ARSTANOSAURUS Species Undescribed AVIMIMUS Portentosus

Total Page:16

File Type:pdf, Size:1020Kb

ARSTANOSAURUS Species Undescribed AVIMIMUS Portentosus Dinosaur Casts Specimen List ARSTANOSAURUS species undescribed Meaning of Name: Reptile from Arstan Well Classification: ORNITHOPODA; Hadrosauridae, Hadrosaurinae Age: Late Cretaceous (Santonian) Bayn Shireh Formation, 85 million years ago Locality: Gobi Desert, Peoples' Republic of Mongolia Size: l5cm in length AVIMIMUS portentosus Partial skeleton. In position as if found in field Meaning of Name: Bird Mimic Classification: THEROPODA; relationships uncertain Age: Late Cretaceous (Campanian) Djadokhta Formation, 75 million years ago Locality: Gobi Desert, Peoples' Republic of Mongolia Size: l00cm in length reconstructed Skeleton www.gondwanastudios.com BAGACERATOPS rozhdestvenskyi Meaning of Name: Small horned face Classification: CERATOPSIA; Neoceratopsia; Protoceratopsidae Age: Late Cretaceous (Campanian), Barun Goyot Formation, 75 million years ago Locality: Gobi Desert, Southern Khermin Tsav, Mongolia Size: 3.5cm in length BIARMOSUCHUS tener Meaning of Name: Crocodile from Biarmia, an ancient country in the Perm region. Classification: THERAPSIDA; Eotheriodontia; Family Biarmosuchidae Age: Late Permian, Zone I, 225 million years ago Locality: Ocher, Perm Region, Russia Size: 75cm in length Half skeleton encased in sediment, as found in the field. BULLOCKORNIS planei (Demon Duck of Doom) Meaning of Name: Bird from Bullock Creek Classification: Flightless Bird Age: 12 million years Locality: Northern Territory, Australia Size: 250cm in height www.gondwanastudios.com CATOPSALIS djadochtatherium Meaning of Name: Beast from Djadokhta Classification: MULTITUBERCULATA; Taeniolabididae Age: Late Cretaceous (75 million years ago) Locality: Gobi Desert, Peoples' Republic of Mongolia Size: 4.5cm in length DEINOCHEIRUS mirificus Meaning of Name: Terrible hand Classification: THEROPODA; Relationship uncertain Age: Late Cretaceous (Late Campanian-Early Maastrichtian), Nemegt Formation, 75 million years ago. Locality: Gobi Desert, Southern Peoples' Republic of Mongolia Size: Forelimbs 260cm in height Mounted on frame in upright position DELTAVYATKA vjatkensis Meaning of Name: 'from the VYAAKTA river' Classification: Para-reptilia; Pareiasauridae Age: Late Permian 255 million years ago Locality: VYAAKTA river, Russia Size: 20cm in length www.gondwanastudios.com DICYNODON trautscholdi Meaning of Name: Double Dog-Tooth Classification: THERAPSIDA; Anomodontia; Family Dicynodontidae Age: Late Permian, Zone IV, 245 million years ago Locality: Sokolki, Malaya Severnaya (Small North) Dvina River near Archangel'sk, Northern Russia Size: 25cm in length This skull is compared to that of more primitive mammal-like reptiles to illustrate the evolutionary trends that have occurred in this group. DROMORNIS stirtoni Meaning of Name: Stirton's Thunder Bird Classification: Flightless Bird Age: Late Miocene Locality: Northern Territory, Australia Size:320cm in height DVINIA prima Meaning of Name: Derived from the Dvina River Classification: THERAPSIDA; Cynodontia; Family Dviniidae Age: Later Permian, Zone IV, 245 million years ago Locality: Sokolki, Malaya, Severnaya (Small North) Dvina River near Archangel'sk, Northern Russia Size: l0cm in length www.gondwanastudios.com ENNATOSAURUS tecton Meaning of Name: The ninth reptile Classification: PELYCOSAURIA; Caseamorpha; Family Caseidae Age: Late Permian, Zone II, 25O million years ago Locality: Pechora, Northern Russia Skeleton Size: 60cm in length Skull Size: 25cm in length EOTITANOSUCHUS olsoni Meaning of Name: Ancient giant crocodile Classification: THERAPSIDA; Eotheriodontia; Family Eotitanosuchidae Age: Late Permian, Zone