Stratigraphy and Palaeoenvironment of the Dinosaur-Bearing Upper Cretaceous Iren Dabasu Formation, Inner Mongolia, People’S Republic of China

Total Page:16

File Type:pdf, Size:1020Kb

Stratigraphy and Palaeoenvironment of the Dinosaur-Bearing Upper Cretaceous Iren Dabasu Formation, Inner Mongolia, People’S Republic of China Cretaceous Research 26 (2005) 699e725 www.elsevier.com/locate/CretRes Stratigraphy and palaeoenvironment of the dinosaur-bearing Upper Cretaceous Iren Dabasu Formation, Inner Mongolia, People’s Republic of China Jimmy Van Itterbeeck a,*, David J. Horne b, Pierre Bultynck a,c, Noe¨l Vandenberghe a a Afdeling Historische Geologie, Laboratorium voor Stratografie, Katholieke Universiteit Leuven, Redingenstraat 16, B-3000 Leuven, Belgium b Department of Geography, Queen Mary, University of London, Mile End Road, London E1 4NS, UK and Department of Zoology, The Natural History Museum, Cromwell Road, London SW7 5BD, UK c Departement Paleontologie, Koninklijk Belgisch Instituut voor Natuurwetenschappen, Vautierstraat 29, B-1000 Brussel, Belgium Received 26 March 2004; accepted in revised form 24 March 2005 Available online 9 September 2005 Abstract New field observations and sedimentological analyses of the dinosaur-bearing Upper Cretaceous Iren Dabasu Formation in the Iren Nor region of Inner Mongolia (People’s Republic of China) have led to a better understanding of its palaeoenvironment. The fluvial deposits represent a braided river that, due to the large amount of fines, does not fit the classical model for braided rivers. The study area is divided into two parts: in the northern part, sediments of the main channel belt of the ancient braided river system are exposed along a dry river valley on the northern edge of the Iren Nor salt lake, while in the southern part, comprising all other studied exposures, different facies of the ancient floodplain are represented, including minor channels, temporary ponds, and palaeosols. The difference between the northern and southern parts is also reflected in the fossil content; only the southern exposures have yielded dinosaur remains. The ancient braided river had a broad, vegetated floodplain populated by a diverse dinosaur fauna. Four species of charophytes are described and illustrated from the Iren Nor site, together with eight species of ostracods, one of which (Cypridea irennorensis sp. nov.) is new. Contrary to the vertebrate data, both groups of microfossils indicate a latest Cretaceous age (CampanianeMaastrichtian) for the Iren Dabasu Formation, and suggest a possible correlation with the Nemegt Formation, which would allow the age estimation to be refined to latest CampanianeEarly Maastrichtian. Ó 2005 Elsevier Ltd. All rights reserved. Keywords: Inner Mongolia; Iren Dabasu Formation; Late Cretaceous; Charophyta; Ostracoda 1. Introduction Cretaceous hadrosaurids. Accordingly, the SBDE has conducted three field campaigns on the Iren Dabasu The Sino-Belgian Dinosaur Expedition (SBDE, Formation at the Iren Nor site in the vicinity of Erenhot 1995e2002), a collaboration between the Inner Mongo- (Fig. 1) to collect more material of the primitive lia Museum, Hohhot and the Royal Belgian Institute Hadrosauroidea Bactrosaurus johnsoni and Gilmoreo- of Natural Sciences, Brussels, aimed to elucidate the saurus mongoliensis. replacement of Early Cretaceous iguanodontids by Late The first dinosaur discoveries at the Iren Nor site, the first known dinosaur locality in Central Asia, were * Corresponding author. made in 1922 during the Central Asiatic Expeditions of E-mail address: [email protected] (J. Van the American Museum of Natural History. Since Itterbeeck). then, numerous expeditions have visited the area and 0195-6671/$ - see front matter Ó 2005 Elsevier Ltd. All rights reserved. doi:10.1016/j.cretres.2005.03.004 700 J. Van Itterbeeck et al. / Cretaceous Research 26 (2005) 699e725 KANGHA Arvayheer 0 100 200 km MONG I OL ALT MONGOLIA AI Ondai Sayr ULAN NUUR BAGA BODG GOB Sayn Shand SH I ALTAI I GRABEN REG HAILAR U N G GOBI BASIN BASIN G ASH TRANS- RABE UN Bayn Dzak ALTAI N Bayn Shire Iren Nor GOBI GURVAN SAYH Khulsan NEM Erenhot Nemegt EGT AN EASTERN GOBI Khermeen GRABEN Tsav SOUTHERN GOBI ERLIAN BASIN CHINA major faults Bayan Mandahu GRABEN AN SH G LAN YIN SHAN BAYANMANDAHU Yellow Ri ver HOHHOT Beijing Baotou Dashuiguo 40°N Dongsheng ORDOS 105°E BASIN HELAN SHAN LUYA SHAN Fig. 1. Generalised map of the Gobi Basins, showing the location of Erenhot and Iren Nor (modified after Jerzykiewicz, 1995). Inset