Taxonomic Revision and Paleoecology of Middle Devonian (Eifelian) Fishes of the Onondaga, Columbus and Delaware Limestones of the Eastern United States

Total Page:16

File Type:pdf, Size:1020Kb

Taxonomic Revision and Paleoecology of Middle Devonian (Eifelian) Fishes of the Onondaga, Columbus and Delaware Limestones of the Eastern United States Graduate Theses, Dissertations, and Problem Reports 2002 Taxonomic revision and paleoecology of Middle Devonian (Eifelian) fishes of the Onondaga, Columbus and Delaware limestones of the eastern United States Robert Lewis Martin West Virginia University Follow this and additional works at: https://researchrepository.wvu.edu/etd Recommended Citation Martin, Robert Lewis, "Taxonomic revision and paleoecology of Middle Devonian (Eifelian) fishes of the Onondaga, Columbus and Delaware limestones of the eastern United States" (2002). Graduate Theses, Dissertations, and Problem Reports. 1678. https://researchrepository.wvu.edu/etd/1678 This Dissertation is protected by copyright and/or related rights. It has been brought to you by the The Research Repository @ WVU with permission from the rights-holder(s). You are free to use this Dissertation in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you must obtain permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/ or on the work itself. This Dissertation has been accepted for inclusion in WVU Graduate Theses, Dissertations, and Problem Reports collection by an authorized administrator of The Research Repository @ WVU. For more information, please contact [email protected]. Taxonomic Revision and Paleoecology of Middle Devonian (Eifelian) Fishes of the Onondaga, Columbus and Delaware Limestones of the eastern United States. Robert L. Martin Dissertation submitted to the College of Arts and Sciences at West Virginia University in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Geology Thomas Kammer, Ph.D. Chair Robert Behling, Ph.D. Robert Carr, Ph.D., Ohio University Steven Kite, Ph.D. Richard Smosna, Ph.D. Department of Geology Morgantown, West Virginia 2002 Keywords: Eifelian, fishes, ptyctodont, Deinodus, Onondaga ABSTRACT Taxonomic Revision and Paleoecology of Middle Devonian (Eifelian) Fishes of the Onondaga, Columbus and Delaware Limestones of the eastern United States. Robert L Martin The Eifelian stage of eastern North America has produced the remains of a substantial number of fish taxa, mostly from the Onondaga Limestone of New York and the Columbus and Delaware limestones of Ohio. Fish specimens in rock matrix from the Buffalo Science Museum and the Cleveland Museum of Natural History were compared to rock samples taken from quarries in Cheektowaga, New York and Warrensburg, Ohio, in order to determine the units from which the fish specimens originally came. This method allowed reasonable inference into the provenance of the museum specimens. The stratigraphy indicates that the seas of New York and Ohio were deepening throughout the Eifelian, terminating in the dark shale beds of the Givetian stage. The rock units of both areas are characterized by a series of aggradations and inundation events. Of the 41 taxa of fish originally found in the two museums, only nine are considered valid as a result of this study. Macropetalichthys sullivanti was a benthic dweller found in the deeper units of the upper Moorehouse and Seneca members of the Onondaga Formation and the Delaware Limestone as well as the shallower units of the upper Columbus. M. rapheidolabis is considered a junior synonym of M. sullivanti. Palaeomylus and Ptyctodus were both durophagous fishes that probably stayed near the bottom of the sea. Ptyctodus was found only in the upper Moorehouse, but Palaeomylus was found in the upper Columbus, Delaware and the upper Moorehouse. Rhynchodus was found in the same units, but was a predator with shearing dentition. Deinodus bennetti was a common element of the upper Moorehouse and was a ptyctodont. It is likely, based on dental elements in the Buffalo Museum of Science, that D. bennetti was durophagous. Deinodus ohioensis, n. sp., a shallow water fish very similar to D. bennetti is formally described. Little can be theorized about its feeding strategy because most of the dental elements studied were imbedded in matrix. Onychodus and Machaeracanthus were large, mobile predators that moved in and out of deeper waters, perhaps into shallow