I, 255 million years ago Locality: Ocher, Perm Region, Russia Size: 35cm in length www.gondwanastudios.com ESTEMMENOSUCHUS mirabilis Meaning of Name: Crowned crocodile Classification: THERAPSIDA; Dinocephalia; Family Estemmenosuchidae Age: Later Permian Zone I, 225 million years ago Locality: Ocher, Perm Region, Russia Size: 45cm in width GALLIMIMUS bullatus Meaning of Name: Chicken mimic Classification: THEROPODA; Ornithomimosauria; Ornithomimidae Age: Late Cretaceous (Late Campanian-Early Maastrichtian), Nemegt Formation, 74 million years ago. Locality: Gobi Desert, Peoples' Republic of Mongolia Size: 550cm in length GOBIPTERYX minuta Meaning of Name: Gobi-winged Classification: AVES (birds)' Gobipterygiformes; Gobipterygidae Age: Late Cretaceous (Santonian-Campanian), 75-78 million years old. Locality: Gobi Desert, Peoples' Republic of Mongolia Size: 4cm in length www.gondwanastudios.com HADROSAUR eggs Classification: ORNITHOPODA; Hadrosauridae; Hadrosaurinae Age: Late Cretaceous (Late Campanian-Early Maastrichtian), Nemegt Formation, 7O million years ago. Locality: Gobi Desert, Southern Peoples' Republic of Mongolia Size: 42cm in length clutch of eggs HADROSAUR skin impression Classification: ORNITHOPODA; Hadrosauridae; Hadrosaurinae Age: Late Cretaceous (Late Campanian-Early Maastrichtian), Nemegt Formation, 7O million years ago. Locality: Gobi Desert, Southern Peoples' Republic of Mongolia Size: 25cm in length INGENIA yanshini Meaning of Name: Genius Classification: THEROPODA; Oviraptorosauria; Oviraptoridae Age: Late Cretaceous (Campanian), Djadokhta Formation, 75 million years ago Locality: Gobi Desert, Peoples' Republic of Mongolia Size: 10cm in length www.gondwanastudios.com INOSTRANCEVIA alexandri Meaning of Name: Named in honour of A. Inostrantzev, a Russian geologist www.gondwanastudios.com LYSTROSAURUS georgi Meaning of Name: Shovel reptile Classification: THERAPSIDA; Anomodontia; Family Lystrosauridae Age: Early Triassic, 24O million years ago Locality: Astashikha, Nizhegorodskaya Region, Russia Size: l00cm in length reconstructed Skeleton MEGALANIA prisca Classification: Giant varanid lizard Age: Pleistocene 1.6million - 40,000 years ago Locality: South-eastern Queensland, Australia Size: 570 cm in length Skull Size: 80cm in length www.gondwanastudios.com MESENOSAURUS romeri Meaning of Name: Reptile from Mezen Classification: DIAPSIDA; Order uncertain; Family Mesenosauridae Age: Later Permian, Zone II, 25O million years ago Locality: Mesen River, Northern part of European Russia Size: 37cm in length Skeleton as found in field encased in sediment. MONGOLEMYS species (NOT NAMED) Meaning of Name: Turtle from Mongolia Classification: CHELONIA; Cryptodira; Dermatemydidae Age: Late Cretaceous (Late Campanian-Early Maastrichtian), 74 million years ago Locality: Gobi Desert, Peoples' Republic of Mongolia Size: Shell about 25cm in length but sizes of individuals would have varied www.gondwanastudios.com PLATYOPOSAURUS stuckenbergi Meaning of Name: Flat faced reptile Classification: TEMNOSPONDYLI (an amphibian): Eryopoidae; Family Archegosauridae Age: Late Permian, Zone I and Zone II, 255-25O million years ago Locality: Belebey, Bashkortostan, Russia Size: 37cm in length PRENOCEPHALE prenes Meaning of Name: Sloping head Classification: PACHYCEPHALOSAURIA; Pachycephalosauridae Age: Late Cretaceous (Late Campanian-Early Maastrichtian), Nemegt Formation 7O million years ago Locality: Gobi Desert, Nemegt, Mongolia Size: 23cm in length PROBACTROSAURUS gobiensis Meaning of Name: Before the Bactrian reptile Classification: ORNITHOPODA; Iguanodontia; Iguanodontidae Age: Early Cretaceous (Aptian-Albian), l00-l25 million years ago Locality: Alashan Desert, Inner Mongolia, China Size: Complete