Oksoko Supplement 200703
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Paleontograph______
__________The Paleontograph________ A newsletter for those interested in all aspects of Paleontology Volume 5 Issue 1 March, 2016 _________________________________________________________________ From Your Editor Welcome to our latest issue. I hope you enjoyed the holidays. If you are anything like me, you are looking forward to Spring. We've had a mild winter here in CO. Weather is different than the east coast. While the nights are colder, the days are warmer. It's a nice change for me. I finally have my fossil lab up and running and I am spending my days, or part thereof, working off my backlog of fossils. It has been a couple of months since our last issue but Bob has kept writing and so we have an interesting issue for you to enjoy. The Paleontograph was created in 2012 to continue what was originally the newsletter of The New Jersey Paleontological Society. The Paleontograph publishes articles, book reviews, personal accounts, and anything else that relates to Paleontology and fossils. Feel free to submit both technical and non-technical work. We try to appeal to a wide range of people interested in fossils. Articles about localities, specific types of fossils, fossil preparation, shows or events, museum displays, field trips, websites are all welcome. This newsletter is meant to be one by and for the readers. Issues will come out when there is enough content to fill an issue. I encourage all to submit contributions. It will be interesting, informative and fun to read. It can become whatever the readers and contributors want it to be, so it will be a work in progress. -
A. K. Rozhdestvensky HISTORY of the DINOSAUR FAUNA of ASIA
A. K. Rozhdestvensky HISTORY OF THE DINOSAUR FAUNA OF ASIA AND OTHER CONTINENTS AND QUESTIONS CONCERNING PALEOGEOGRAPHY* The distribution and evolution of dinosaur faunas during the period of their existence, from the Late Triassic to the end of the Cretaceous, shows a close connection with the paleogeography of the Mesozoic. However these questions were hard to examine on a global scale until recently, because only the dinosaurs of North America were well known, where during the last century were found their richest deposits and where the best paleontologists were studying them — J. Leidy, E. Cope, O. Marsh, R. Lull, H. Osborn, C. Gilmore, B. Brown, and later many others. On the remaining continents, including Europe, where the study of dinosaurs started earlier than it did in America, the information was rather incomplete due to the fragmentary condition of the finds and rare, episodic studies. The Asian continent remained unexplored the longest, preventing any intercontinental comparisons. Systematic exploration and large excavations of dinosaur locations in Asia, which began in the last fifty years (Osborn, 1930; Efremov, 1954; Rozhdestvenskiy, 1957a, 1961, 1969, 1971; Rozhdestvenskiy & Chzhou, 1960; Kielan-Jaworowska & Dovchin, 1968; Kurochkin, Kalandadze, & Reshetov, 1970; Barsbold, Voronin, & Zhegallo, 1971) showed that this continent has abundant dinosaur remains, particularly in its central part (Fig. 1). Their study makes it possible to establish a faunal connection between Asia and other continents, correlate the stratigraphy of continental deposits of the Mesozoic, because dinosaurs are reliable leading forms, as well as to make corrections in the existing paleogeographic structure. The latter, in their turn, promote a better understanding of the possible paths of distribution of the individual groups of dinosaurs, the reasons for their appearance, their development, and disappearance. -
Perinate and Eggs of a Giant Caenagnathid Dinosaur from the Late Cretaceous of Central China
ARTICLE Received 29 Jul 2016 | Accepted 15 Feb 2017 | Published 9 May 2017 DOI: 10.1038/ncomms14952 OPEN Perinate and eggs of a giant caenagnathid dinosaur from the Late Cretaceous of central China Hanyong Pu1, Darla K. Zelenitsky2, Junchang Lu¨3, Philip J. Currie4, Kenneth Carpenter5,LiXu1, Eva B. Koppelhus4, Songhai Jia1, Le Xiao1, Huali Chuang1, Tianran Li1, Martin Kundra´t6 & Caizhi Shen3 The abundance of dinosaur eggs in Upper Cretaceous strata of Henan Province, China led to the collection and export of countless such fossils. One of these specimens, recently repatriated to China, is a partial clutch of large dinosaur eggs (Macroelongatoolithus) with a closely associated small theropod skeleton. Here