waters to feed. Both possess large tooth whorls and elongate jaws. Machaeracanthus is formally placed in the family, Ischnacanthidae, based on these whorls and Machaeracanthus major is considered a junior synonym of M. peracutus. ACKNOWLEDGEMENTS One must always begin acknowledgements by thanking their parents. Mine have been very supportive and never hesitated when I came to the conclusion that I would need still more schooling. I thank them for their understanding, interest and support.. No research project could be completed without assistance, and I certainly exploited mine. I would like to thank the following museum collection managers and quarry managers: Dr. Richard Laub of the Buffalo Museum of Science, Gary Jackson and Dr. Michael Williams of the Cleveland Museum of Natural History, Ron Hope of the Buffalo Crushed Stone Quarry in Cheektowaga, New York, Danny Workman of the Martin Marietta Quarry, the Martin Marietta office in Xenia, Ohio and Martin Jones of the Wagner Quarry in Sandusky, Ohio. The completion of the dissertation went as smoothly as possible thanks to my wonderful committee. Dr. Thomas Kammer, my advisor, set the project in motion and helped me throughout the entire time with logistics, protocol and critique. Dr. Richard Smosna helped to hash out the sedimentological aspects of the work, a much stronger component of the dissertation that I had originally expected it to be. Dr. Robert Carr solidified the taxonomy and nomenclature of the fish sections. Dr. Steven Kite, editor extraordinaire, made certain that the tome flowed well and corrected innumerable grammatical mistakes. Dr. Robert Behling, who I think knows everything about everything, was invaluable in working out the methods for the project. Without a supporting staff, no university department could progress. I would like to thank Donna Titus for her help in everything from registration to paychecks. Hope Stewart was always there for advise and help in departmental matters and kept the department running smoothly. Randy Crowe was constantly repairing my computer account and helping me with page set–ups, printer problems, etc. Without him, I would still be working on logging in. Above all, I’d like to thank my wife, Nancy, who supported me (mentally, emotionally, and financially) from the onset of this degree to (thankfully) its completion. She certainly made the experience much more pleasant and worthwhile. iii Table of Contents Abstract……………………………………………………………………………...………...ii Acknowledgements………………………………………………………………………......iii List of Tables ……………………………………………………………………………..….ix List of Figures ……………………………………………………………………………..….x List of Plates……………………………………………………………………………........xii INTRODUCTION....................…..…………………………..………………...…..………....1 Purpose of this Study.......………………………………………………......................1 METHODS....................………………………..…………………….……...…………..…....2 PREVIOUS WORK-ONONDAGA LIMESTONE...…………..……………………......…....3 GEOLOGICAL SETTING-ONONDAGA LIMESTONE..............................…..………........4 Thickness.........………………………………………………………..……...….........5 Lithology…………………………………………………………………..………..…5 Depositional History.………………………………………………..……...............…6 Faunal Studies....…………………………………………………………..….....….…8 Paleoecology………………..……………………………..……………….........….…9 Edgecliff Member……………….....………………………………........…………...10 Lithology…………………………………………..……………...………….10 Depositional History…………………………………………………..……..10 Faunal Studies…………………………………………………..…………....11 Zones……………………………………………………..…………………..14 Nedrow-Clarence Member........……………………….......…………………............15 Lithology………………………………………...……..…………………….15 Depositional History…………………………………………………………16 Faunal Studies……………………………...…………………………..…….16 Zones…………………………..………………………..……………………17 Moorehouse Member………………………………………………………...………18 Lithology…………………………………………………..……………...….18 Depositional History…………………………….…………………………...18 Faunal Studies…………………………………………………………..……18 Zones………………………………………………..…………..……………19 Seneca Member...............…………………………………..……………......…..…...20 Lithology………………………………………...…………..……………….20 Depositional History……………….………………………………………...20 Faunal Studies……………………………………………………..…………21 Zones……………………………………………..……..……………………21 Corals..........................……………………………..………..……………………….22 HISTORICAL STUDIES-COLUMUBS/DELAWARE...................………………..…........23 Stratigraphy.....