this article: Christian F. Kammerer (2011): Systematics of the Anteosauria (Therapsida: Dinocephalia), Journal of Systematic Palaeontology, 9:2, 261-304 To link to this article: http://dx.doi.org/10.1080/14772019.2010.492645 PLEASE SCROLL DOWN FOR ARTICLE Full terms and conditions of use: http://www.tandfonline.com/page/terms-and-conditions This article may be used for research, teaching, and private study purposes. Any substantial or systematic reproduction, redistribution, reselling, loan, sub-licensing, systematic supply, or distribution in any form to anyone is expressly forbidden. The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae, and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand, or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material. Journal of Systematic Palaeontology, Vol.
    [Show full text]
  • Origin and Beyond
    EVOLUTION ORIGIN ANDBEYOND Gould, who alerted him to the fact the Galapagos finches ORIGIN AND BEYOND were distinct but closely related species. Darwin investigated ALFRED RUSSEL WALLACE (1823–1913) the breeding and artificial selection of domesticated animals, and learned about species, time, and the fossil record from despite the inspiration and wealth of data he had gathered during his years aboard the Alfred Russel Wallace was a school teacher and naturalist who gave up teaching the anatomist Richard Owen, who had worked on many of to earn his living as a professional collector of exotic plants and animals from beagle, darwin took many years to formulate his theory and ready it for publication – Darwin’s vertebrate specimens and, in 1842, had “invented” the tropics. He collected extensively in South America, and from 1854 in the so long, in fact, that he was almost beaten to publication. nevertheless, when it dinosaurs as a separate category of reptiles. islands of the Malay archipelago. From these experiences, Wallace realized By 1842, Darwin’s evolutionary ideas were sufficiently emerged, darwin’s work had a profound effect. that species exist in variant advanced for him to produce a 35-page sketch and, by forms and that changes in 1844, a 250-page synthesis, a copy of which he sent in 1847 the environment could lead During a long life, Charles After his five-year round the world voyage, Darwin arrived Darwin saw himself largely as a geologist, and published to the botanist, Joseph Dalton Hooker. This trusted friend to the loss of any ill-adapted Darwin wrote numerous back at the family home in Shrewsbury on 5 October 1836.
    [Show full text]
  • Gorgonopsia: Rubidgeinae) with Implications for the Identity of This Species
    Rediscovery of the holotype of Clelandina major Broom, 1948 (Gorgonopsia: Rubidgeinae) with implications for the identity of this species Christian F. Kammerer North Carolina Museum of Natural Sciences, 11 W. Jones Street, Raleigh, North Carolina 27604, U.S.A., and Evolutionary Studies Institute, University of the Witwatersrand, Private Bag 3, WITS, Johannesburg, 2050 South Africa E-mail: [email protected] Received 7 November 2017. Accepted 8 December 2017 No specimen number was given for the holotype of the rubidgeine gorgonopsian species Clelandina major Broom, 1948 in its original description. Historically, a specimen in the Rubidge Collection (RC 94) was considered to represent Broom’s type specimen for C. major. However, recent study has revealed that the holotype of C. major is in fact a different specimen in the McGregor Museum in Kimberley (MMK 5031). The morphology of this specimen is consistent with the genus Clelandina, contra work based on RC 94 that considered C. major referable to Aelurognathus. Clelandina major is here considered synonymous with the type species Clelandina rubidgei. MMK 5031 represents only the fifth known specimen of this rare and unusual gorgonopsian. Keywords: Synapsida, Therapsida, Gorgonopsia, Permian, holotype, taxonomy. Palaeontologia africana 2017. ©2017 Christian F.Kammerer. This is an open-access article published under the Creative Commons Attribution 4.0 Unported License (CC BY4.0). To view a copy of the license, please visit http://creativecommons.org/licenses/by/4.0/. This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. The article is permanently archived at: http://wiredspace.wits.ac.za/handle/10539/23480 INTRODUCTION provided no specimen numbers for the holotypes of Clelandina is one of the rarest and most unusual C.
