Velociraptor Guide

Total Page:16

File Type:pdf, Size:1020Kb

Velociraptor Guide Ages 7 & up EI-5179 Guide Book VELOCIRAPTOR Ages 7 & up EI-5176 Ages 7 & up EI-5177 Ages 7 & up EI-5178 Dig ‘em up Dig ‘em up Dig ‘em up ‘em Assemble Assemble ‘em Assemble ‘em uel ‘em l ‘em Collect & d Collect & due Collect & duel ‘em nosaur ntai ns one d i one d inosaur Kit co Kit contai ns ne d inosaur Kit contai ns o TYRANNOSAURUS TRICERATOPS STEGOSAURUSSTEGOSAURUS EI-5176 EI-5177 EI-5178 For more digging fun, add these Dueling Dino Dig kits to your collection! ™ ISBN 1-56767-219-1 Table of Contents What Is in Dueling Dino Dig?. 2 Welcome to Velociraptor’s World . 4 Attack of a Velociraptor Pack . 5 Velociraptor Findings . 10 A Dinosaur Dig . 12 You’ll DIG These Fossils! . 14 Get Ready to Dig . 16 Dino Drawing . 18 Draw Your Own . 18 Velociraptor Fact Sheet . 20 Picture Gallery . 21 Making Your Velociraptor Models . 22 Displaying Your Velociraptors . 24 © Copyright 1997 Educational Insights Inc., Carson, CA (USA), St Albans, Herts. (UK) All rights reserved. Please retain this information. The Age of Dinosaurs . 26 Conforms to ASTM F-963-96a, EN-71. Printed in China. EI-5179 Where Did They Go? . 29 1 Paleontologist’s tools: What Is in Dueling Just like a paleontologist, you will get to dig the “fossils” from the “earth.” The digging tool Dino Dig? will help you break apart the clay, separate the fossils from the clay, and clean bits of clay from the fossils. The brush Dueling Dino Dig Guide Book—Velociraptor kit: will let you clean the dust from the fossils as you excavate. This Fossils: book contains an exciting story featuring Velociraptor, set in The fossils that you excavate will be smaller than the Cretaceous era. You will also find background information real ones, but when you put them together you’ll have two and history, plus instructions on how to excavate your fossils, true-to-scale Velociraptor skeletons. assemble them into models, and turn them into Dueling Dinos! Wax: Clay block: This wax will hold your fossil parts together. It will This block of clay represents a piece of earth — not harden and you can change poses or positions whenever millions of years old. Buried inside the clay, you will find you wish! The flexibility of this wax allows your dinosaurs fossil replicas of Velociraptor bones. to have a little bit of movement, especially in the jaw and legs. Then you can pose them alone or with models from other Dueling Dino Dig kits. (See back cover of this guide.) Guide Book Stand: When your Velociraptor models are complete, pose them on this stand. Then attach the label (included). Stand Wax Paleontologist’s tools: Fossil 2 Clay block 3 Welcome to ttack of a Velociraptor Pack Velociraptor’s World Five Velociraptors sleep under a fern-like tree. The time is Are you ready to find and study fossils, just like a paleontologist? the late Cretaceous period,* about 65 million years ago. Huddled in a pack for warmth, the Velociraptors sleep until Are you ready to dig some fossils of your own? the first rays of sun shine through the trees. Day is here. Are you ready to build a model of a dinosaur and pose Time to move! it in action? Then you are ready for Dueling Dino Dig! The air is dry. Desert winds start to blow, battering the rocks and causing sand to whip and swirl. Despite the stinging sand, the Velociraptors set off to hunt for food. Let’s go back in time more than 65 million years to the The Velociraptors run through the valley in search of prey. world of dinosaurs—the time of Velociraptor... Small mammals hide in the underbrush where the dinosaurs can’t see them. 4 5 *To find out more about the Cretaceous period and the age of dinosaurs, see page 26. As they approach a stream, the Velociraptors see an The mother Protoceratops turns her large head, keeping Avimimus. They stop to watch the two-legged, bird-like a watchful eye on the nest of eggs that she and another omnivore catch a lizard and gulp it down. Seeing the Protoceratops had both laid. Last night as the sun went chance to grab a tasty mouthful, they get ready to hunt down and the desert air became cold, the two mothers Avimimus, a rapid runner, before it can speed away. But covered the nest with sand. Like a blanket, sand protects all of a sudden, their attention turns to a 400-pound (180kg) the eggs from the cold night air. Protoceratops guarding a nest of eggs. Now, as the sun warms the air and sand, Protoceratops An Inviting Meal removes the top layer of sand. The sun will warm the eggs until they are ready to hatch. The other mother is away The Velociraptors are hungry enough to eat a 9-foot from the nest, looking for plants