we identify the specimen as an embryo and eggs of a new, large caenagnathid oviraptorosaur, Beibeilong sinensis. This specimen is the first known association between skeletal remains and eggs of caenagnathids. Caenagnathids and oviraptorids share similarities in their eggs and clutches, although the eggs of Beibeilong are significantly larger than those of oviraptorids and indicate an adult body size comparable to a gigantic caenagnathid. An abundance of Macroelongatoolithus eggs reported from Asia and North America contrasts with the dearth of giant caenagnathid skeletal remains. Regardless, the large caenagnathid-Macroelongatoolithus association revealed here suggests these dinosaurs were relatively common during the early Late Cretaceous. 1 Henan Geological Museum, Zhengzhou 450016, China. 2 Department of Geoscience, University of Calgary, Calgary, Alberta, Canada T2N 1N4. 3 Institute of Geology, Chinese Academy of Geological Sciences, Beijing 100037, China. 4 Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada T6G 2E9. 5 Prehistoric Museum, Utah State University, 155 East Main Street, Price, Utah 84501, USA. -
New Tyrannosaur from the Mid-Cretaceous of Uzbekistan Clarifies Evolution of Giant Body Sizes and Advanced Senses in Tyrant Dinosaurs
Edinburgh Research Explorer New tyrannosaur from the mid-Cretaceous of Uzbekistan clarifies evolution of giant body sizes and advanced senses in tyrant dinosaurs Citation for published version: Brusatte, SL, Averianov, A, Sues, H, Muir, A & Butler, IB 2016, 'New tyrannosaur from the mid-Cretaceous of Uzbekistan clarifies evolution of giant body sizes and advanced senses in tyrant dinosaurs', Proceedings of the National Academy of Sciences, pp. 201600140. https://doi.org/10.1073/pnas.1600140113 Digital Object Identifier (DOI): 10.1073/pnas.1600140113 Link: Link to publication record in Edinburgh Research Explorer Document Version: Peer reviewed version Published In: Proceedings of the National Academy of Sciences General rights Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights. Take down policy The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact [email protected] providing details, and we will remove access to the work immediately and investigate your claim. Download date: 04. Oct. 2021 Classification: Physical Sciences: Earth, Atmospheric, and Planetary Sciences; Biological Sciences: Evolution New tyrannosaur from the mid-Cretaceous of Uzbekistan clarifies evolution of giant body sizes and advanced senses in tyrant dinosaurs Stephen L. Brusattea,1, Alexander Averianovb,c, Hans-Dieter Suesd, Amy Muir1, Ian B. Butler1 aSchool of GeoSciences, University of Edinburgh, Edinburgh EH9 3FE, UK bZoological Institute, Russian Academy of Sciences, St. -
A New Caenagnathid Dinosaur from the Upper Cretaceous Wangshi
www.nature.com/scientificreports OPEN A new caenagnathid dinosaur from the Upper Cretaceous Wangshi Group of Shandong, China, with Received: 12 October 2017 Accepted: 7 March 2018 comments on size variation among Published: xx xx xxxx oviraptorosaurs Yilun Yu1, Kebai Wang2, Shuqing Chen2, Corwin Sullivan3,4, Shuo Wang 5,6, Peiye Wang2 & Xing Xu7 The bone-beds of the Upper Cretaceous Wangshi Group in Zhucheng, Shandong, China are rich in fossil remains of the gigantic hadrosaurid Shantungosaurus. Here we report a new oviraptorosaur, Anomalipes zhaoi gen. et sp. nov., based on a recently collected specimen comprising a partial left hindlimb from the Kugou Locality in Zhucheng. This specimen’s systematic position was assessed by three numerical cladistic analyses based on recently published theropod phylogenetic datasets, with the inclusion of several new characters. Anomalipes zhaoi difers from other known caenagnathids in having a unique combination of features: femoral head anteroposteriorly narrow and with signifcant posterior orientation; accessory trochanter low and confuent with lesser trochanter; lateral ridge present on femoral lateral surface; weak fourth trochanter present; metatarsal III with triangular proximal articular surface, prominent anterior fange near proximal end, highly asymmetrical hemicondyles, and longitudinal groove on distal articular surface; and ungual of pedal digit II with lateral collateral groove deeper and more dorsally located than medial groove. The holotype of Anomalipes zhaoi is smaller than is typical for Caenagnathidae but larger than is typical for the other major oviraptorosaurian subclade, Oviraptoridae. Size comparisons among oviraptorisaurians show that the Caenagnathidae vary much more widely in size than the Oviraptoridae. Oviraptorosauria is a clade of maniraptoran theropod dinosaurs characterized by a short, high skull, long neck and short tail. -