shows the general location of the area within the P.R. China. extracted dinosaur fossils (see Currie and Eberth, 1993 Erlian and the Mongolian Gobi Basins (Meng et al., for an overview). In spite of this long tradition of 2003). The latter is sometimes divided into smaller palaeontological expeditions, however, it was not until basins (e.g., Graham et al., 2001). These extensional the Sino-Canadian expedition in the early 1990s that basins consist of a series of subbasins separated by studies of the sedimentology and palaeoecology of the intrabasinal highs, and all have a similar tectonic history site were initiated (Currie and Eberth, 1993). During the (Meng et al., 2003). Two regional unconformities divide different SBDE field campaigns, sedimentological, the sedimentary record into three megasequences: stratigraphical and palaeontological data were gathered prerift, synrift and postrift deposits (Graham et al., to complement the earlier work. Here we present the 2001). The Late Jurassic and Early Cretaceous synrift results of these studies, including the first list of sediments are relatively thick and contain abundant micropalaeontological taxa, thus facilitating a more volcanic intercalations, while the Upper Cretaceous detailed interpretation of the palaeoecology of the Iren postrift strata are relatively thin and devoid of volcanics Nor site and providing an opportunity for discussion of (Shuvalov, 2000). the age of the Iren Dabasu Formation. The Iren Nor site is situated in the Erlian Basin but it has often been compared to the Mongolian dinosaur sites of the Gobi Basin. Therefore, a short review of the Upper Cretaceous stratigraphy of the Gobi Basin is 2. Stratigraphical and geological setting provided, followed by an overview of the geological setting of the Iren Nor site and previous estimations of The China-Mongolia border region contains many the stratigraphical position and age of the Iren Dabasu Late Mesozoic extensional basins, including the Chinese Formation. J. Van Itterbeeck et al. / Cretaceous Research 26 (2005) 699e725 701 2.1. The Gobi Basin four formations: the Nemegt, Barun Goyot, Djadokhta and Bayn Shire formations. The Nemegt and Barun Due to repeated intervals of block faulting, the Goyot formations have been defined by Gradzinski and sedimentary sequences are discontinuous and contain Jerzykiewicz (1974) and formally described by Gradzin- several hiatuses and unconformities; nowhere in the ski et al. (1977). Based on the presence of the Gobi Basin is a complete stratigraphical column pre- hadrosaurine dinosaur Saurolophus, the Nemegt For- served, but composite sections have been compiled mation is correlated with the Early Maastrichtian (Jerzykiewicz and Russell, 1991; Shuvalov, 2000). Un- Edmontonian Stage in North America (Jerzykiewicz fortunately there are no standard rules for the correct and Russell, 1991). The mid-Campanian in North transcription of the Mongolian names, so that a large America is characterised by an increase in aridity and variety of different names is used: Hu¨hteeg and a marked change of dinosaur fauna. According to Bayanshiree (Shuvalov, 2000) are the equivalents of, Jerzykiewicz and Russell (1991), this change can also be respectively, Khukhtek and Bayn Shire (Jerzykiewicz observed at the boundary between the Bayn Shire and and Russell, 1991). Another and more important Djadokhta formations. Based on this hypothesis, the complication is the different stratigraphical concepts Djadokhta and Barun Goyot formations are considered used by different workers. Russian and Mongolian the equivalents of the Judithian Stage of North scientists use ‘‘svita’’ as the fundamental stratigraphic America, in which case they are respectively mid- and unit, combining both lithostratigraphical and chrono- Late Campanian in age. This age estimation is sup- stratigraphical concepts; the boundaries of a svita are ported by the radiometric ages of the volcanic layers considered to be isochronous. European and American within the Barun Goyot Formation (Fig. 2). The type scientists, on the other hand, use ‘formations’ to group locality of the Djadokhta Formation (defined by Berkey rocks, clearly a lithostratigraphical concept without time and Morris, 1927 and redefined by Gradzinski et al., implications. Care must therefore be taken when 1977) is situated at the Bayn Dzak locality in Mongolia comparing svitas and formations (Barsbold, 1972; (Fig. 1), although a more complete and better-studied Gradzinski et al., 1977; Hicks et al., 1999). section