to eat. Soon she will return (2.7 meter) Protoceratops. As a pack, they could easily and take her turn protecting the nest. catch Protoceratops. She is bigger, but the Velociraptors The Velociraptors watch Protoceratops. She stands alone by have speed, agility, and razor-sharp teeth. And they are the nest. The Velociraptors raise their curved, grooved, and very hungry! horned claws, ready to attack! The Bloody Battle One Velociraptor jumps onto the back of the Protoceratops. Protoceratops’s bony frill protects her neck from his sharp bite. The Velociraptor then digs its long curved claws into her shoulder flesh. Protoceratops screams with pain. The other mother Protoceratops hears the cry and runs to help. With her beak, she grabs the hind leg of the clinging 6 7 Velociraptor. Crack—the leg breaks. The Velociraptor falls to Her big hard beak opens and clamps down on the ground in agony. Screams from both the Protoceratops Velociraptor’s neck. and the Velociraptor fill the air. The young Velociraptor is down! A small Velociraptor reaches under the wounded The strong desert wind suddenly increases. It becomes a Protoceratops and slashes her belly. All of the Velociraptors gale force. Sand blows everywhere. It swirls and twists join in the attack. Two Protoceratops are no match for these through the air, making it impossible to see! The surviving killing machines. The wounded Protoceratops sinks to the Protoceratops lumbers away to protect her nest. The ground, her life-blood spilling onto the sand, her cries Velociraptor with the broken hind leg crawls away from the becoming feebler. battle scene toward the water. The surviving Velociraptors A Storm Approaches also run for the water. There, they will find cover from the swirling, stinging sand. The wounded Velociraptor thrashes about. Its hind leg is useless. The remaining Protoceratops attacks a young The violent sand storm rages for days. Finally the wind dies Velociraptor. This Velociraptor makes a fatal mistake—it down. The wounded Protoceratops and the young tries to claw the Protoceratops’s eyes—and can’t get Velociraptor, unable to escape the storm, are buried in the through her bony skull. Protoceratops twists her head. sand. They are dead. The seasons change. Rain begins to fall. The little stream fills with flood waters and spills over its banks. Water, sand, silt, and dirt bury the dead Velociraptor and the Protoceratops—again. Over many, many years the bones turn into fossils. And then... 8 9 Velociraptor Findings All Velociraptor discoveries have been made in some part of Mongolia, China 1971 the Gobi Desert, beginning in the 1920s. The discovery of the larger Deinonychus in Montana in the 1960s helped In 1971, two paleontologists from Poland made an amazing scientists recognize the differences between Deinonychus dinosaur discovery in the Gobi Desert of Mongolia. They and Velociraptor, the “fast thief.” uncovered the skeletons of a Velociraptor and a Protoceratops—locked in battle. The discovery gave us a close look at these two species of dinosaurs. The fossil Velociraptor discovery also told a story. One of Velociraptor’s upper claws was found inside the mouth of the Protoceratops. A clawed foot was positioned at the gut of the Protoceratops. These dinosaurs may have been smothered by a sandstorm, just like you read about in Attack of a Velociraptor Pack . Perhaps they both died at the same moment in the battle, and then they were buried in sand. No one knows for sure. Deinonychus Deinonychus was much larger than Velociraptor. Later discoveries in the Gobi Desert tell even more about the Velociraptor. In the 1990s, scientists found a Velociraptor skull with a hole in the top. The hole is the exact size and shape of a Velociraptor tooth! One Velociraptor was probably killed by the bite of another Velociraptor. The evidence tells us that Velociraptors may have fought with each other as well as with other dinosaurs. 10 11 5 A Dinosaur Dig The fossil is uncovered with a brush. It is protected with wrappings of plaster-soaked cloth or sprayed with a resin to Dinosaur digs require very hard work. It can take months, make it stronger. even years, and a lot of work to find a fossil and remove it 6 from the earth. It’s worth it, though, for the excitement of When the plaster hardens, it is safe to remove the fossil discovery and new scientific knowledge! from the ground. Sometimes a whole rock is excavated to protect a fragile fossil. Let’s take a look at what happens at many fossil digs: 7 1 After it is removed from the ground, each fossil is care- Fossil hunters search rock layers of the Mesozoic era fully placed in a padded crate.