…………………………………...………………………………......23 Depositional History..........................……………..……...……...………...….…......24 Faunal Studies......................……………………..………..………..……………......26 RESULTS............................………………………………….….…..……………..……......27 Research Sites-Onondaga Limestone Site..............…….…………………..………..27 Stratigraphy and Lithology………................…………………………..…....27 Thin Sections..…………………………..……………………………...…....30 iv Research Sites-Columbus Limestone Site......………………..……………..…........31 Stratigraphy and Lithology.............…………………..………………….......31 Thin Sections..................…………………………….....……………….…...34 Fishes of the Eifelian...................………………………..…..…………………..…..35 Classification of Eifelian Fishes…………………………………………......36 Petalichthyids (Macropetalichthys).....................………………..………..………....37 Ptyctodonts………………………………………………………..……………….....38 Ptyctodus........…………………………………………………..…………....39
Recommended publications
  • Geology by Turgut H. Cetinoy
    The geology of the eastern end of the Canelo Hills, Santa Cruz County, Arizona Item Type text; Thesis-Reproduction (electronic); maps Authors Cetinay, Huseyin Turgut, 1932- Publisher The University of Arizona. Rights Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author. Download date 25/09/2021 20:33:25 Link to Item http://hdl.handle.net/10150/554041 THE GEOLOGY OF THE EASTERN END OF THE CANELO HILLS, SANTA CRUZ COUNTY, ARIZONA by Huseyin Turgut Cetinay A Thesis Submitted to the Faculty of the DEPARTMENT OF GEOLOGY In Partial Fulfillment of the Requirements For the Degree of MASTER OF SCIENCE In the Graduate College THE UNIVERSITY OF ARIZONA 1 9 6 ? STATEMENT BY AUTHOR This thesis has been submitted in partial fulfilment of requirements for an advanced degree at The University of Arizona and is deposited in the University Library to be made available to borrowers under rules of the Library. Brief quotations from this thesis are allowable with out special permission, provided that accurate acknowledg­ ment of source is made. Requests for permission for extended quotation from or reproduction of this manuscript in whole or in part may be granted by the head of the major department or the Dean of the Graduate College when in his judgment the proposed use of the material is in the inter­ ests of scholarship. In all other instances, however, per­ mission must be obtained from the author.
    [Show full text]
  • Para Conhecer a Terra: Memórias E Notícias De Geociências No Espaço Lusófono Autor(Es): Lopes, F.C. (Coord.); Andrade, A. I
    Para conhecer a Terra: memórias e notícias de Geociências no espaço lusófono Lopes, F.C. (coord.); Andrade, A. I. (coord.); Henriques, M. H. (coord.); Autor(es): Quinta-Ferreira, M. (coord.); Reis, R. Pena dos (coord.); Barata, M. T. (coord.) Publicado por: Imprensa da Universidade de Coimbra URL persistente: URI:http://hdl.handle.net/10316.2/24406 DOI: DOI:http://dx.doi.org/10.14195/978-989-26-0534-0 Accessed : 11-Oct-2021 03:52:55 A navegação consulta e descarregamento dos títulos inseridos nas Bibliotecas Digitais UC Digitalis, UC Pombalina e UC Impactum, pressupõem a aceitação plena e sem reservas dos Termos e Condições de Uso destas Bibliotecas Digitais, disponíveis em https://digitalis.uc.pt/pt-pt/termos. Conforme exposto nos referidos Termos e Condições de Uso, o descarregamento de títulos de acesso restrito requer uma licença válida de autorização devendo o utilizador aceder ao(s) documento(s) a partir de um endereço de IP da instituição detentora da supramencionada licença. Ao utilizador é apenas permitido o descarregamento para uso pessoal, pelo que o emprego do(s) título(s) descarregado(s) para outro fim, designadamente comercial, carece de autorização do respetivo autor ou editor da obra. Na medida em que todas as obras da UC Digitalis se encontram protegidas pelo Código do Direito de Autor e Direitos Conexos e demais legislação aplicável, toda a cópia, parcial ou total, deste documento, nos casos em que é legalmente admitida, deverá conter ou fazer-se acompanhar por este aviso. pombalina.uc.pt digitalis.uc.pt 9 789892 605111 Série Documentos A presente obra reúne um conjunto de contribuições apresentadas no I Congresso Imprensa da Universidade de Coimbra Internacional de Geociências na CPLP, que decorreu de 14 a 16 de maio de 2012 no Coimbra University Press Auditório da Reitoria da Universidade de Coimbra.