skeleton 500cm in length www.gondwanastudios.com PROTOCERATOPS andrewsi Meaning of Name: First horned face Classification: CERATOPSIA; Neoceratopsia; Protoceratopsidae Age: Late Cretaceous (Campanian), Djadokhta formation, 75 million years ago Locality: Gobi Desert, Southern Peoples' Republic of Mongolia Size: 130cm in length PROTOCERATOPS andrewsi (Large Skull) Meaning of Name: First horned face Classification: CERATOPSIA; Neoceratopsia; Protoceratopsidae Age: Late Cretaceous (Campanian), Djadokhta formation, 75 million years ago Locality: Gobi Desert, Southern Peoples' Republic of Mongolia Size: 56cm in width PROTOCERATOPS andrewsi (small Skull) Meaning of Name: First horned face Classification: CERATOPSIA; Neoceratopsia; Protoceratopsidae Age: Late Cretaceous (Campanian), Djadokhta formation, 75 million years ago Locality: Gobi Desert, Southern Peoples' Republic of Mongolia Size: 30cm in length www.gondwanastudios.com PROTOCERATOPS andrewsi juv. Meaning of Name: First horned face Classification: CERATOPSIA; Neoceratopsia; Protoceratopsidae Age: Late Cretaceous (Campanian), Djadokhta formation, 75 million years ago Size:35cm in length PROTOCERATOPS eggs Meaning of Name: First horned face Classification: CERATOPSIA; Neoceratopsia; Protoceratopsidae Age: Late Cretaceous (Campanian), Djadokhta formation, 75 million years ago Locality: Gobi Desert, Southern Peoples' Republic of Mongolia Size: 40cm in width www.gondwanastudios.com SAICHANIA chulsanensis Meaning of Name: Beautiful Classification: ANKYLOSAURIA; Ankylosauridae www.gondwanastudios.com SHAMOSUCHUS Meaning of Name: Gobi crocodile Classification: CROCODYLA; Mesosuchia; Paralligatoridae Age: Late Cretaceous (Santonian), Tayn Shireh Formation Locality: Gobi Desert, South Eastern Peoples' Republic of Mongolia Size: 59cm in length SUMINIA getmanovi Meaning of Name: Named in honour of D. Sumin, a Russian palaeontologist Classification: THERAPSIDA; Anomodontia Age: Late Permian, Zone III, 25O million years ago Locality: KOTELNICH ON THE Vyatka River, Ural Mountains, Russia Size: 20cm in length Skeleton encased in sediment, as found in the field. TALARURUS plicatospineus Meaning of Name: Basket tail Classification: ANKYLOSAURIA; Ankylosauridae
Recommended publications
  • For Peer Review
    Earth and Environmental Science Transactions of the Royal Society of Edinburgh For Peer Review An unusual small -bodied crocodyliform from the Middle Jurassic of Scotland, UK, and potential evidence for an early diversification of advanced neosuchians Earth and Environmental Science Transactions of the Royal Society of Journal: Edinburgh Manuscript ID Draft Manuscript Type: Spontaneous Article Date Submitted by the Author: n/a Complete List of Authors: Yi, Hong-yu; Grant Institute, School of Geosciences; Chinese Academy of Sciences, Institute of Vertebrate Paleontology and Paleoanthropology Tennant, Jonathan; Imperial College London, Earth Science and Engineering Young, Mark; University of Edinburgh, School of GeoSciences Challands, Thomas; University of Edinburgh, School of GeoSciences Foffa, Davide; Grant Institute, School of Geosciences Hudson, John; University of Leicester, Department of Geology Ross, Dugald; Staffin Museum, Earth Sciences Brusatte, Stephen; Grant Institute, School of Geosciences; National Museums Scotland, Earth Sciences Keywords: Isle of Skye, Mesozoic, Duntulm Formation, Eusuchia origin Cambridge University Press Page 1 of 40 Earth and Environmental Science Transactions of the Royal Society of Edinburgh 1 An unusual small-bodied crocodyliform from the Middle Jurassic of Scotland, UK, and potential evidence for an early diversification of advanced neosuchians HONGYU YI 1, 2 , JONATHAN P. TENNANT 3*, MARK T. YOUNG 1, THOMAS J. CHALLANDS 1, DAVIDE FOFFA 1, JOHN D. HUDSON 4, DUGALD A. ROSS 5, and STEPHEN L. BRUSATTE