Recommended publications
  • A New Caenagnathid Dinosaur from the Upper Cretaceous Wangshi
    www.nature.com/scientificreports OPEN A new caenagnathid dinosaur from the Upper Cretaceous Wangshi Group of Shandong, China, with Received: 12 October 2017 Accepted: 7 March 2018 comments on size variation among Published: xx xx xxxx oviraptorosaurs Yilun Yu1, Kebai Wang2, Shuqing Chen2, Corwin Sullivan3,4, Shuo Wang 5,6, Peiye Wang2 & Xing Xu7 The bone-beds of the Upper Cretaceous Wangshi Group in Zhucheng, Shandong, China are rich in fossil remains of the gigantic hadrosaurid Shantungosaurus. Here we report a new oviraptorosaur, Anomalipes zhaoi gen. et sp. nov., based on a recently collected specimen comprising a partial left hindlimb from the Kugou Locality in Zhucheng. This specimen’s systematic position was assessed by three numerical cladistic analyses based on recently published theropod phylogenetic datasets, with the inclusion of several new characters. Anomalipes zhaoi difers from other known caenagnathids in having a unique combination of features: femoral head anteroposteriorly narrow and with signifcant posterior orientation; accessory trochanter low and confuent with lesser trochanter; lateral ridge present on femoral lateral surface; weak fourth trochanter present; metatarsal III with triangular proximal articular surface, prominent anterior fange near proximal end, highly asymmetrical hemicondyles, and longitudinal groove on distal articular surface; and ungual of pedal digit II with lateral collateral groove deeper and more dorsally located than medial groove. The holotype of Anomalipes zhaoi is smaller than is typical for Caenagnathidae but larger than is typical for the other major oviraptorosaurian subclade, Oviraptoridae. Size comparisons among oviraptorisaurians show that the Caenagnathidae vary much more widely in size than the Oviraptoridae. Oviraptorosauria is a clade of maniraptoran theropod dinosaurs characterized by a short, high skull, long neck and short tail.