    [Show full text]
  • Osteichthyes: Sarcopterygii) Apex Predator from the Eifelian-Aged Dundee Formation of Ontario, Canada
    Canadian Journal of Earth Sciences A large onychodontiform (Osteichthyes: Sarcopterygii) apex predator from the Eifelian-aged Dundee Formation of Ontario, Canada. Journal: Canadian Journal of Earth Sciences Manuscript ID cjes-2016-0119.R3 Manuscript Type: Article Date Submitted by the Author: 04-Dec-2016 Complete List of Authors: Mann, Arjan; Carleton University, Earth Sciences; University of Toronto Faculty of ArtsDraft and Science, Earth Sciences Rudkin, David; Royal Ontario Museum Evans, David C.; Royal Ontario Museum, Natural History; University of Toronto, Ecology and Evolutionary Biology Laflamme, Marc; University of Toronto - Mississauga, Chemical and Physical Sciences Keyword: Sarcopterygii, Onychodontiformes, Body size, Middle Devonian, Eifelian https://mc06.manuscriptcentral.com/cjes-pubs Page 1 of 34 Canadian Journal of Earth Sciences A large onychodontiform (Osteichthyes: Sarcopterygii) apex predator from the Eifelian- aged Dundee Formation of Ontario, Canada. Arjan Mann 1,2*, David Rudkin 1,2 , David C. Evans 2,3 , and Marc Laflamme 1 1, Department of Earth Sciences, University of Toronto, 22 Russell Street, Toronto, Ontario, M5S 3B1, Canada, [email protected], [email protected] 2, Department of Palaeobiology, Royal Ontario Museum, 100 Queen’s Park, Toronto, Ontario, Canada M5S 2C6 3, Department of Ecology and Evolutionary Biology, University of Toronto, 25 Willcocks Street, Toronto, Ontario, Canada M5S 3B2 *Corresponding author (e-mail: [email protected] ca). https://mc06.manuscriptcentral.com/cjes-pubs Canadian Journal of Earth Sciences Page 2 of 34 Abstract The Devonian marine strata of southwestern Ontario, Canada have been well documented geologically, but their vertebrate fossils are poorly studied. Here we report a new onychodontiform (Osteichthyes, Sarcopterygii) Onychodus eriensis n.
    [Show full text]
  • Message from the New Chairman
    Subcommission on Devonian Stratigraphy Newsletter No. 21 April, 2005 MESSAGE FROM THE NEW CHAIRMAN Dear SDS Members: This new Newsletter gives me the pleasant opportunity to thank you for your confidence which should allow me to lead our Devonian Subcommission successfully through the next four years until the next International Geological Congress in Norway. Ahmed El Hassani, as Vice-Chairman, and John Marshall, as our new Secretary, will assist and help me. As it has been our habit in the past, our outgoing chairman, Pierre Bultynck, has continued his duties until the end of the calendar year, and in the name of all the Subcommission, I like to express our warmest thanks to him for all his efforts, his enthusi- asm for our tasks, his patience with the often too slow progress of research, and for the humorous, well organized and skil- ful handling of our affairs, including our annual meetings. At the same time I like to thank all our outgoing Titular Members for their partly long-time service and I express my hope that they will continue their SDS work with the same interest and energy as Corresponding Members. The new ICS rules require a rather constant change of voting members and the change from TM to CM status should not necessarily be taken as an excuse to adopt the lifestyle of a “Devonian pensioner”. I see no reason why constantly active SDS members shouldn´t become TM again, at a later stage. On the other side, the rather strong exchange of voting members should bring in some fresh ideas and some shift towards modern stratigraphical tech- niques.