    [Show full text]
  • The Big Picture Book
    BOOK PUBLISHERS Teachers Notes (Middle Years) by Dr John Long The Big Picture Book by Dr John Long, illustrated by Brian Choo ISBN 9781741143287 Recommended for ages 8-14 These notes may be reproduced free of charge for use and study within schools but they may not be reproduced (either in whole or in part) and offered for commercial sale. Introduction ............................................ 2 Science studies........................................ 2 Time........................................... 2 Astronomy .................................. 3 Geology ...................................... 3 Biology ....................................... 4 Science and the future .................. 6 Cultural studies ....................................... 6 Language................................................ 7 Meanings of some of the names featured in the book ........... 7 About the writer and illustrator .................. 7 Appendix: A ‘Bestiary’ of living things featured in the illustrations........................ 10 83 Alexander Street PO Box 8500 Crows Nest, Sydney St Leonards NSW 2065 NSW 1590 ph: (61 2) 8425 0100 [email protected] Allen & Unwin PTY LTD Australia Australia fax: (61 2) 9906 2218 www.allenandunwin.com ABN 79 003 994 278 INTRODUCTION This book was written to introduce to upper primary and lower secondary level children an outline of the three main themes that contribute towards our understanding of evolution: time, physical processes, and biological change. The book can be used to augment studies in general science (astronomy, geology, biology), but also to contribute to an understanding of the birth of human culture and to promote discussion of environmental issues confronting the world today. The writing is a simple, almost lyrical style to facilitate an easy level of reading, with pronunciation guide and glossary at the back of the book to help children say and understand the meaning of most of the technical words used in the text.
    [Show full text]
  • Physical and Environmental Drivers of Paleozoic Tetrapod Dispersal Across Pangaea
    ARTICLE https://doi.org/10.1038/s41467-018-07623-x OPEN Physical and environmental drivers of Paleozoic tetrapod dispersal across Pangaea Neil Brocklehurst1,2, Emma M. Dunne3, Daniel D. Cashmore3 &Jӧrg Frӧbisch2,4 The Carboniferous and Permian were crucial intervals in the establishment of terrestrial ecosystems, which occurred alongside substantial environmental and climate changes throughout the globe, as well as the final assembly of the supercontinent of Pangaea. The fl 1234567890():,; in uence of these changes on tetrapod biogeography is highly contentious, with some authors suggesting a cosmopolitan fauna resulting from a lack of barriers, and some iden- tifying provincialism. Here we carry out a detailed historical biogeographic analysis of late Paleozoic tetrapods to study the patterns of dispersal and vicariance. A likelihood-based approach to infer ancestral areas is combined with stochastic mapping to assess rates of vicariance and dispersal. Both the late Carboniferous and the end-Guadalupian are char- acterised by a decrease in dispersal and a vicariance peak in amniotes and amphibians. The first of these shifts is attributed to orogenic activity, the second to increasing climate heterogeneity. 1 Department of Earth Sciences, University of Oxford, South Parks Road, Oxford OX1 3AN, UK. 2 Museum für Naturkunde, Leibniz-Institut für Evolutions- und Biodiversitätsforschung, Invalidenstraße 43, 10115 Berlin, Germany. 3 School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham B15 2TT, UK. 4 Institut
    [Show full text]
  • Reptile Family Tree - Peters 2017 1112 Taxa, 231 Characters
    Reptile Family Tree - Peters 2017 1112 taxa, 231 characters Note: This tree does not support DNA topologies over 100 Eldeceeon 1990.7.1 67 Eldeceeon holotype long phylogenetic distances. 100 91 Romeriscus Diplovertebron Certain dental traits are convergent and do not define clades. 85 67 Solenodonsaurus 100 Chroniosaurus 94 Chroniosaurus PIN3585/124 Chroniosuchus 58 94 Westlothiana Casineria 84 Brouffia 93 77 Coelostegus Cheirolepis Paleothyris Eusthenopteron 91 Hylonomus Gogonasus 78 66 Anthracodromeus 99 Osteolepis 91 Protorothyris MCZ1532 85 Protorothyris CM 8617 81 Pholidogaster Protorothyris MCZ 2149 97 Colosteus 87 80 Vaughnictis Elliotsmithia Apsisaurus Panderichthys 51 Tiktaalik 86 Aerosaurus Varanops Greererpeton 67 90 94 Varanodon 76 97 Koilops <50 Spathicephalus Varanosaurus FMNH PR 1760 Trimerorhachis 62 84 Varanosaurus BSPHM 1901 XV20 Archaeothyris 91 Dvinosaurus 89 Ophiacodon 91 Acroplous 67 <50 82 99 Batrachosuchus Haptodus 93 Gerrothorax 97 82 Secodontosaurus Neldasaurus 85 76 100 Dimetrodon 84 95 Trematosaurus 97 Sphenacodon 78 Metoposaurus Ianthodon 55 Rhineceps 85 Edaphosaurus 85 96 99 Parotosuchus 80 82 Ianthasaurus 91 Wantzosaurus Glaucosaurus Trematosaurus long rostrum Cutleria 99 Pederpes Stenocybus 95 Whatcheeria 62 94 Ossinodus IVPP V18117 Crassigyrinus 87 62 71 Kenyasaurus 100 Acanthostega 94 52 Deltaherpeton 82 Galechirus 90 MGUH-VP-8160 63 Ventastega 52 Suminia 100 Baphetes Venjukovia 65 97 83 Ichthyostega Megalocephalus Eodicynodon 80 94 60 Proterogyrinus 99 Sclerocephalus smns90055 100 Dicynodon 74 Eoherpeton