    [Show full text]
  • New Oviraptorid Dinosaur (Dinosauria: Oviraptorosauria) from the Nemegt Formation of Southwestern Mongolia
    Bull. Natn. Sci. Mus., Tokyo, Ser. C, 30, pp. 95–130, December 22, 2004 New Oviraptorid Dinosaur (Dinosauria: Oviraptorosauria) from the Nemegt Formation of Southwestern Mongolia Junchang Lü1, Yukimitsu Tomida2, Yoichi Azuma3, Zhiming Dong4 and Yuong-Nam Lee5 1 Institute of Geology, Chinese Academy of Geological Sciences, Beijing 100037, China 2 National Science Museum, 3–23–1 Hyakunincho, Shinjukuku, Tokyo 169–0073, Japan 3 Fukui Prefectural Dinosaur Museum, 51–11 Terao, Muroko, Katsuyama 911–8601, Japan 4 Institute of Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100044, China 5 Korea Institute of Geoscience and Mineral Resources, Geology & Geoinformation Division, 30 Gajeong-dong, Yuseong-gu, Daejeon 305–350, South Korea Abstract Nemegtia barsboldi gen. et sp. nov. here described is a new oviraptorid dinosaur from the Late Cretaceous (mid-Maastrichtian) Nemegt Formation of southwestern Mongolia. It differs from other oviraptorids in the skull having a well-developed crest, the anterior margin of which is nearly vertical, and the dorsal margin of the skull and the anterior margin of the crest form nearly 90°; the nasal process of the premaxilla being less exposed on the dorsal surface of the skull than those in other known oviraptorids; the length of the frontal being approximately one fourth that of the parietal along the midline of the skull. Phylogenetic analysis shows that Nemegtia barsboldi is more closely related to Citipati osmolskae than to any other oviraptorosaurs. Key words : Nemegt Basin, Mongolia, Nemegt Formation, Late Cretaceous, Oviraptorosauria, Nemegtia. dae, and Caudipterygidae (Barsbold, 1976; Stern- Introduction berg, 1940; Currie, 2000; Clark et al., 2001; Ji et Oviraptorosaurs are generally regarded as non- al., 1998; Zhou and Wang, 2000; Zhou et al., avian theropod dinosaurs (Osborn, 1924; Bars- 2000).
    [Show full text]
  • Tsuihiji Et Al. Avimimus Skull
    Journal of Vertebrate Paleontology e1347177 (12 pages) Ó by the Society of Vertebrate Paleontology DOI: 10.1080/02724634.2017.1347177 ARTICLE NEW INFORMATION ON THE CRANIAL MORPHOLOGY OF AVIMIMUS (THEROPODA: OVIRAPTOROSAURIA) TAKANOBU TSUIHIJI,*,1 LAWRENCE M. WITMER,2 MAHITO WATABE,3 RINCHEN BARSBOLD,4 KHISHIGJAV TSOGTBAATAR,4 SHIGERU SUZUKI,5 and PUREVDORJ KHATANBAATAR4 1Department of Earth and Planetary Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan, [email protected]; 2Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, Ohio 45701, U.S.A., [email protected]; 3School of International Liberal Studies, Waseda University, 1-6-1 Nishiwaseda, Shinjuku-ku, Tokyo 169-8050, Japan, [email protected]; 4Institute of Paleontology and Geology, Mongolian Academy of Sciences, Sambuu Street, Chingeltei Distric-4, Ulaanbaatar 14201, Mongolia, [email protected]; [email protected]; [email protected]; 5Hayashibara Co., Ltd., 1-1-3 Shimoishii, Okayama 700–0907, Japan, [email protected] ABSTRACT—The cranial morphology of the oviraptorosaurian Avimimus portentosus is described based on a new specimen, one that includes bones such as the nasal and the jugal, which had not been available or only incompletely preserved previously. The left and right nasals are fused together as in oviraptorids. Morphology of the jugal, which is not fused with the quadratojugal, and the postorbital indicate that the infratemporal fenestra is completely separate from the orbit, not confluent with the latter, as inferred previously. The left and right dentaries are fused together without a trace of suture. Such newly available information indicates that the skull of Avimimus is not as ‘avian’-like as inferred in previous studies.