New Oviraptorid Dinosaur (Dinosauria: Oviraptorosauria) from the Nemegt Formation of Southwestern Mongolia
Bull. Natn. Sci. Mus., Tokyo, Ser. C, 30, pp. 95–130, December 22, 2004 New Oviraptorid Dinosaur (Dinosauria: Oviraptorosauria) from the Nemegt Formation of Southwestern Mongolia Junchang Lü1, Yukimitsu Tomida2, Yoichi Azuma3, Zhiming Dong4 and Yuong-Nam Lee5 1 Institute of Geology, Chinese Academy of Geological Sciences, Beijing 100037, China 2 National Science Museum, 3–23–1 Hyakunincho, Shinjukuku, Tokyo 169–0073, Japan 3 Fukui Prefectural Dinosaur Museum, 51–11 Terao, Muroko, Katsuyama 911–8601, Japan 4 Institute of Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100044, China 5 Korea Institute of Geoscience and Mineral Resources, Geology & Geoinformation Division, 30 Gajeong-dong, Yuseong-gu, Daejeon 305–350, South Korea Abstract Nemegtia barsboldi gen. et sp. nov. here described is a new oviraptorid dinosaur from the Late Cretaceous (mid-Maastrichtian) Nemegt Formation of southwestern Mongolia. It differs from other oviraptorids in the skull having a well-developed crest, the anterior margin of which is nearly vertical, and the dorsal margin of the skull and the anterior margin of the crest form nearly 90°; the nasal process of the premaxilla being less exposed on the dorsal surface of the skull than those in other known oviraptorids; the length of the frontal being approximately one fourth that of the parietal along the midline of the skull. Phylogenetic analysis shows that Nemegtia barsboldi is more closely related to Citipati osmolskae than to any other oviraptorosaurs. Key words : Nemegt Basin, Mongolia, Nemegt Formation, Late Cretaceous, Oviraptorosauria, Nemegtia. dae, and Caudipterygidae (Barsbold, 1976; Stern- Introduction berg, 1940; Currie, 2000; Clark et al., 2001; Ji et Oviraptorosaurs are generally regarded as non- al., 1998; Zhou and Wang, 2000; Zhou et al., avian theropod dinosaurs (Osborn, 1924; Bars- 2000). -
Velociraptor Guide
Ages 7 & up EI-5179 Guide Book VELOCIRAPTOR Ages 7 & up EI-5176 Ages 7 & up EI-5177 Ages 7 & up EI-5178 Dig ‘em up Dig ‘em up Dig ‘em up ‘em Assemble Assemble ‘em Assemble ‘em uel ‘em l ‘em Collect & d Collect & due Collect & duel ‘em nosaur ntai ns one d i one d inosaur Kit co Kit contai ns ne d inosaur Kit contai ns o TYRANNOSAURUS TRICERATOPS STEGOSAURUSSTEGOSAURUS EI-5176 EI-5177 EI-5178 For more digging fun, add these Dueling Dino Dig kits to your collection! ™ ISBN 1-56767-219-1 Table of Contents What Is in Dueling Dino Dig?. 2 Welcome to Velociraptor’s World . 4 Attack of a Velociraptor Pack . 5 Velociraptor Findings . 10 A Dinosaur Dig . 12 You’ll DIG These Fossils! . 14 Get Ready to Dig . 16 Dino Drawing . 18 Draw Your Own . 18 Velociraptor Fact Sheet . 20 Picture Gallery . 21 Making Your Velociraptor Models . 22 Displaying Your Velociraptors . 24 © Copyright 1997 Educational Insights Inc., Carson, CA (USA), St Albans, Herts. (UK) All rights reserved. Please retain this information. The Age of Dinosaurs . 26 Conforms to ASTM F-963-96a, EN-71. Printed in China. EI-5179 Where Did They Go? . 29 1 Paleontologist’s tools: What Is in Dueling Just like a paleontologist, you will get to dig the “fossils” from the “earth.” The digging tool Dino Dig? will help you break apart the clay, separate the fossils from the clay, and clean bits of clay from the fossils. The brush Dueling Dino Dig Guide Book—Velociraptor kit: will let you clean the dust from the fossils as you excavate. -
SEDIMENTATION of the BARUN GOYOT FORMATION (Plates XXXIV-XLII )
RYSZARD GRADZINSKI & TOMASZ JERZYKIEWICZ SEDIMENTATION OF THE BARUN GOYOT FORMATION (Plates XXXIV-XLII ) Contents C ontents Pa ge Introduction . 112 Geological setting 112 Stratigraphy . .. 114 Previous work .. .. ... .. 114 Redefinition of the lithostratigraphic divisions. 115 Barun Goyot Formation ... 116 Nemegt Formation. .. .. 116 Relation between the observed profiles . 117 Petrographic description . .. 118 Clay and silt-grade sediments 119 Sand-grade sediments . .. 119 Intraformational gravels . 124 Exotic gravels . 124 Principal sediment types . 125 Flat-bedded sandstone units. 125 Mega cross-stratified units . 127 Massive, "structureless" sandstones. 134 Diversely stratified sandstones . 