    [Show full text]
  • A New Mid-Permian Burnetiamorph Therapsid from the Main Karoo Basin of South Africa and a Phylogenetic Review of Burnetiamorpha
    Editors' choice A new mid-Permian burnetiamorph therapsid from the Main Karoo Basin of South Africa and a phylogenetic review of Burnetiamorpha MICHAEL O. DAY, BRUCE S. RUBIDGE, and FERNANDO ABDALA Day, M.O., Rubidge, B.S., and Abdala, F. 2016. A new mid-Permian burnetiamorph therapsid from the Main Karoo Basin of South Africa and a phylogenetic review of Burnetiamorpha. Acta Palaeontologica Polonica 61 (4): 701–719. Discoveries of burnetiamorph therapsids in the last decade and a half have increased their known diversity but they remain a minor constituent of middle–late Permian tetrapod faunas. In the Main Karoo Basin of South Africa, from where the clade is traditionally best known, specimens have been reported from all of the Permian biozones except the Eodicynodon and Pristerognathus assemblage zones. Although the addition of new taxa has provided more evidence for burnetiamorph synapomorphies, phylogenetic hypotheses for the clade remain incongruent with their appearances in the stratigraphic column. Here we describe a new burnetiamorph specimen (BP/1/7098) from the Pristerognathus Assemblage Zone and review the phylogeny of the Burnetiamorpha through a comprehensive comparison of known material. Phylogenetic analysis suggests that BP/1/7098 is closely related to the Russian species Niuksenitia sukhonensis. Remarkably, the supposed mid-Permian burnetiids Bullacephalus and Pachydectes are not recovered as burnetiids and in most cases are not burnetiamorphs at all, instead representing an earlier-diverging clade of biarmosuchians that are characterised by their large size, dentigerous transverse process of the pterygoid and exclusion of the jugal from the lat- eral temporal fenestra. The evolution of pachyostosis therefore appears to have occurred independently in these genera.
    [Show full text]
  • Origin and Beyond
    EVOLUTION ORIGIN ANDBEYOND Gould, who alerted him to the fact the Galapagos finches ORIGIN AND BEYOND were distinct but closely related species. Darwin investigated ALFRED RUSSEL WALLACE (1823–1913) the breeding and artificial selection of domesticated animals, and learned about species, time, and the fossil record from despite the inspiration and wealth of data he had gathered during his years aboard the Alfred Russel Wallace was a school teacher and naturalist who gave up teaching the anatomist Richard Owen, who had worked on many of to earn his living as a professional collector of exotic plants and animals from beagle, darwin took many years to formulate his theory and ready it for publication – Darwin’s vertebrate specimens and, in 1842, had “invented” the tropics. He collected extensively in South America, and from 1854 in the so long, in fact, that he was almost beaten to publication. nevertheless, when it dinosaurs as a separate category of reptiles. islands of the Malay archipelago. From these experiences, Wallace realized By 1842, Darwin’s evolutionary ideas were sufficiently emerged, darwin’s work had a profound effect. that species exist in variant advanced for him to produce a 35-page sketch and, by forms and that changes in 1844, a 250-page synthesis, a copy of which he sent in 1847 the environment could lead During a long life, Charles After his five-year round the world voyage, Darwin arrived Darwin saw himself largely as a geologist, and published to the botanist, Joseph Dalton Hooker. This trusted friend to the loss of any ill-adapted Darwin wrote numerous back at the family home in Shrewsbury on 5 October 1836.