is known from the Bayan Mandahu locality in All the Mesozoic deposits in the Gobi Basin are China (Eberth, 1993; Jerzykiewicz et al., 1993). entirely terrestrial/continental, since the last major The Bayn Shire Formation (defined by Vasiliev et al., marine incursion in Central Asia occurred during the 1959) is more difficult to date. The freshwater molluscs Permian. The lack of marine fossils precludes direct can be compared with similar species in Cretaceous biostratigraphical correlation of the deposits with inter- deposits, interbedded with CenomanianeSantonian national marine stages. As a consequence, non-marine marine strata in the Fergana and Aral Sea regions fossils have been used to correlate the lithostrati- (Martinson and Kolesnikov, 1974; Makulekov and graphical units of the Gobi Basin with the international
Recommended publications
  • Baseline Assessment of the Lake Ohrid Region - Albania
    TOWARDS STRENGTHENED GOVERNANCE OF THE SHARED TRANSBOUNDARY NATURAL AND CULTURAL HERITAGE OF THE LAKE OHRID REGION Baseline Assessment of the Lake Ohrid region - Albania IUCN – ICOMOS joint draft report January 2016 Contents ........................................................................................................................................................................... i A. Executive Summary ................................................................................................................................... 1 B. The study area ........................................................................................................................................... 5 B.1 The physical environment ............................................................................................................. 5 B.2 The biotic environment ................................................................................................................. 7 B.3 Cultural Settings ............................................................................................................................ 0 C. Heritage values and resources/ attributes ................................................................................................ 6 C.1 Natural heritage values and resources ......................................................................................... 6 C.2 Cultural heritage values and resources....................................................................................... 12 D.
    [Show full text]
  • Was Dinosaurian Physiology Inherited by Birds? Reconciling Slow Growth in Archaeopteryx
    Was Dinosaurian Physiology Inherited by Birds? Reconciling Slow Growth in Archaeopteryx Gregory M. Erickson1,6*, Oliver W. M. Rauhut2, Zhonghe Zhou3, Alan H. Turner4,6, Brian D. Inouye1, Dongyu Hu5, Mark A. Norell6 1 Department of Biological Science, Florida State University, Tallahassee, Florida, United States of America, 2 Bayerische Staatssammlung fu¨r Pala¨ontologie und Geologie and Department of Earth and Environmental Sciences, LMU Munich, Mu¨nchen, Germany, 3 Key Laboratory of Evolutionary Systematics of Vertebrates, Institute of Vertebrate Paleontology & Paleoanthropology, Chinese Academy of Science, Beijing, China, 4 Department of Anatomical Sciences, Stony Brook University, Stony Brook, New York, United States of America, 5 Paleontological Institute, Shenyang Normal University, Shenyang, China, 6 Division of Paleontology, American Museum of Natural History, New York, New York, United States of America Abstract Background: Archaeopteryx is the oldest and most primitive known bird (Avialae). It is believed that the growth and energetic physiology of basalmost birds such as Archaeopteryx were inherited in their entirety from non-avialan dinosaurs. This hypothesis predicts that the long bones in these birds formed using rapidly growing, well-vascularized woven tissue typical of non-avialan dinosaurs. Methodology/Principal Findings: We report that Archaeopteryx long bones are composed of nearly avascular parallel- fibered bone. This is among the slowest growing osseous tissues and is common in ectothermic reptiles. These findings dispute the hypothesis that non-avialan dinosaur growth and physiology were inherited in totality by the first birds. Examining these findings in a phylogenetic context required intensive sampling of outgroup dinosaurs and basalmost birds. Our results demonstrate the presence of a scale-dependent maniraptoran histological continuum that Archaeopteryx and other basalmost birds follow.