    [Show full text]
  • Avialan Status for Oviraptorosauria
    Avialan status for Oviraptorosauria TERESA MARYAŃSKA, HALSZKA OSMÓLSKA, and MIECZYSŁAW WOLSAN Maryańska, T., Osmólska, H., and Wolsan, M. 2002. Avialan status for Oviraptorosauria. Acta Palaeontologica Polonica 47 (1): 97–116. Oviraptorosauria is a clade of Cretaceous theropod dinosaurs of uncertain affinities within Maniraptoriformes. All pre− vious phylogenetic analyses placed oviraptorosaurs outside a close relationship to birds (Avialae), recognizing Dromaeo− sauridae or Troodontidae, or a clade containing these two taxa (Deinonychosauria), as sister taxon to birds. Here we pres− ent the results of a phylogenetic analysis using 195 characters scored for four outgroup and 13 maniraptoriform (ingroup) terminal taxa, including new data on oviraptorids. This analysis places Oviraptorosauria within Avialae, in a sister−group relationship with Confuciusornis. Archaeopteryx, Therizinosauria, Dromaeosauridae, and Ornithomimosauria are suc− cessively more distant outgroups to the Confuciusornis−oviraptorosaur clade. Avimimus and Caudipteryx are succes− sively more closely related to Oviraptoroidea, which contains the sister taxa Caenagnathidae and Oviraptoridae. Within Oviraptoridae, “Oviraptor” mongoliensis and Oviraptor philoceratops are successively more closely related to the Conchoraptor−Ingenia clade. Oviraptorosaurs are hypothesized to be secondarily flightless. Emended phylogenetic defi− nitions are provided for Oviraptoridae, Caenagnathidae, Oviraptoroidea, Oviraptorosauria, Avialae, Eumaniraptora, Maniraptora, and Maniraptoriformes.
    [Show full text]
  • ARSTANOSAURUS Species Undescribed AVIMIMUS Portentosus
    Dinosaur Casts Specimen List ARSTANOSAURUS species undescribed Meaning of Name: Reptile from Arstan Well Classification: ORNITHOPODA; Hadrosauridae, Hadrosaurinae Age: Late Cretaceous (Santonian) Bayn Shireh Formation, 85 million years ago Locality: Gobi Desert, Peoples' Republic of Mongolia Size: l5cm in length AVIMIMUS portentosus Partial skeleton. In position as if found in field Meaning of Name: Bird Mimic Classification: THEROPODA; relationships uncertain Age: Late Cretaceous (Campanian) Djadokhta Formation, 75 million years ago Locality: Gobi Desert, Peoples' Republic of Mongolia Size: l00cm in length reconstructed Skeleton www.gondwanastudios.com BAGACERATOPS rozhdestvenskyi Meaning of Name: Small horned face Classification: CERATOPSIA; Neoceratopsia; Protoceratopsidae Age: Late Cretaceous (Campanian), Barun Goyot Formation, 75 million years ago Locality: Gobi Desert, Southern Khermin Tsav, Mongolia Size: 3.5cm in length BIARMOSUCHUS tener Meaning of Name: Crocodile from Biarmia, an ancient country in the Perm region. Classification: THERAPSIDA; Eotheriodontia; Family Biarmosuchidae Age: Late Permian, Zone I, 225 million years ago Locality: Ocher, Perm Region, Russia Size: 75cm in length Half skeleton encased in sediment, as found in the field. BULLOCKORNIS planei (Demon Duck of Doom) Meaning of Name: Bird from Bullock Creek Classification: Flightless Bird Age: 12 million years Locality: Northern Territory, Australia Size: 250cm in height www.gondwanastudios.com CATOPSALIS djadochtatherium Meaning of Name: Beast from Djadokhta
    [Show full text]
  • Oviraptorosaur Tail Forms and Functions
    Oviraptorosaur tail forms and functions W. SCOTT PERSONS, IV, PHILIP J. CURRIE, and MARK A. NORELL Persons, W.S., IV, Currie, P.J., and Norell, M.A. 2014. Oviraptorosaur tail forms and functions. Acta Palaeontologica Polonica 59 (3): 553–567. Oviraptorosaur caudal osteology is unique among theropods and is characterized by posteriorly persistent and exception- ally wide transverse processes, anteroposteriorly short centra, and a high degree of flexibility across the pre-pygostyle vertebral series. Three-dimensional digital muscle reconstructions reveal that, while oviraptorosaur tails were reduced in length relative to the tails of other theropods, they were muscularly robust. Despite overall caudal length reduction, the relative size of the M. caudofemoralis in most oviraptorosaurs was comparable with those of other non-avian theropods. The discovery of a second Nomingia specimen with a pygostyle confirms that the fused terminal vertebrae of the type specimen were not an abnormality. New evidence shows that pygostyles were also present in the oviraptorosaurs Citipati and Conchoraptor. Based on the observed osteological morphology and inferred muscle morphology, along with the recognition that many members of the group probably sported broad tail-feather fans, it is postulated that oviraptorosaur tails were uniquely adapted to serve as dynamic intraspecific display structures. Similarities, including a reduced verte- bral series and a terminal pygostyle, between the tails of oviraptorosaurs and the tails of theropods widely accepted as basal members of the Avialae, appear to be convergences. Key words: Dinosauria, Theropoda, Oviraptorosauria, pygostyle, caudal musculature, functional morphology. W. Scott Persons, IV [[email protected]] and Philip J. Currie [[email protected]], University of Alberta, Department of Biological Sciences, Edmonton, Alberta, T6G2E9, Canada; Mark A.