    [Show full text]
  • A New Caenagnathid Dinosaur from the Upper Cretaceous Wangshi
    www.nature.com/scientificreports OPEN A new caenagnathid dinosaur from the Upper Cretaceous Wangshi Group of Shandong, China, with Received: 12 October 2017 Accepted: 7 March 2018 comments on size variation among Published: xx xx xxxx oviraptorosaurs Yilun Yu1, Kebai Wang2, Shuqing Chen2, Corwin Sullivan3,4, Shuo Wang 5,6, Peiye Wang2 & Xing Xu7 The bone-beds of the Upper Cretaceous Wangshi Group in Zhucheng, Shandong, China are rich in fossil remains of the gigantic hadrosaurid Shantungosaurus. Here we report a new oviraptorosaur, Anomalipes zhaoi gen. et sp. nov., based on a recently collected specimen comprising a partial left hindlimb from the Kugou Locality in Zhucheng. This specimen’s systematic position was assessed by three numerical cladistic analyses based on recently published theropod phylogenetic datasets, with the inclusion of several new characters. Anomalipes zhaoi difers from other known caenagnathids in having a unique combination of features: femoral head anteroposteriorly narrow and with signifcant posterior orientation; accessory trochanter low and confuent with lesser trochanter; lateral ridge present on femoral lateral surface; weak fourth trochanter present; metatarsal III with triangular proximal articular surface, prominent anterior fange near proximal end, highly asymmetrical hemicondyles, and longitudinal groove on distal articular surface; and ungual of pedal digit II with lateral collateral groove deeper and more dorsally located than medial groove. The holotype of Anomalipes zhaoi is smaller than is typical for Caenagnathidae but larger than is typical for the other major oviraptorosaurian subclade, Oviraptoridae. Size comparisons among oviraptorisaurians show that the Caenagnathidae vary much more widely in size than the Oviraptoridae. Oviraptorosauria is a clade of maniraptoran theropod dinosaurs characterized by a short, high skull, long neck and short tail.
    [Show full text]
  • New Oviraptorid Dinosaur (Dinosauria: Oviraptorosauria) from the Nemegt Formation of Southwestern Mongolia
    Bull. Natn. Sci. Mus., Tokyo, Ser. C, 30, pp. 95–130, December 22, 2004 New Oviraptorid Dinosaur (Dinosauria: Oviraptorosauria) from the Nemegt Formation of Southwestern Mongolia Junchang Lü1, Yukimitsu Tomida2, Yoichi Azuma3, Zhiming Dong4 and Yuong-Nam Lee5 1 Institute of Geology, Chinese Academy of Geological Sciences, Beijing 100037, China 2 National Science Museum, 3–23–1 Hyakunincho, Shinjukuku, Tokyo 169–0073, Japan 3 Fukui Prefectural Dinosaur Museum, 51–11 Terao, Muroko, Katsuyama 911–8601, Japan 4 Institute of Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100044, China 5 Korea Institute of Geoscience and Mineral Resources, Geology & Geoinformation Division, 30 Gajeong-dong, Yuseong-gu, Daejeon 305–350, South Korea Abstract Nemegtia barsboldi gen. et sp. nov. here described is a new oviraptorid dinosaur from the Late Cretaceous (mid-Maastrichtian) Nemegt Formation of southwestern Mongolia. It differs from other oviraptorids in the skull having a well-developed crest, the anterior margin of which is nearly vertical, and the dorsal margin of the skull and the anterior margin of the crest form nearly 90°; the nasal process of the premaxilla being less exposed on the dorsal surface of the skull than those in other known oviraptorids; the length of the frontal being approximately one fourth that of the parietal along the midline of the skull. Phylogenetic analysis shows that Nemegtia barsboldi is more closely related to Citipati osmolskae than to any other oviraptorosaurs. Key words : Nemegt Basin, Mongolia, Nemegt Formation, Late Cretaceous, Oviraptorosauria, Nemegtia. dae, and Caudipterygidae (Barsbold, 1976; Stern- Introduction berg, 1940; Currie, 2000; Clark et al., 2001; Ji et Oviraptorosaurs are generally regarded as non- al., 1998; Zhou and Wang, 2000; Zhou et al., avian theropod dinosaurs (Osborn, 1924; Bars- 2000).