134 Alternating claystones and sandstones 136 Sedimentological interpretation 136 Occurrence of organic remains 140 Depositional environment . 141 Conclusions 143 Appen dix . 143 References . 144 Abstract. - The Barun Goyot Formation (previously termed Lower Nemegt Beds) is composed of clastic continental sediments of red-beds type; it is probably of Campanian age. The thickness of the formation exceeds 110 m. It is overlain by the Nemegt Formation (previously termed Upper Nemegt Beds), probably of Maast richtian age; the passage between the two format ions is gradual. A formal redefinition of the two Iithostra tigraphic divisions is presented in the paper. Five principal sediment types are distinguished in the Barun Goyot Formation, displaying sedimentary features indicative of various conditions of sedimentation. The lower part of the exposed profile of the Barun Goyot Formation is characterized by mega cross-stratified units, interpreted as dune deposits; they are intertonguing with water-deposited sediments laid in interdune areas. Chan nel deposits, attributed to intermittent streams are subordinate; massive sandstones, probably of various origin are predominating. The upper part of the profile of the formation is characterized by the predominance of flat-bedded sandstone units which were probabl y deposited in an intermittently flooded takyr-like area. -
1 JOURNAL of VERTEBRATE PALEONTOLOGY a New
JOURNAL OF VERTEBRATE PALEONTOLOGY A new caenagnathid (Dinosauria: Oviraptorosauria) from the Horseshoe Canyon Formation of Alberta, Canada, and a reevaluation of the relationships of Caenagnathidae GREGORY F. FUNSTON*,,PHILIP J. CURRIE Department of Biological Sciences, CW 405, Biological Sciences Building, University of Alberta,Edmonton, Alberta, Canada T6G 2E9 [email protected]; [email protected] SUPPLEMENTARY DATA 1 1 CHARACTERS MODIFIED FROM LAMANNA ET AL. (2014) 78. Dentary: (0) elongate; (1) proportionally short and deep, with maximum depth of dentary between 25% and 50% of dentary length (with length measured from the tip of the jaw to the end of the posterodorsal process); (2) extremely short and deep, with maximum depth 50% or more of dentary length. [ORDERED] Modification—Removed [ORDERED] Justification—Mandibular variation through ontogeny in has not been qualified in oviraptorosaurs, nor has the degree of intraspecific variation. This character in particular is correlated with size in caenagnathids, such that larger specimens tend show state 0, and smaller specimens tend to show state 2, with a smooth gradient between. 84. Anterodorsal margin of dentary in lateral view: (0) straight; (1) concave; (2) broadly concave. [ORDERED] Modification—Removed [ORDERED] Justification—As above, though the opposite correlation to size is shown: large specimens tend to show state 2, and small specimens tend to show state 0. 176. Manual phalanx II-2: (0) longer than II-1; (1) subequal to or slightly shorter than II- 1; (2) distinctly shorter than II-1. [ORDERED] Modification—Removed [ORDERED] Justification—Caenagnathid manual proportions are highly variable, with a number of apparent reversals within clades. For example, Hagryphus giganteus, scored as character state 1 for this character, is consistently recovered as a basal caenagnathid, but within more derived caenagnathids, all three character states for this character are present, indicating that the character state can move both directions. -
Cranial Osteology of Beipiaosaurus Inexpectus
第57卷 第2期 古 脊 椎 动 物 学 报 pp. 117–132 figs. 1–3 2019年4月 VERTEBRATA PALASIATICA DOI: 10.19615/j.cnki.1000-3118.190115 Cranial osteology of Beipiaosaurus inexpectus (Theropoda: Therizinosauria) LIAO Chun-Chi1,2,3 XU Xing1,2* (1 Key Laboratory of Vertebrate Evolution and Human Origins of Chinese Academy of Sciences, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences Beijing 100044 * Corresponding author: [email protected]) (2 CAS Center for Excellence in Life and Paleoenvironment Beijing 100044) (3 University of Chinese Academy of Sciences Beijing 100049) Abstract Beipiaosaurus inexpectus, a key taxon for understanding the early evolution of therizinosaurians, has not been fully described since it was briefly reported on by Xu, Tang and Wang in 1999. Here we present a detailed description of the cranial anatomy of the holotype of this theropod dinosaur. B. inexpectus is unique in some of its cranial features such as the postorbital process of the frontal is large and its abrupt transition from the orbital rim, a long and sharp anterior process of the parietal, the elongate ventral ramus of the squamosal process of parietal, and external mandibular fenestra deep dorsoventrally and extremely posteriorly located. A number of plesiomorphic cranial features (such as relatively large dentary and less downturned degree of dentary symphysis) suggest that B. inexpectus is an early-branching Therizinosaurian, as proposed by previous studies. New information derived from our study is not only important for our understanding of the cranial anatomy of B. inexpectus but also significant to the study of the evolution of Therizinosauria. -