    [Show full text]
  • A New Caenagnathid Dinosaur from the Upper Cretaceous Wangshi
    www.nature.com/scientificreports OPEN A new caenagnathid dinosaur from the Upper Cretaceous Wangshi Group of Shandong, China, with Received: 12 October 2017 Accepted: 7 March 2018 comments on size variation among Published: xx xx xxxx oviraptorosaurs Yilun Yu1, Kebai Wang2, Shuqing Chen2, Corwin Sullivan3,4, Shuo Wang 5,6, Peiye Wang2 & Xing Xu7 The bone-beds of the Upper Cretaceous Wangshi Group in Zhucheng, Shandong, China are rich in fossil remains of the gigantic hadrosaurid Shantungosaurus. Here we report a new oviraptorosaur, Anomalipes zhaoi gen. et sp. nov., based on a recently collected specimen comprising a partial left hindlimb from the Kugou Locality in Zhucheng. This specimen’s systematic position was assessed by three numerical cladistic analyses based on recently published theropod phylogenetic datasets, with the inclusion of several new characters. Anomalipes zhaoi difers from other known caenagnathids in having a unique combination of features: femoral head anteroposteriorly narrow and with signifcant posterior orientation; accessory trochanter low and confuent with lesser trochanter; lateral ridge present on femoral lateral surface; weak fourth trochanter present; metatarsal III with triangular proximal articular surface, prominent anterior fange near proximal end, highly asymmetrical hemicondyles, and longitudinal groove on distal articular surface; and ungual of pedal digit II with lateral collateral groove deeper and more dorsally located than medial groove. The holotype of Anomalipes zhaoi is smaller than is typical for Caenagnathidae but larger than is typical for the other major oviraptorosaurian subclade, Oviraptoridae. Size comparisons among oviraptorisaurians show that the Caenagnathidae vary much more widely in size than the Oviraptoridae. Oviraptorosauria is a clade of maniraptoran theropod dinosaurs characterized by a short, high skull, long neck and short tail.
    [Show full text]
  • New Oviraptorid Dinosaur (Dinosauria: Oviraptorosauria) from the Nemegt Formation of Southwestern Mongolia
    Bull. Natn. Sci. Mus., Tokyo, Ser. C, 30, pp. 95–130, December 22, 2004 New Oviraptorid Dinosaur (Dinosauria: Oviraptorosauria) from the Nemegt Formation of Southwestern Mongolia Junchang Lü1, Yukimitsu Tomida2, Yoichi Azuma3, Zhiming Dong4 and Yuong-Nam Lee5 1 Institute of Geology, Chinese Academy of Geological Sciences, Beijing 100037, China 2 National Science Museum, 3–23–1 Hyakunincho, Shinjukuku, Tokyo 169–0073, Japan 3 Fukui Prefectural Dinosaur Museum, 51–11 Terao, Muroko, Katsuyama 911–8601, Japan 4 Institute of Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100044, China 5 Korea Institute of Geoscience and Mineral Resources, Geology & Geoinformation Division, 30 Gajeong-dong, Yuseong-gu, Daejeon 305–350, South Korea Abstract Nemegtia barsboldi gen. et sp. nov. here described is a new oviraptorid dinosaur from the Late Cretaceous (mid-Maastrichtian) Nemegt Formation of southwestern Mongolia. It differs from other oviraptorids in the skull having a well-developed crest, the anterior margin of which is nearly vertical, and the dorsal margin of the skull and the anterior margin of the crest form nearly 90°; the nasal process of the premaxilla being less exposed on the dorsal surface of the skull than those in other known oviraptorids; the length of the frontal being approximately one fourth that of the parietal along the midline of the skull. Phylogenetic analysis shows that Nemegtia barsboldi is more closely related to Citipati osmolskae than to any other oviraptorosaurs. Key words : Nemegt Basin, Mongolia, Nemegt Formation, Late Cretaceous, Oviraptorosauria, Nemegtia. dae, and Caudipterygidae (Barsbold, 1976; Stern- Introduction berg, 1940; Currie, 2000; Clark et al., 2001; Ji et Oviraptorosaurs are generally regarded as non- al., 1998; Zhou and Wang, 2000; Zhou et al., avian theropod dinosaurs (Osborn, 1924; Bars- 2000).