    [Show full text]
  • Oksoko Supplement 200703
    1 Supplementary Information 2 3 A new two-fingered dinosaur sheds light on the radiation of Oviraptorosauria 4 5 Funston, Gregory F., Chinzorig, Tsogtbaatar, Tsogtbaatar, Khishigjav, Kobayashi, 6 Yoshitsugu, Sullivan, Corwin, Currie, Philip J. 7 8 Contents 9 1. Expanded Diagnosis 10 2. Histological Results and Age Estimation 11 3. Expanded Statistical Methods 12 4. Phylogenetic Results 13 5. History of the Specimens 14 6. Referral of Specimens 15 7. Provenance of the Poached Specimens 16 8. Taphonomy of the Holotype 17 9. Table of age ranges 18 10. Measurements of Oksoko avarsan 19 11. Character List 20 12. Character States of Oksoko avarsan 21 13. Supplementary References 22 14. Supplementary Figures 23 1 24 1. Expanded Diagnosis 25 Oksoko avarsan can be distinguished from citipatiine oviraptorids by the enlarged 26 first manual digit and reduced second and third manual digits. It can be distinguished 27 from most heyuanniine oviraptorids by the presence of a cranial crest (Fig. S1). Two 28 heyuanniines are known which possess a cranial crest: Nemegtomaia barsboldi and Banji 29 long. In both of these taxa, the cranial crest is composed primarily of the nasals and 30 premaxilla, whereas in Oksoko avarsan the rounded, domed crest is composed primarily 31 of the nasals and frontals. 32 Two other oviraptorids possess similar cranial crests: Rinchenia mongoliensis and 33 Corythoraptor jacobsi, both of which are currently considered citipatiine oviraptorids. 34 The skull of Oksoko avarsan can be distinguished from Rinchenia mongoliensis 1 by the 35 position of the naris dorsal to the orbit; a proportionally greater contribution of the frontal 36 to the cranial crest; a longer tomial part of the premaxilla; a relatively smaller 37 infratemporal fenestra; and a non-interfingering contact between the jugal and 38 quadratojugal (Fig.
    [Show full text]
  • Chapter 8 Functional Morphology of the Oviraptorosaurian and Scansoriopterygid Skull
    Chapter 8 Functional Morphology of the Oviraptorosaurian and Scansoriopterygid Skull WAISUM MA,1 MICHAEL PITTMAN,2 STEPHAN LAUTENSCHLAGER,1 LUKE E. MEADE,1 AND XING XU3 ABSTRACT Oviraptorosauria and Scansoriopterygidae are theropod clades that include members suggested to have partially or fully herbivorous diets. Obligate herbivory and carnivory are two ends of the spectrum of dietary habits along which it is unclear how diet within these two clades might have varied. Clarifying their diet is important as it helps understanding of dietary evolution close to the dinosaur-bird transition. Here, diets are investigated by conventional comparative anatomy, as well as measuring mandibular characteristics that are plausibly indicative of the animal’s feeding habit, with reference to modern herbivores that may also have nonherbivorous ancestry. In general, the skulls of scansoriopterygids appear less adapted to herbivory compared with those of oviraptorids because they have a lower dorsoventral height, a smaller lateral temporal fenestra, and a smaller jaw-closing mechanical advantage and they lack a tall coronoid process prominence. The results show that oviraptorid mandibles are more adapted to herbivory than those of caenagnathids, early- diverging oviraptorosaurians and scansoriopterygids. It is notable that some caenagnathids possess features like an extremely small articular offset, and low average mandibular height may imply a more carnivorous diet than the higher ones of other oviraptorosaurians. Our study provides a new perspective to evaluate different hypotheses on the diets of scansoriopterygids and oviraptorosauri- ans, and demonstrates the high dietary complexity among early-diverging pennaraptorans. INTRODUCTION Epidendrosaurus ninchengensis (Zhang et al., 2002), Epidexipteryx hui (Zhang et al., 2008) and Yi qi (Xu Scansoriopterygidae is a clade of theropod et al., 2015).