    [Show full text]
  • Velociraptor Guide
    Ages 7 & up EI-5179 Guide Book VELOCIRAPTOR Ages 7 & up EI-5176 Ages 7 & up EI-5177 Ages 7 & up EI-5178 Dig ‘em up Dig ‘em up Dig ‘em up ‘em Assemble Assemble ‘em Assemble ‘em uel ‘em l ‘em Collect & d Collect & due Collect & duel ‘em nosaur ntai ns one d i one d inosaur Kit co Kit contai ns ne d inosaur Kit contai ns o TYRANNOSAURUS TRICERATOPS STEGOSAURUSSTEGOSAURUS EI-5176 EI-5177 EI-5178 For more digging fun, add these Dueling Dino Dig kits to your collection! ™ ISBN 1-56767-219-1 Table of Contents What Is in Dueling Dino Dig?. 2 Welcome to Velociraptor’s World . 4 Attack of a Velociraptor Pack . 5 Velociraptor Findings . 10 A Dinosaur Dig . 12 You’ll DIG These Fossils! . 14 Get Ready to Dig . 16 Dino Drawing . 18 Draw Your Own . 18 Velociraptor Fact Sheet . 20 Picture Gallery . 21 Making Your Velociraptor Models . 22 Displaying Your Velociraptors . 24 © Copyright 1997 Educational Insights Inc., Carson, CA (USA), St Albans, Herts. (UK) All rights reserved. Please retain this information. The Age of Dinosaurs . 26 Conforms to ASTM F-963-96a, EN-71. Printed in China. EI-5179 Where Did They Go? . 29 1 Paleontologist’s tools: What Is in Dueling Just like a paleontologist, you will get to dig the “fossils” from the “earth.” The digging tool Dino Dig? will help you break apart the clay, separate the fossils from the clay, and clean bits of clay from the fossils. The brush Dueling Dino Dig Guide Book—Velociraptor kit: will let you clean the dust from the fossils as you excavate.
    [Show full text]
  • Gorgonopsia: Rubidgeinae) with Implications for the Identity of This Species
    Rediscovery of the holotype of Clelandina major Broom, 1948 (Gorgonopsia: Rubidgeinae) with implications for the identity of this species Christian F. Kammerer North Carolina Museum of Natural Sciences, 11 W. Jones Street, Raleigh, North Carolina 27604, U.S.A., and Evolutionary Studies Institute, University of the Witwatersrand, Private Bag 3, WITS, Johannesburg, 2050 South Africa E-mail: [email protected] Received 7 November 2017. Accepted 8 December 2017 No specimen number was given for the holotype of the rubidgeine gorgonopsian species Clelandina major Broom, 1948 in its original description. Historically, a specimen in the Rubidge Collection (RC 94) was considered to represent Broom’s type specimen for C. major. However, recent study has revealed that the holotype of C. major is in fact a different specimen in the McGregor Museum in Kimberley (MMK 5031). The morphology of this specimen is consistent with the genus Clelandina, contra work based on RC 94 that considered C. major referable to Aelurognathus. Clelandina major is here considered synonymous with the type species Clelandina rubidgei. MMK 5031 represents only the fifth known specimen of this rare and unusual gorgonopsian. Keywords: Synapsida, Therapsida, Gorgonopsia, Permian, holotype, taxonomy. Palaeontologia africana 2017. ©2017 Christian F.Kammerer. This is an open-access article published under the Creative Commons Attribution 4.0 Unported License (CC BY4.0). To view a copy of the license, please visit http://creativecommons.org/licenses/by/4.0/. This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. The article is permanently archived at: http://wiredspace.wits.ac.za/handle/10539/23480 INTRODUCTION provided no specimen numbers for the holotypes of Clelandina is one of the rarest and most unusual C.