    [Show full text]
  • Development of the Eocene Elko Basin, Northeastern Nevada: Implications for Paleogeography and Regional Tectonism
    DEVELOPMENT OF THE EOCENE ELKO BASIN, NORTHEASTERN NEVADA: IMPLICATIONS FOR PALEOGEOGRAPHY AND REGIONAL TECTONISM by SIMON RICHARD HAYNES B.Sc, Brock University, 1998 A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE in THE FACULTY OF GRADUATE STUDIES (Department of Earth and Ocean Sciences) We accept this thesis as conforming _tQ the required standard THE UNIVERSITY OF BRITISH COLUMBIA April 2003 © Simon Richard Haynes, 2003 In presenting this thesis in partial fulfilment of the requirements for an advanced degree at the University of British Columbia, I agree that the Library shall make it freely available for reference and study. I further agree that permission for extensive copying of this thesis for scholarly purposes may be granted by the head of my department or by his or her representatives. It is understood that copying or publication of this thesis for financial gain shall not be allowed without my written permission. < Department of \z~<xc ^Qp^rs SOA<S>C-> QS_2> The University of British Columbia Vancouver, Canada ABSTRACT Middle to late Eocene sedimentary and volcanic rocks in northeastern Nevada document the formation of broad lakes, two periods of crustal extension, and provide compelling evidence that the Carlin trend was a topographic high during a major phase of gold formation. The Eocene Elko Formation consists of alluvial-lacustrine rocks that were deposited into a broad, extensional basin between the present-day Ruby Mountains-East Humboldt Range metamorphic core complex and the Tuscarora Mountains. The rocks are divided into the lacustrine-dominated, longer-lived, eastern Elko Basin, and the alluvial braidplain facies of the shorter-lived western Elko Basin.
    [Show full text]
  • Velociraptor Guide
    Ages 7 & up EI-5179 Guide Book VELOCIRAPTOR Ages 7 & up EI-5176 Ages 7 & up EI-5177 Ages 7 & up EI-5178 Dig ‘em up Dig ‘em up Dig ‘em up ‘em Assemble Assemble ‘em Assemble ‘em uel ‘em l ‘em Collect & d Collect & due Collect & duel ‘em nosaur ntai ns one d i one d inosaur Kit co Kit contai ns ne d inosaur Kit contai ns o TYRANNOSAURUS TRICERATOPS STEGOSAURUSSTEGOSAURUS EI-5176 EI-5177 EI-5178 For more digging fun, add these Dueling Dino Dig kits to your collection! ™ ISBN 1-56767-219-1 Table of Contents What Is in Dueling Dino Dig?. 2 Welcome to Velociraptor’s World . 4 Attack of a Velociraptor Pack . 5 Velociraptor Findings . 10 A Dinosaur Dig . 12 You’ll DIG These Fossils! . 14 Get Ready to Dig . 16 Dino Drawing . 18 Draw Your Own . 18 Velociraptor Fact Sheet . 20 Picture Gallery . 21 Making Your Velociraptor Models . 22 Displaying Your Velociraptors . 24 © Copyright 1997 Educational Insights Inc., Carson, CA (USA), St Albans, Herts. (UK) All rights reserved. Please retain this information. The Age of Dinosaurs . 26 Conforms to ASTM F-963-96a, EN-71. Printed in China. EI-5179 Where Did They Go? . 29 1 Paleontologist’s tools: What Is in Dueling Just like a paleontologist, you will get to dig the “fossils” from the “earth.” The digging tool Dino Dig? will help you break apart the clay, separate the fossils from the clay, and clean bits of clay from the fossils. The brush Dueling Dino Dig Guide Book—Velociraptor kit: will let you clean the dust from the fossils as you excavate.