    [Show full text]
  • Biarmosuchus
    Meet the Amniotes: The great terrestrial adaptation Pterosauria Archaic archosaurs Crocodiles Dinosauria Lepidosaurs Anapsids Synapsids Most ‘amphibians’ Most ‘fishes’ Assorted jawless fish Amniota Urochordata Tetrapoda Cephalochordata Gnathostomata Vertebrata Amniotic egg Chordata Thick skin Distinctive skulls The cleidoic egg: a private pond Eggshell: Semipermeable Calcareous or leathery Albumen: Egg cytoplasm Amnion: Protection / Gas transfer Yo l k Sac: Nutrient Pool Allantois: Waste Pool Synapsida Anapsida Lepidosauria Archosauria First amniotes Diapsida in record (!!) Eureptilia Amniotes Walking with Monsters Chapter 2 1:10-5:00 Evolution of Eggs? Some modern amphibians To deal with longer time Eggs became larger, lay eggs on land... why? periods on dry land, tougher. Large eggs can - One inner membrane tougher shells were produce larger babies, 1. escape predation selected for. Gas exchange which had a higher and waste devices evolved likelihood of survival in a for complete eggtonomy tough world. Evolution of Hair? Amniotes all have the gene for hair: alpha keratin In birds/lizards, it’s expressed in claws In mammals, it’s used in hair & nails 310 Ma Thrinaxodon Blood vessel channels on premaxillae, maxillae ~vibrassae (whiskers) (early Triassic) Castorcauda First direct fossil evidence of hair (mid-Jurassic) Meet the Amniotes No temporal fenestra Upper temporal fenestra Lower temporal fenestra Single temporal fenestra = ‘window’ fenestra The Permian 299-251 Ma The Permian 299-251 Ma Convergence of Pangaea The effects of the landscape on climate: Gondwana icecap disappeared Heat distributed more equally through fluids than solids as continent drifted north Oceans slower to warm/cool than continents Pangaea: Rapid warming/cooling ~ more intense than today Temperature extremes Our modern continents are ‘tempered’ by oceans between them.
    [Show full text]
  • Pelycosauria Y Therapsida
    Pelycosauria y Therapsida Los amniotos pueden dividirse en dos líneas principales: Los synapsidos (de quienes provienen los mamíferos) y los Sauropsidos (de quienes provienen “rep;les” y aves). Los Synápsidos poseen una apertura (fenestra) en el cráneo, detrás del ojo, debajo de la unión entre los huesos postorbital y escamoso. Comparten un ancestro en común más reciente con un mamífero que con una lagar;ja. Filogené;camente, no pertenecen a rep;lia, pero a la mayoría se les conoce como “rep;les semejantes a mamíferos” Anapsida Synapsida Diapsida “Parapsida” o “Euryapsida” (Diapsida modificados) SYNAPSIDA: -COMPARTEN UN ACMR CON MAMÍFEROS QUE CON REPTILES -FENESTRA TEMPORAL, BAJO POSTORBITAL-ESCAMOSO -REGION OCCIPITAL POSTERIORMENTE INCLINADA (NO VERTICAL) -SUPRATEMPORAL SE CONECTA AL POSTORBITAL PETROLACOSAURUS ARCHAEOTHYRIS (synapsida) -CENTRALE MEDIAL (MC) BIEN DESARROLLADO EN EL TARSO -PRESENCIA DE DOS HUESOS CORONOIDES (LADO MEDIAL MANDÍBULA) Tradicionalmente se discuten cuatro “tipos fundamnetales” de synapsidos, que en efecto son grupos sucesivamente sucesivamente anidados “Pelycosaurios” (parafilético, se usa para hablar de synapsidos basales) Carbonífero Superior- Terápsidos. Pérmico-Triásico Pérmico. Muy “reptilianos” aún Modificaciones craneales y posturales importantes Cynodontes. Pérmico superior, Triásico Mamíferos. Triásico Muy similares a mamíferos Oído interno tres huesos Dinastías synapsidas Meg Dynasty 1: Pelicosaurios del Pérmico inferior Meg Dynasty 2: Terápsidos del Pérmico superior-Triásico inferior Meg Dynasty 3: Mamíferos del Cenozoico Los primeros synápsidos (basales) se conocen colectivamente como un grupo “parafilético”, los Pelycosaurios (P en la figura) que excluyen a sus descendientes Terápsidos. Los pelycosaurios presentan abundantes dientes en el paladar. Reconstruc;on of Pangaea showing anteosaurid dinocephalians and platyoposaurid temnospondyles during the Middle Permian. Probable dispersal routes are indicated by red arrows.