    [Show full text]
  • SEDIMENTATION of the BARUN GOYOT FORMATION (Plates XXXIV-XLII )
    RYSZARD GRADZINSKI & TOMASZ JERZYKIEWICZ SEDIMENTATION OF THE BARUN GOYOT FORMATION (Plates XXXIV-XLII ) Contents C ontents Pa ge Introduction . 112 Geological setting 112 Stratigraphy . .. 114 Previous work .. .. ... .. 114 Redefinition of the lithostratigraphic divisions. 115 Barun Goyot Formation ... 116 Nemegt Formation. .. .. 116 Relation between the observed profiles . 117 Petrographic description . .. 118 Clay and silt-grade sediments 119 Sand-grade sediments . .. 119 Intraformational gravels . 124 Exotic gravels . 124 Principal sediment types . 125 Flat-bedded sandstone units. 125 Mega cross-stratified units . 127 Massive, "structureless" sandstones. 134 Diversely stratified sandstones . 134 Alternating claystones and sandstones 136 Sedimentological interpretation 136 Occurrence of organic remains 140 Depositional environment . 141 Conclusions 143 Appen dix . 143 References . 144 Abstract. - The Barun Goyot Formation (previously termed Lower Nemegt Beds) is composed of clastic continental sediments of red-beds type; it is probably of Campanian age. The thickness of the formation exceeds 110 m. It is overlain by the Nemegt Formation (previously termed Upper Nemegt Beds), probably of Maast richtian age; the passage between the two format ions is gradual. A formal redefinition of the two Iithostra tigraphic divisions is presented in the paper. Five principal sediment types are distinguished in the Barun Goyot Formation, displaying sedimentary features indicative of various conditions of sedimentation. The lower part of the exposed profile of the Barun Goyot Formation is characterized by mega cross-stratified units, interpreted as dune deposits; they are intertonguing with water-deposited sediments laid in interdune areas. Chan nel deposits, attributed to intermittent streams are subordinate; massive sandstones, probably of various origin are predominating. The upper part of the profile of the formation is characterized by the predominance of flat-bedded sandstone units which were probabl y deposited in an intermittently flooded takyr-like area.
    [Show full text]
  • The Big Picture Book
    BOOK PUBLISHERS Teachers Notes (Middle Years) by Dr John Long The Big Picture Book by Dr John Long, illustrated by Brian Choo ISBN 9781741143287 Recommended for ages 8-14 These notes may be reproduced free of charge for use and study within schools but they may not be reproduced (either in whole or in part) and offered for commercial sale. Introduction ............................................ 2 Science studies........................................ 2 Time........................................... 2 Astronomy .................................. 3 Geology ...................................... 3 Biology ....................................... 4 Science and the future .................. 6 Cultural studies ....................................... 6 Language................................................ 7 Meanings of some of the names featured in the book ........... 7 About the writer and illustrator .................. 7 Appendix: A ‘Bestiary’ of living things featured in the illustrations........................ 10 83 Alexander Street PO Box 8500 Crows Nest, Sydney St Leonards NSW 2065 NSW 1590 ph: (61 2) 8425 0100 [email protected] Allen & Unwin PTY LTD Australia Australia fax: (61 2) 9906 2218 www.allenandunwin.com ABN 79 003 994 278 INTRODUCTION This book was written to introduce to upper primary and lower secondary level children an outline of the three main themes that contribute towards our understanding of evolution: time, physical processes, and biological change. The book can be used to augment studies in general science (astronomy, geology, biology), but also to contribute to an understanding of the birth of human culture and to promote discussion of environmental issues confronting the world today. The writing is a simple, almost lyrical style to facilitate an easy level of reading, with pronunciation guide and glossary at the back of the book to help children say and understand the meaning of most of the technical words used in the text.
    [Show full text]
  • Reidentification of Avian Embryonic Remains from the Cretaceous of Mongolia
    RESEARCH ARTICLE Reidentification of Avian Embryonic Remains from the Cretaceous of Mongolia David J. Varricchio1*, Amy M. Balanoff2, Mark A. Norell3 1 Department of Earth Sciences, Montana State University, Bozeman, Montana, 59717, United States of America, 2 Department of Anatomical Sciences, Stony Brook University School of Medicine, Stony Brook, NY, 11794, United States of America, 3 Division of Paleontology, American Museum of Natural History, New York, NY, 10024, United States of America * [email protected] Abstract Embryonic remains within a small (4.75 by 2.23 cm) egg from the Late Cretaceous, Mongo- lia are here re-described. High-resolution X-ray computed tomography (HRCT) was used to digitally prepare and describe the enclosed embryonic bones. The egg, IGM (Mongolian In- stitute for Geology, Ulaanbaatar) 100/2010, with a three-part shell microstructure, was originally assigned to Neoceratopsia implying extensive homoplasy among eggshell char- acters across Dinosauria. Re-examination finds the forelimb significantly longer than the hindlimbs, proportions suggesting an avian identification. Additional, postcranial apomor- phies (strut-like coracoid, cranially located humeral condyles, olecranon fossa, slender radi- OPEN ACCESS us relative to the ulna, trochanteric crest on the femur, and ulna longer than the humerus) identify the embryo as avian. Presence of a dorsal coracoid fossa and a craniocaudally Citation: Varricchio DJ, Balanoff AM, Norell MA (2015) Reidentification of Avian Embryonic Remains compressed distal humerus with a strongly angled distal margin support a diagnosis of IGM from the Cretaceous of Mongolia. PLoS ONE 10(6): 100/2010 as an enantiornithine. Re-identification eliminates the implied homoplasy of this e0128458. doi:10.1371/journal.pone.0128458 tri-laminate eggshell structure, and instead associates enantiornithine birds with eggshell Academic Editor: Peter Dodson, University of microstructure composed of a mammillary, squamatic, and external zones.