    [Show full text]
  • Implications for Predatory Dinosaur Macroecology and Ontogeny in Later Late Cretaceous Asiamerica
    Canadian Journal of Earth Sciences Theropod Guild Structure and the Tyrannosaurid Niche Assimilation Hypothesis: Implications for Predatory Dinosaur Macroecology and Ontogeny in later Late Cretaceous Asiamerica Journal: Canadian Journal of Earth Sciences Manuscript ID cjes-2020-0174.R1 Manuscript Type: Article Date Submitted by the 04-Jan-2021 Author: Complete List of Authors: Holtz, Thomas; University of Maryland at College Park, Department of Geology; NationalDraft Museum of Natural History, Department of Geology Keyword: Dinosaur, Ontogeny, Theropod, Paleocology, Mesozoic, Tyrannosauridae Is the invited manuscript for consideration in a Special Tribute to Dale Russell Issue? : © The Author(s) or their Institution(s) Page 1 of 91 Canadian Journal of Earth Sciences 1 Theropod Guild Structure and the Tyrannosaurid Niche Assimilation Hypothesis: 2 Implications for Predatory Dinosaur Macroecology and Ontogeny in later Late Cretaceous 3 Asiamerica 4 5 6 Thomas R. Holtz, Jr. 7 8 Department of Geology, University of Maryland, College Park, MD 20742 USA 9 Department of Paleobiology, National Museum of Natural History, Washington, DC 20013 USA 10 Email address: [email protected] 11 ORCID: 0000-0002-2906-4900 Draft 12 13 Thomas R. Holtz, Jr. 14 Department of Geology 15 8000 Regents Drive 16 University of Maryland 17 College Park, MD 20742 18 USA 19 Phone: 1-301-405-4084 20 Fax: 1-301-314-9661 21 Email address: [email protected] 22 23 1 © The Author(s) or their Institution(s) Canadian Journal of Earth Sciences Page 2 of 91 24 ABSTRACT 25 Well-sampled dinosaur communities from the Jurassic through the early Late Cretaceous show 26 greater taxonomic diversity among larger (>50kg) theropod taxa than communities of the 27 Campano-Maastrichtian, particularly to those of eastern/central Asia and Laramidia.
    [Show full text]
  • SEDIMENTATION of the BARUN GOYOT FORMATION (Plates XXXIV-XLII )
    RYSZARD GRADZINSKI & TOMASZ JERZYKIEWICZ SEDIMENTATION OF THE BARUN GOYOT FORMATION (Plates XXXIV-XLII ) Contents C ontents Pa ge Introduction . 112 Geological setting 112 Stratigraphy . .. 114 Previous work .. .. ... .. 114 Redefinition of the lithostratigraphic divisions. 115 Barun Goyot Formation ... 116 Nemegt Formation. .. .. 116 Relation between the observed profiles . 117 Petrographic description . .. 118 Clay and silt-grade sediments 119 Sand-grade sediments . .. 119 Intraformational gravels . 124 Exotic gravels . 124 Principal sediment types . 125 Flat-bedded sandstone units. 125 Mega cross-stratified units . 127 Massive, "structureless" sandstones. 134 Diversely stratified sandstones . 134 Alternating claystones and sandstones 136 Sedimentological interpretation 136 Occurrence of organic remains 140 Depositional environment . 141 Conclusions 143 Appen dix . 143 References . 144 Abstract. - The Barun Goyot Formation (previously termed Lower Nemegt Beds) is composed of clastic continental sediments of red-beds type; it is probably of Campanian age. The thickness of the formation exceeds 110 m. It is overlain by the Nemegt Formation (previously termed Upper Nemegt Beds), probably of Maast richtian age; the passage between the two format ions is gradual. A formal redefinition of the two Iithostra tigraphic divisions is presented in the paper. Five principal sediment types are distinguished in the Barun Goyot Formation, displaying sedimentary features indicative of various conditions of sedimentation. The lower part of the exposed profile of the Barun Goyot Formation is characterized by mega cross-stratified units, interpreted as dune deposits; they are intertonguing with water-deposited sediments laid in interdune areas. Chan nel deposits, attributed to intermittent streams are subordinate; massive sandstones, probably of various origin are predominating. The upper part of the profile of the formation is characterized by the predominance of flat-bedded sandstone units which were probabl y deposited in an intermittently flooded takyr-like area.