    [Show full text]
  • Carnivorous Dinocephalian from the Middle Permian of Brazil and Tetrapod Dispersal in Pangaea
    Carnivorous dinocephalian from the Middle Permian of Brazil and tetrapod dispersal in Pangaea Juan Carlos Cisnerosa,1, Fernando Abdalab, Saniye Atayman-Güvenb, Bruce S. Rubidgeb, A. M. Celâl Sxengörc,1, and Cesar L. Schultzd aCentro de Ciências da Natureza, Universidade Federal do Piauí, 64049-550 Teresina, Brazil; bBernard Price Institute for Palaeontological Research, University of the Witwatersrand, WITS 2050 Johannesburg, South Africa; cAvrasya Yerbilimleri Estitüsü, İstanbul Teknik Üniversitesi, Ayazaga 34469, Istanbul, Turkey; and dDepartamento de Paleontologia e Estratigrafia, Universidade Federal do Rio Grande do Sul, 91540-000 Porto Alegre, Brazil Contributed by A. M. Celâlx Sengör, December 5, 2011 (sent for review September 29, 2011) The medial Permian (∼270–260 Ma: Guadalupian) was a time of fragmentary to further explore their affinities with confidence. Here important tetrapod faunal changes, in particular reflecting a turn- we present a diagnosable dinocephalian species from the Permian over from pelycosaurian- to therapsid-grade synapsids. Until now, of South America, based on a complete and well-preserved cra- most knowledge on tetrapod distribution during the medial Perm- nium. This fossil is a member of the carnivorous clade Ante- ian has come from fossils found in the South African Karoo and the osauridae, and provides evidence for Pangaea-wide distribution Russian Platform, whereas other areas of Pangaea are still poorly of carnivorous dinocephalians during the Guadalupian. known. We present evidence for the presence of a terrestrial car- nivorous vertebrate from the Middle Permian of South America Results based on a complete skull. Pampaphoneus biccai gen. et sp. nov. Systematic Paleontology. Synapsida Osborn, 1903; Therapsida was a dinocephalian “mammal-like reptile” member of the Ante- Broom, 1905; Dinocephalia Seeley, 1894; Anteosauridae Boon- osauridae, an early therapsid predator clade known only from the stra, 1954; Syodontinae Ivakhnenko, 1994; Pampaphoneus biccai Middle Permian of Russia, Kazakhstan, China, and South Africa.