    [Show full text]
  • Dinosaur-Biodiversity-Reduc
    Dinosaur Diversity Changes • During the Mesozoic era, dinosaurs dominated the Top levels of the Food Chain Pyramid • Their ecological territory or “Niche” spread out over many environmental conditions; coastal, fluvial and even desert, almost everywhere on the earth’s surface • Even the sea and air were occupied by closely related reptiles (e.g. Plesiosaurus, Ichthyosaurus, Pteranodon) • Mammals hide from them, so their niches were nocturnal Dinosaur diversity change is important to elucidate future predictions of present-day animal biodiversity. Dinosaur Diversity Changes • During Mesozoic era, dinosaurs dominated the Top levels of the Food Chain Pyramid. • Their ecological territory “Niche” spread out over many environmental conditions; coastal, fluvial and even desert, almost everywhere on the earth’s surface. • Even sea and air occupied by closely related reptiles (e.g. Plesiosaurus, Ichthyosaurus, Pteranodon). • Mammals hide from them, so their niches were nocternal Dinosaur diversity change is important to elucidate future predictions of present-day animal biodiversity. Dinosaur Paleontology Dinosaurs originated in South America • Argentinosaurus is the heaviest dinosaur (length: 30m, weight: 100 tons). • Cretaceous Dinosaur assemblages are different from N. Hemisphere. South America “Sauropoda” North America & Asia “Hadrosaurid” No.1 Dinosaur Kingdom • A large variety of dinosaur fossils • Jurassic dinosaur assemblage is similar to other continents • Diversity of Ceratopsian and Hadrosauridae in late Cretaceous Motherland of Dinosaur Research • Iguanodon is the first Dinosaur specimen and species described . No.2 Dinosaur Kingdom • Recently, Bird-related Dinosaur fossils found. Hatching Oviraptor • Australia was located in polar zone in the early Cretaceous • But there were some dinosaurs (e.g. Muttaburasaurus). New Field of Dinosaur Research • Some dinosaur assemblages are similar to N.&S.
    [Show full text]
  • Birdlike Growth and Mixed-Age Flocks in Avimimids (Theropoda
    www.nature.com/scientificreports OPEN Birdlike growth and mixed-age focks in avimimids (Theropoda, Oviraptorosauria) G. F. Funston1*, P. J. Currie 1, M. J. Ryan2 & Z.-M. Dong3 Avimimids were unusual, birdlike oviraptorosaurs from the Late Cretaceous of Asia. Initially enigmatic, new information has ameliorated the understanding of their anatomy, phylogenetic position, and behaviour. A monodominant bonebed from the Nemegt Formation of Mongolia showed that some avimimids were gregarious, but the site is unusual in the apparent absence of juveniles. Here, a second monodominant avimimid bonebed is described from the Iren Dabasu Formation of northern China. Elements recovered include numerous vertebrae and portions of the forelimbs and hindlimbs, representing a minimum of six individuals. Histological sampling of two tibiotarsi from the bonebed reveals rapid growth early in ontogeny followed by unexpectedly early onset of fusion and limited subsequent growth. This indicates that avimimids grew rapidly to adult size, like most extant birds but contrasting other small theropod dinosaurs. The combination of adults and juveniles in the Iren Dabasu bonebed assemblage provides evidence of mixed-age focking in avimimids and the onset of fusion in young individuals suggests that some of the individuals in the Nemegt Formation bonebed may have been juveniles. Regardless, these individuals were likely functionally analogous to adults, and this probably facilitated mixed-age focking by reducing ontogenetic niche shift in avimimids. Avimimidae was an enigmatic, monogeneric family of oviraptorosaurs from China and Mongolia (Fig. 1). Avimimus was frst described by Kurzanov1 and its bird-like morphology immediately confused palaeontologists. Although regarded as a non-avian theropod by Kurzanov1, other workers interpreted its mosaic of features as similar to those of a fightless avian2, a sauropod3, and even an ornithopod dinosaur3.