    [Show full text]
  • Reidentification of Avian Embryonic Remains from the Cretaceous of Mongolia
    RESEARCH ARTICLE Reidentification of Avian Embryonic Remains from the Cretaceous of Mongolia David J. Varricchio1*, Amy M. Balanoff2, Mark A. Norell3 1 Department of Earth Sciences, Montana State University, Bozeman, Montana, 59717, United States of America, 2 Department of Anatomical Sciences, Stony Brook University School of Medicine, Stony Brook, NY, 11794, United States of America, 3 Division of Paleontology, American Museum of Natural History, New York, NY, 10024, United States of America * [email protected] Abstract Embryonic remains within a small (4.75 by 2.23 cm) egg from the Late Cretaceous, Mongo- lia are here re-described. High-resolution X-ray computed tomography (HRCT) was used to digitally prepare and describe the enclosed embryonic bones. The egg, IGM (Mongolian In- stitute for Geology, Ulaanbaatar) 100/2010, with a three-part shell microstructure, was originally assigned to Neoceratopsia implying extensive homoplasy among eggshell char- acters across Dinosauria. Re-examination finds the forelimb significantly longer than the hindlimbs, proportions suggesting an avian identification. Additional, postcranial apomor- phies (strut-like coracoid, cranially located humeral condyles, olecranon fossa, slender radi- OPEN ACCESS us relative to the ulna, trochanteric crest on the femur, and ulna longer than the humerus) identify the embryo as avian. Presence of a dorsal coracoid fossa and a craniocaudally Citation: Varricchio DJ, Balanoff AM, Norell MA (2015) Reidentification of Avian Embryonic Remains compressed distal humerus with a strongly angled distal margin support a diagnosis of IGM from the Cretaceous of Mongolia. PLoS ONE 10(6): 100/2010 as an enantiornithine. Re-identification eliminates the implied homoplasy of this e0128458. doi:10.1371/journal.pone.0128458 tri-laminate eggshell structure, and instead associates enantiornithine birds with eggshell Academic Editor: Peter Dodson, University of microstructure composed of a mammillary, squamatic, and external zones.
    [Show full text]
  • Ten Little Dinosaurs Free
    FREE TEN LITTLE DINOSAURS PDF Mike Brownlow,Simon Rickerty | 32 pages | 01 Oct 2015 | Hachette Children's Group | 9781408334010 | English | London, United Kingdom The First Dinosaurs A period of great transformation, Ten Little Dinosaurs Late Cretaceous Period is when the dinosaurs disappeared from the earth. Learn more about the Late Cretaceous dinosaurs that existed during this era, such as the Ten Little Dinosaurs, Gallimimus, and Brachylophosaurus. Tyrannosaurus rex, one of the fiercest meat-eaters ever, is the animal that probably springs to mind when most of us hear the word "dinosaur. It shared the Cretaceous landscape Ten Little Dinosaurs, and probably was preyed upon by, Tyrannosaurus rex. Constantly compared to the Tyrannosaurus rex, the Giganotosaurus was one of a handful of dinosaurs that rivaled, or possibly exceeded, the creature in size. University of Kansas paleontologists Ten Little Dinosaurs comparing the bones of a new T. Could this exciting find help bridge the gaps Ten Little Dinosaurs Africa's late Cretaceous fossil record and that of other continents? OK, hop in your time machine and go back 67 million years or so to the Cretaceous period. Then find a Tyrannosaurus rex and challenge it to a race. Sounds crazy, huh? Could you really outrun a Tyrannosaurus rex? Learn about Monoclonius, Late Cretaceous dinosaurs and dinosaurs Ten Little Dinosaurs all eras. The recently discovered large theropod Abelisaurus comahuensis, from Patagonia is argentina, looked a little like Albertosaurus from Alberta, Canada, particularly in its size and lifestyle. Find out more about the Late Cretaceous dinosaurs. Albertosaurus was an older "cousin" to the better-known Tyrannosaurus.