A Dinosaur Community Composition Dataset for the Late Cretaceous Nemegt Basin of Mongolia
Data in Brief 16 (2018) 660–666 Contents lists available at ScienceDirect Data in Brief journal homepage: www.elsevier.com/locate/dib Data Article A dinosaur community composition dataset for the Late Cretaceous Nemegt Basin of Mongolia G.F. Funston a,⁎, S.E. Mendonca b, P.J. Currie a, R. Barsbold c a Department of Biological Sciences, CW 405 Biological Sciences Building, University of Alberta, Edmonton, AB, Canada T6G 2E9 b Department of Earth and Atmospheric Sciences, University of Alberta, 1-26 Earth Sciences Building, Edmonton, AB, Canada T6G 2E3 c Institute of Paleontology and Geology, Mongolian Academy of Sciences, Box-46/650, Ulaanbaatar 15160, Mongolia article info abstract Article history: Dinosaur community composition data for eleven fossil localities Received 1 November 2017 in the Late Cretaceous Nemegt Basin of Mongolia are compiled Received in revised form from field observations and records in the literature. Counts were 28 November 2017 generated from skeletons and represent numbers of individuals Accepted 29 November 2017 preserved in each locality. These data were used in the analyses of Available online 6 December 2017 Funston et al. [1] “Oviraptorosaur anatomy, diversity, and ecology in the Nemegt Basin” in the Nemegt Ecosystems Special Issue of Palaeogeography, Palaeoclimatology, Palaeoecology, where the results are discussed. & 2018 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Specifications Table Subject area Evolutionary Biology More specific subject area Palaeontology and Palaeoecology Type of data Tables, Interactive map How data was acquired Field observations and literature survey Data format Raw tables and .kmz files for Google Earth DOI of original article: https://doi.org/10.1016/j.palaeo.2017.10.023 ⁎ Corresponding author. -
A Late Cretaceous Diversification of Asian Oviraptorid Dinosaurs
www.nature.com/scientificreports OPEN A Late Cretaceous diversification of Asian oviraptorid dinosaurs: evidence from a new species Received: 10 March 2016 Accepted: 06 October 2016 preserved in an unusual posture Published: 10 November 2016 Junchang Lü1, Rongjun Chen2, Stephen L. Brusatte3, Yangxiao Zhu2 & Caizhi Shen1 Oviraptorosaurs are a bizarre group of bird-like theropod dinosaurs, the derived forms of which have shortened, toothless skulls, and which diverged from close relatives by developing peculiar feeding adaptations. Although once among the most mysterious of dinosaurs, oviraptorosaurs are becoming better understood with the discovery of many new fossils in Asia and North America. The Ganzhou area of southern China is emerging as a hotspot of oviraptorosaur discoveries, as over the past half decade five new monotypic genera have been found in the latest Cretaceous (Maastrichtian) deposits of this region. We here report a sixth diagnostic oviraptorosaur from Ganzhou, Tongtianlong limosus gen. et sp. nov., represented by a remarkably well-preserved specimen in an unusual splayed-limb and raised- head posture. Tongtianlong is a derived oviraptorid oviraptorosaur, differentiated from other species by its unique dome-like skull roof, highly convex premaxilla, and other features of the skull. The large number of oviraptorosaurs from Ganzhou, which often differ in cranial morphologies related to feeding, document an evolutionary radiation of these dinosaurs during the very latest Cretaceous of Asia, which helped establish one of the last diverse dinosaur faunas before the end-Cretaceous extinction. Oviraptorosaurs are some of the most unusual dinosaurs. These bird-like, feathered theropods diverged dra- matically from their close cousins, evolving shortened toothless skulls with a staggering diversity of pneumatic cranial crests in derived forms1.