    [Show full text]
  • Cambridge University Press 978-1-107-17944-8 — Evolution And
    Cambridge University Press 978-1-107-17944-8 — Evolution and Development of Fishes Edited by Zerina Johanson , Charlie Underwood , Martha Richter Index More Information Index abaxial muscle,33 Alizarin red, 110 arandaspids, 5, 61–62 abdominal muscles, 212 Alizarin red S whole mount staining, 127 Arandaspis, 5, 61, 69, 147 ability to repair fractures, 129 Allenypterus, 253 arcocentra, 192 Acanthodes, 14, 79, 83, 89–90, 104, 105–107, allometric growth, 129 Arctic char, 130 123, 152, 152, 156, 213, 221, 226 alveolar bone, 134 arcualia, 4, 49, 115, 146, 191, 206 Acanthodians, 3, 7, 13–15, 18, 23, 29, 63–65, Alx, 36, 47 areolar calcification, 114 68–69, 75, 79, 82, 84, 87–89, 91, 99, 102, Amdeh Formation, 61 areolar cartilage, 192 104–106, 114, 123, 148–149, 152–153, ameloblasts, 134 areolar mineralisation, 113 156, 160, 189, 192, 195, 198–199, 207, Amia, 154, 185, 190, 193, 258 Areyongalepis,7,64–65 213, 217–218, 220 ammocoete, 30, 40, 51, 56–57, 176, 206, 208, Argentina, 60–61, 67 Acanthodiformes, 14, 68 218 armoured agnathans, 150 Acanthodii, 152 amphiaspids, 5, 27 Arthrodira, 12, 24, 26, 28, 74, 82–84, 86, 194, Acanthomorpha, 20 amphibians, 1, 20, 150, 172, 180–182, 245, 248, 209, 222 Acanthostega, 22, 155–156, 255–258, 260 255–256 arthrodires, 7, 11–13, 22, 28, 71–72, 74–75, Acanthothoraci, 24, 74, 83 amphioxus, 49, 54–55, 124, 145, 155, 157, 159, 80–84, 152, 192, 207, 209, 212–213, 215, Acanthothoracida, 11 206, 224, 243–244, 249–250 219–220 acanthothoracids, 7, 12, 74, 81–82, 211, 215, Amphioxus, 120 Ascl,36 219 Amphystylic, 148 Asiaceratodus,21
    [Show full text]
  • Chapter 4 GEOLOGY
    Chapter 4 GEOLOGY CHAPTER 4 GEOLOGY ...................................................................................................................................... 4‐1 4.1 INTRODUCTION ................................................................................................................................................ 4‐2 4.2 BLACK SHALES ................................................................................................................................................. 4‐3 4.3 UTICA SHALE ................................................................................................................................................... 4‐6 4.3.2 Thermal Maturity and Fairways ...................................................................................................... 4‐14 4.3.3 Potential for Gas Production ............................................................................................................ 4‐14 4.4 MARCELLUS FORMATION ................................................................................................................................. 4‐15 4.4.1 Total Organic Carbon ....................................................................................................................... 4‐17 4.4.2 Thermal Maturity and Fairways ...................................................................................................... 4‐17 4.4.3 Potential for Gas Production ...........................................................................................................
    [Show full text]
  • Geological Investigations in Ohio
    INFORMATION CIRCULAR NO. 21 GEOLOGICAL INVESTIGATIONS IN OHIO 1956 By Carolyn Farnsworth STATE OF OHIO C. William O'Neill, Governor DEPARTMENT OF NATURAL RESOURCES A. W. Marion, Director NATURAL RESOURCES COMMISSION Milton Ronsheim, Chairman John A. Slipher, Bryce Browning, Vice Chairman Secretary C. D. Blubaugh Dean L. L. Rummell Forrest G. Hall Dr. Myron T. Sturgeon A. W. Marion George Wenger DIVISION OF GEOLOGICAL SURVEY Ralph J. Bernhagen, Chief STATI OF OHIO DIPAlTMIMT 011 NATUlAL llSOUlCH DIVISION OF &EOLO&ICAL SURVEY INFORMATION CIRCULAR NO. 21 'GEOLOG·ICAL INVESTIGATIONS IN OHIO 1956 by CAROLYN FARNSWORTH COLUMBUS 1957 Blank Page CONTENTS Page Introduction 1 Project listing by author 2 Project listing by subject . 22 Economic geology 22 Aggregates . 22 Coal . • 22 Ground water 22 Iron .. 22 Oil and gas 22 Salt . 22 Sand and gravel 23 General .. 23 Geomorphology 23 Geophysics 23 Glacial geology 23 Mineralogy and petrology . 24 Clay .. 24 Coal . 24 Dolomite 24 Limestone. 24 Sandstone •• 24 Shale. 24 Till 25 Others 25 Paleontology. 25 Stratigraphy and sedimentation 26 Structural geology . 27 Miscellaneous . 27 Geographic distribution. 27 Statewide 27 Areal. \\ 28 County 29 Miscellaneous . 33 iii Blank Page I INTRODUCTION In September 1956, letters of inquiry and questionnaires were sent to all Ohio geologists on the mailing list of the Ohio Geological Survey, and to other persons who might be working on geological problems in Ohio. This publication has been compiled from the information contained on the returned forms. In most eases it is assumed that the projects listed herein will culminate in reports which will be available to the profession through scientific journals, government publications, or grad- uate school theses.