    [Show full text]
  • Chapter 4 the Biogeography of Coelurosaurian Theropods and Its Impact on Their Evolutionary History
    Chapter 4 The Biogeography of Coelurosaurian Theropods and Its Impact on Their Evolutionary History ANYANG DING,1 MICHAEL PITTMAN,1 PAUL UPCHURCH,2 JINGMAI O’CONNOR,3 DANIEL J. FIELD,4 AND XING XU3 ABSTRACT The Coelurosauria are a group of mostly feathered theropods that gave rise to birds, the only dinosaurians that survived the Cretaceous-Paleogene extinction event and are still found today. Between their first appearance in the Middle Jurassic up to the end Cretaceous, coelurosaurians were party to dramatic geographic changes on the Earth’s surface, including the breakup of the supercon- tinent Pangaea, and the formation of the Atlantic Ocean. These plate tectonic events are thought to have caused vicariance or dispersal of coelurosaurian faunas, influencing their evolution. Unfortu- nately, few coelurosaurian biogeographic hypotheses have been supported by quantitative evidence. Here, we report the first, broadly sampled quantitative analysis of coelurosaurian biogeography using the likelihood-based package BioGeoBEARS. Mesozoic geographic configurations and changes are reconstructed and employed as constraints in this analysis, including their associated uncertainties. We use a comprehensive time-calibrated coelurosaurian evolutionary tree produced from the The- ropod Working Group phylogenetic data matrix. Six biogeographic models in the BioGeoBEARS package with different assumptions about the evolution of spatial distributions are tested against geographic constraints. Our results statistically favor the DIVALIKE+J and DEC+J models, which allow vicariance and founder events, supporting continental vicariance as an important factor in coelurosaurian evolution. Ancestral range estimation indicates frequent dispersal events via the Apu- lian route (connecting Europe and Africa during the Early Cretaceous) and the Bering land bridge (connecting North America and Asia during the Late Cretaceous).
    [Show full text]
  • Evolution and Diversity of Ornithomimid Dinosaurs in the Upper Cretaceous Belly River Group of Alberta
    Evolution and Diversity of Ornithomimid Dinosaurs in the Upper Cretaceous Belly River Group of Alberta by Bradley McFeeters A thesis submitted to the Faculty of Science in partial fulfillment of the requirements for the degree of Master of Science Department of Earth Sciences Carleton University Ottawa, Ontario May, 2015 © 2015 Bradley McFeeters ABSTRACT Ornithomimids (Dinosauria: Theropoda) from the Campanian (Upper Cretaceous) Belly River Group of Alberta have a fossil record that ranges from isolated elements to nearly complete articulated skeletons. The Belly River Group ornithomimids are among the best-known theropods from these deposits, as well as some of the best-known ornithomimids in the world. However, questions remain concerning the identification of the oldest definitive occurrence of these dinosaurs in Alberta, as well as the taxonomic diversity of the articulated material from the Dinosaur Park Formation. These topics have important implications for reconstructing the palaeobiogeographic and phylogenetic history of Ornithomimidae in Laramidia. The literature on all ornithomimosaurs from the Cretaceous of North America is reviewed, with special attention to their taxonomic history and geological context in the Belly River Group. The species Struthiomimus altus has historically contained most of the articulated ornithomimid material from the Belly River Group, but this is not supported by synapomorphic characters in all cases, and the material referred to S. altus is morphologically heterogeneous. An articulated partial skeleton
    [Show full text]