    [Show full text]
  • Physical and Environmental Drivers of Paleozoic Tetrapod Dispersal Across Pangaea
    ARTICLE https://doi.org/10.1038/s41467-018-07623-x OPEN Physical and environmental drivers of Paleozoic tetrapod dispersal across Pangaea Neil Brocklehurst1,2, Emma M. Dunne3, Daniel D. Cashmore3 &Jӧrg Frӧbisch2,4 The Carboniferous and Permian were crucial intervals in the establishment of terrestrial ecosystems, which occurred alongside substantial environmental and climate changes throughout the globe, as well as the final assembly of the supercontinent of Pangaea. The fl 1234567890():,; in uence of these changes on tetrapod biogeography is highly contentious, with some authors suggesting a cosmopolitan fauna resulting from a lack of barriers, and some iden- tifying provincialism. Here we carry out a detailed historical biogeographic analysis of late Paleozoic tetrapods to study the patterns of dispersal and vicariance. A likelihood-based approach to infer ancestral areas is combined with stochastic mapping to assess rates of vicariance and dispersal. Both the late Carboniferous and the end-Guadalupian are char- acterised by a decrease in dispersal and a vicariance peak in amniotes and amphibians. The first of these shifts is attributed to orogenic activity, the second to increasing climate heterogeneity. 1 Department of Earth Sciences, University of Oxford, South Parks Road, Oxford OX1 3AN, UK. 2 Museum für Naturkunde, Leibniz-Institut für Evolutions- und Biodiversitätsforschung, Invalidenstraße 43, 10115 Berlin, Germany. 3 School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham B15 2TT, UK. 4 Institut
    [Show full text]
  • Lyons SCIENCE 2021 the Influence of Juvenile Dinosaurs SUPPL.Pdf
    science.sciencemag.org/content/371/6532/941/suppl/DC1 Supplementary Materials for The influence of juvenile dinosaurs on community structure and diversity Katlin Schroeder*, S. Kathleen Lyons, Felisa A. Smith *Corresponding author. Email: [email protected] Published 26 February 2021, Science 371, 941 (2021) DOI: 10.1126/science.abd9220 This PDF file includes: Materials and Methods Supplementary Text Figs. S1 and S2 Tables S1 to S7 References Other Supplementary Material for this manuscript includes the following: (available at science.sciencemag.org/content/371/6532/941/suppl/DC1) MDAR Reproducibility Checklist (PDF) Materials and Methods Data Dinosaur assemblages were identified by downloading all vertebrate occurrences known to species or genus level between 200Ma and 65MA from the Paleobiology Database (PaleoDB 30 https://paleobiodb.org/#/ download 6 August, 2018). Using associated depositional environment and taxonomic information, the vertebrate database was limited to only terrestrial organisms, excluding amphibians, pseudosuchians, champsosaurs and ichnotaxa. Taxa present in formations were confirmed against the most recent available literature, as of November, 2020. Synonymous taxa or otherwise duplicated taxa were removed. Taxa that could not be identified to genus level 35 were included as “Taxon X”. GPS locality data for all formations between 200MA and 65MA was downloaded from PaleoDB to create a minimally convex polygon for each possible formation. Any attempt to recreate local assemblages must include all potentially interacting species, while excluding those that would have been separated by either space or time. We argue it is 40 acceptable to substitute formation for home range in the case of non-avian dinosaurs, as range increases with body size.
    [Show full text]