    [Show full text]
  • Subsurface Facies Analysis of the Devonian Berea Sandstone in Southeastern Ohio
    SUBSURFACE FACIES ANALYSIS OF THE DEVONIAN BEREA SANDSTONE IN SOUTHEASTERN OHIO William T. Garnes A Thesis Submitted to the Graduate College of Bowling Green State University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE December 2014 Committee: James Evans, Advisor Jeffrey Snyder Charles Onasch ii ABSTRACT James Evans, Advisor The Devonian Berea Sandstone is an internally complex, heterogeneous unit that appears prominently both in outcrop and subsurface in Ohio. While the unit is clearly deltaic in outcrops in northeastern Ohio, its depositional setting is more problematic in southeastern Ohio where it is only found in the subsurface. The goal of this project was to search for evidence of a barrier island/inlet channel depositional environment for the Berea Sandstone to assess whether the Berea Sandstone was deposited under conditions in southeastern Ohio unique from northeastern Ohio. This project involved looking at cores from 5 wells: 3426 (Athens Co.), 3425 (Meigs Co.), 3253 (Athens Co.), 3252 (Athens Co.), and 3251 (Athens Co.) In cores, the Berea Sandstone ranges from 2 to 10 m (8-32 ft) thick, with an average thickness of 6.3 m (20.7 ft). Core descriptions involved hand specimens, thin section descriptions, and core photography. In addition to these 5 wells, the gamma ray logs from 13 wells were used to interpret the architecture and lithologies of the Berea Sandstone in Athens Co. and Meigs Co. as well as surrounding Vinton, Washington, and Morgan counties. Analysis from this study shows evidence of deltaic lobe progradation, abandonment, and re-working. Evidence of interdistributary bays with shallow sub-tidal environments, as well as large sand bodies, is also present.
    [Show full text]
  • Available Generic Names for Trilobites
    AVAILABLE GENERIC NAMES FOR TRILOBITES P.A. JELL AND J.M. ADRAIN Jell, P.A. & Adrain, J.M. 30 8 2002: Available generic names for trilobites. Memoirs of the Queensland Museum 48(2): 331-553. Brisbane. ISSN0079-8835. Aconsolidated list of available generic names introduced since the beginning of the binomial nomenclature system for trilobites is presented for the first time. Each entry is accompanied by the author and date of availability, by the name of the type species, by a lithostratigraphic or biostratigraphic and geographic reference for the type species, by a family assignment and by an age indication of the type species at the Period level (e.g. MCAM, LDEV). A second listing of these names is taxonomically arranged in families with the families listed alphabetically, higher level classification being outside the scope of this work. We also provide a list of names that have apparently been applied to trilobites but which remain nomina nuda within the ICZN definition. Peter A. Jell, Queensland Museum, PO Box 3300, South Brisbane, Queensland 4101, Australia; Jonathan M. Adrain, Department of Geoscience, 121 Trowbridge Hall, Univ- ersity of Iowa, Iowa City, Iowa 52242, USA; 1 August 2002. p Trilobites, generic names, checklist. Trilobite fossils attracted the attention of could find. This list was copied on an early spirit humans in different parts of the world from the stencil machine to some 20 or more trilobite very beginning, probably even prehistoric times. workers around the world, principally those who In the 1700s various European natural historians would author the 1959 Treatise edition. Weller began systematic study of living and fossil also drew on this compilation for his Presidential organisms including trilobites.