    [Show full text]
  • Lyons SCIENCE 2021 the Influence of Juvenile Dinosaurs SUPPL.Pdf
    science.sciencemag.org/content/371/6532/941/suppl/DC1 Supplementary Materials for The influence of juvenile dinosaurs on community structure and diversity Katlin Schroeder*, S. Kathleen Lyons, Felisa A. Smith *Corresponding author. Email: [email protected] Published 26 February 2021, Science 371, 941 (2021) DOI: 10.1126/science.abd9220 This PDF file includes: Materials and Methods Supplementary Text Figs. S1 and S2 Tables S1 to S7 References Other Supplementary Material for this manuscript includes the following: (available at science.sciencemag.org/content/371/6532/941/suppl/DC1) MDAR Reproducibility Checklist (PDF) Materials and Methods Data Dinosaur assemblages were identified by downloading all vertebrate occurrences known to species or genus level between 200Ma and 65MA from the Paleobiology Database (PaleoDB 30 https://paleobiodb.org/#/ download 6 August, 2018). Using associated depositional environment and taxonomic information, the vertebrate database was limited to only terrestrial organisms, excluding amphibians, pseudosuchians, champsosaurs and ichnotaxa. Taxa present in formations were confirmed against the most recent available literature, as of November, 2020. Synonymous taxa or otherwise duplicated taxa were removed. Taxa that could not be identified to genus level 35 were included as “Taxon X”. GPS locality data for all formations between 200MA and 65MA was downloaded from PaleoDB to create a minimally convex polygon for each possible formation. Any attempt to recreate local assemblages must include all potentially interacting species, while excluding those that would have been separated by either space or time. We argue it is 40 acceptable to substitute formation for home range in the case of non-avian dinosaurs, as range increases with body size.
    [Show full text]
  • Late Pleistocene to Recent Ostracod Assemblages from the Western Black Sea Ian Boomer, Francois Guichard, Gilles Lericolais
    Late Pleistocene to recent ostracod assemblages from the western Black Sea Ian Boomer, Francois Guichard, Gilles Lericolais To cite this version: Ian Boomer, Francois Guichard, Gilles Lericolais. Late Pleistocene to recent ostracod assemblages from the western Black Sea. Journal of Micropalaeontology, Geological Society, 2010, 29 (2), pp.119- 133. 10.1144/0262-821X10-003. hal-03199895 HAL Id: hal-03199895 https://hal.archives-ouvertes.fr/hal-03199895 Submitted on 1 Jul 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Journal of Micropalaeontology, 29: 119–133. 0262-821X/10 $15.00 2010 The Micropalaeontological Society Late Pleistocene to Recent ostracod assemblages from the western Black Sea IAN BOOMER1,*, FRANCOIS GUICHARD2 & GILLES LERICOLAIS3 1School of Geography, Earth & Environmental Sciences, University of Birmingham Birmingham B15 2TT, UK 2Laboratoire des Sciences du Climat et de l’Environnement (LSCE, CEA-CNRS-UVSQ) Avenue de la Terrasse, 91198 Gif sur Yvette, France 3IFREMER, Centre de Brest, Géosciences Marines, Laboratoire Environnements Sédimentaires BP70, F-29280 Plouzané cedex, France *Corresponding author (e-mail: [email protected]) ABSTRACT – During the last glacial phase the Black Sea basin was isolated from the world’s oceans due to the lowering of global sea-levels.
    [Show full text]