    [Show full text]
  • ARSTANOSAURUS Species Undescribed AVIMIMUS Portentosus
    Dinosaur Casts Specimen List ARSTANOSAURUS species undescribed Meaning of Name: Reptile from Arstan Well Classification: ORNITHOPODA; Hadrosauridae, Hadrosaurinae Age: Late Cretaceous (Santonian) Bayn Shireh Formation, 85 million years ago Locality: Gobi Desert, Peoples' Republic of Mongolia Size: l5cm in length AVIMIMUS portentosus Partial skeleton. In position as if found in field Meaning of Name: Bird Mimic Classification: THEROPODA; relationships uncertain Age: Late Cretaceous (Campanian) Djadokhta Formation, 75 million years ago Locality: Gobi Desert, Peoples' Republic of Mongolia Size: l00cm in length reconstructed Skeleton www.gondwanastudios.com BAGACERATOPS rozhdestvenskyi Meaning of Name: Small horned face Classification: CERATOPSIA; Neoceratopsia; Protoceratopsidae Age: Late Cretaceous (Campanian), Barun Goyot Formation, 75 million years ago Locality: Gobi Desert, Southern Khermin Tsav, Mongolia Size: 3.5cm in length BIARMOSUCHUS tener Meaning of Name: Crocodile from Biarmia, an ancient country in the Perm region. Classification: THERAPSIDA; Eotheriodontia; Family Biarmosuchidae Age: Late Permian, Zone I, 225 million years ago Locality: Ocher, Perm Region, Russia Size: 75cm in length Half skeleton encased in sediment, as found in the field. BULLOCKORNIS planei (Demon Duck of Doom) Meaning of Name: Bird from Bullock Creek Classification: Flightless Bird Age: 12 million years Locality: Northern Territory, Australia Size: 250cm in height www.gondwanastudios.com CATOPSALIS djadochtatherium Meaning of Name: Beast from Djadokhta
    [Show full text]
  • (2020). Morphological Convergence Obscures Functional Diversity in Sabre-Toothed Carnivores
    Lautenschlager, S., Figueirido, B., Cashmore, D., Bendel, E-M., & Stubbs, T. L. (2020). Morphological convergence obscures functional diversity in sabre-toothed carnivores. Proceedings of the Royal Society of London B: Biological Sciences, 287(1935). https://doi.org/10.1098/rspb.2020.1818 Peer reviewed version Link to published version (if available): 10.1098/rspb.2020.1818 Link to publication record in Explore Bristol Research PDF-document This is the author accepted manuscript (AAM). The final published version (version of record) is available online via The Royal Society at https://doi.org/10.1098/rspb.2020.1818. Please refer to any applicable terms of use of the publisher. University of Bristol - Explore Bristol Research General rights This document is made available in accordance with publisher policies. Please cite only the published version using the reference above. Full terms of use are available: http://www.bristol.ac.uk/red/research-policy/pure/user-guides/ebr-terms/ Submitted to Proceedings of the Royal Society B: For Review Only Morphological convergence obscures functional diversity in sabre-toothed carnivores Journal: Proceedings B Manuscript ID RSPB-2020-1818.R1 Article Type: Research Date Submitted by the 03-Sep-2020 Author: Complete List of Authors: Lautenschlager, Stephan; University of Birmingham, Figueirido, Borja; Universidad de Málaga Cashmore, Daniel; University of Birmingham Bendel, Eva-Maria; Museum für Naturkunde - Leibniz-Institut für Evolutions- und Biodiversitätsforschung; Humboldt-Universität zu Berlin Stubbs, Thomas; University of Bristol, School of Earth Sciences Subject: Palaeontology < BIOLOGY, Evolution < BIOLOGY Convergent evolution, functional morphology, computational analysis, Keywords: Smilodon, ecology Proceedings B category: Palaeobiology http://mc.manuscriptcentral.com/prsb Page 1 of 26 Submitted to Proceedings of the Royal Society B: For Review Only Author-supplied statements Relevant information will appear here if provided.
    [Show full text]
  • Taxonomic Re-Evaluation of Tapinocephalid Dinocephalians
    Taxonomic re-evaluation of subfamilies to family level and also added one more subfamily as follows: Moschosauridae (including tapinocephalid dinocephalians Moschosaurus), Moschopidae (including Delphinognathus, Moschops, Moschognathus, Pnigalion and Lamiosaurus), Saniye Atayman, Bruce S. Rubidge & Fernando Abdala Tapinocephalidae (Tapinocephalus, Taurops and Kerato- Bernard Price Institute for Palaeontological Research, University of the cephalus) and Mormosauridae (Mormosaurus, Tauro- Witwatersrand, Johannesburg, Private Bag 3, WITS, 2050 South Africa cephalus and Struthiocephalus). E-mail: [email protected] / [email protected] / After a detailed revision of dinocephalian taxonomy, [email protected] Boonstra (1969) further synonomised the following Tapinocephalid dinocephalians are morphologically genera: Taurops and Moschognathus with Tapinocephalus the most diverse Middle Permian herbivorous tetrapod and Moschops; Pnigalion with Moschops; Moschosaurus with group from South Africa. Although they were the first Struthiocephalus; Pelosuchus with Keratocephalus, and in- large and the most successful therapsid group to have cluded Lamiosaurus in titanosuchids. This new taxonomy existed at that time on land, they all became extinct by the included the latest founded new genera Avenantia Middle to Late Permian (Boonstra 1971). They are well (Boonstra 1952a), Riebeeckosaurus (Boonstra 1952c), represented in South Africa (Boonstra 1963; Boonstra Struthiocephaloides (Boonstra 1952d) and a new subfamily 1969; Rubidge
    [Show full text]