    [Show full text]
  • Middle Devonian Formations in the Subsurface of Northwestern Ohio
    STATE OF OHIO DEPARTMENT OF NATURAL RESOURCES DIVISION OF GEOLOGICAL SURVEY Horace R. Collins, Chief Report of Investigations No. 78 MIDDLE DEVONIAN FORMATIONS IN THE SUBSURFACE OF NORTHWESTERN OHIO by A. Janssens Columbus 1970 SCIENTIFIC AND TECHNICAL STAFF OF THE OHIO DIVISION OF GEOLOGICAL SURVEY ADMINISTRATIVE SECTION Horace R. Collins, State Geologist and Di v ision Chief David K. Webb, Jr., Geologist and Assistant Chief Eleanor J. Hyle, Secretary Jean S. Brown, Geologist and Editor Pauline Smyth, Geologist Betty B. Baber, Geologist REGIONAL GEOLOGY SECTION SUBSURFACE GEOLOGY SECTION Richard A. Struble, Geologist and Section Head William J. Buschman, Jr., Geologist and Section Head Richard M. Delong, Geologist Michael J. Clifford, Geologist G. William Kalb, Geochemist Adriaan J anssens, Geologist Douglas L. Kohout, Geologis t Frederick B. Safford, Geologist David A. Stith, Geologist Jam es Wooten, Geologist Aide Joel D. Vormelker, Geologist Aide Barbara J. Adams, Clerk· Typist B. Margalene Crammer, Clerk PUBLICATIONS SECTION LAKE ERIE SECTION Harold J. Fl inc, Cartographer and Section Head Charles E. Herdendorf, Geologist and Sectwn Head James A. Brown, Cartographer Lawrence L. Braidech, Geologist Donald R. Camburn, Cartovapher Walter R. Lemke, Boat Captain Philip J. Celnar, Cartographer David B. Gruet, Geologist Aide Jean J. Miller, Photocopy Composer Jean R. Ludwig, Clerk- Typist STATE OF OHIO DEPARTMENT OF NATURAL RESOURCES DIVISION OF GEOLOGICAL SURVEY Horace R. Collins, Chief Report of Investigations No. 78 MIDDLE DEVONIAN FORMATIONS IN THE SUBSURFACE OF NORTHWESTERN OHIO by A. Janssens Columbus 1970 GEOLOGY SERVES OHIO CONTENTS Page Introduction . 1 Previous investigations .. .. .. .. .. .. .. .. .. 1 Study methods . 4 Detroit River Group . .. .. .. ... .. ... .. .. .. .. .. .. .. ... .. 6 Sylvania Sandstone ..........................
    [Show full text]
  • Exhibit 5 Town of Barton Geology and Seismicity Report Sections
    GEOLOGY AND SEISMICITY REPORT SNYDER E1-A WELL TOWN OF BARTON TIOGA COUNTY, NEW YORK Prepared for: Couch White, LLP 540 Broadway P.O. Box 22222 Albany, New York 12201 Prepared by: Continental Placer Inc. II Winners Circle Albany, New York 12205 July 25, 2017 Table of Contents 1.0 EXECUTIVE SUMMARY............................................................................................................. 1 2.0 INTRODUCTION ........................................................................................................................... 2 2.1 Depositional Sequences and General Stratigraphic Sequence ................................................ 2 2.1.1 Upper Devonian Lithologies ........................................................................................................ 4 2.1.2 Marcellus-Hamilton ..................................................................................................................... 4 2.1.3 Tristates-Onondaga ...................................................................................................................... 4 2.1.4 Helderberg .................................................................................................................................... 4 2.1.5 Oneida-Clinton-Salina ................................................................................................................. 4 2.1.6 Black River-Trenton-Utica-Frankfort .......................................................................................... 5 2.1.7 Potsdam-Beekmantown ..............................................................................................................
    [Show full text]
  • Early Tetrapod Relationships Revisited
    Biol. Rev. (2003), 78, pp. 251–345. f Cambridge Philosophical Society 251 DOI: 10.1017/S1464793102006103 Printed in the United Kingdom Early tetrapod relationships revisited MARCELLO RUTA1*, MICHAEL I. COATES1 and DONALD L. J. QUICKE2 1 The Department of Organismal Biology and Anatomy, The University of Chicago, 1027 East 57th Street, Chicago, IL 60637-1508, USA ([email protected]; [email protected]) 2 Department of Biology, Imperial College at Silwood Park, Ascot, Berkshire SL57PY, UK and Department of Entomology, The Natural History Museum, Cromwell Road, London SW75BD, UK ([email protected]) (Received 29 November 2001; revised 28 August 2002; accepted 2 September 2002) ABSTRACT In an attempt to investigate differences between the most widely discussed hypotheses of early tetrapod relation- ships, we assembled a new data matrix including 90 taxa coded for 319 cranial and postcranial characters. We have incorporated, where possible, original observations of numerous taxa spread throughout the major tetrapod clades. A stem-based (total-group) definition of Tetrapoda is preferred over apomorphy- and node-based (crown-group) definitions. This definition is operational, since it is based on a formal character analysis. A PAUP* search using a recently implemented version of the parsimony ratchet method yields 64 shortest trees. Differ- ences between these trees concern: (1) the internal relationships of aı¨stopods, the three selected species of which form a trichotomy; (2) the internal relationships of embolomeres, with Archeria
    [Show full text]