Paleontological Contributions

Total Page:16

File Type:pdf, Size:1020Kb

Paleontological Contributions THE UNIVERSITY OF KANSAS PALEONTOLOGICAL CONTRIBUTIONS July 14, 1988 Paper 120 HOMALOZOAN ECHINODERMS OF THE WHEELER FORMATION (MIDDLE CAMBRIAN) OF WESTERN UTAH' Georges Ubaghs and R. A. Robison Laboratoire de Paléontologie Animale, Université de Liége, B-4000, Liége, Belgium Department of Geology, The University of Kansas, Lawrence, Kansas 66045 Abstract. —Three new species, representing three of the four homalozoan classes, are described from the upper Wheeler Formation of middle Middle Cambrian age in west- central Utah. Ctenocystis colodon n. sp. is only the fifth species of Ctenocystoidea to be described. The new order Ctenocystida is defined. The solutan Castericystis? sprinklei n. sp. is the fifth species of Homoiostelea to be reported from Cambrian strata. The cornute Cothurnocystis? bifida n. sp. is the fifth species of Stylophora to be reported from Middle Cambrian strata worldwide and only the second from North America. This homalozoan fauna is among the most diverse known from any Cambrian formation. AMONG ECHINODERMS, homalozoans are un House Range, and the stylophoran Cothur- usual in their complete lack of radial symmetry. nocystis? bifida from the House Range. Representatives are relatively rare, especially in Each homalozoan species in the Wheeler Cambrian strata. Three new Cambrian spe- Formation is from a different locality. Such low cies, which represent three of the four homa- diversity is typical of most Cambrian echi- lozoan classes, are described here. All are noderm faunas, although locally each species from the upper Wheeler Formation of west- may be represented by numerous individuals. central Utah and include the ctenocystoid For several years, knowledge of the class Ctenocystis colodon from the Drum Mountains, Ctenocystoidea was limited to the single species the homoiostelean Castericystis? sprinklei from the Ctenocystis utahensis Robison and Sprinkle, 1969, which is locally abundant in the Spence Shale of Manuscript received 15 November 1987. northern Utah and southern Idaho. The 2 The University of Kansas Paleontological Contributions—Paper 120 Spence fauna is of early Middle Cambrian age. Jaekel, 1901, from the middle Middle Recently, the observed geographic distribution Cambrian of Czechoslovakia (Jaekel, 1901; of ctenocystoids was vastly broadened by the Bather, 1913; Ubaghs, 1967; Jefferies, 1969), description of the new species Etoctenocystis C. vizcainoi Ubaghs, 1987, from the upper bohemica Fatka and Kordule, 1985, from Czecho- Middle Cambrian of France, and Protocystites slovakia, Ctenocystis jagoi Jell, Burrett, and menevenis Hicks, 1872, from the middle Middle Banks, 1985, from Australia, and Ctenocystis Cambrian of Wales (Jefferies, Lewis, and Don- smithi Ubaghs, 1987, from France. Of these ovan, 1987). Additionally, Ceratocystis probably latter three species, C. smithi is the youngest, is represented in the lower Middle Cambrian of and it extends the observed stratigraphic range Sweden (Christina Franzén-Bengtson, cited by of the class to the upper Middle Cambrian. The Berg-Madsen, 1986:67), and dissociated plates description here of C. colodon n. sp. demon- of an unidentified cornute have been reported strates that ctenocystoids have a modest strat- from the Middle Cambrian of Bornholm, igraphic range and some diversity in the Denmark (Berg-Madsen, 1981:223; 1985:23; Middle Cambrian of western North America. 1986:73). Thus, the new cornute Cothurnocystis? Discovery of more representatives is to be bifida, described here, is a significant addition to expected. the meager record of Cambrian stylophorans. Cambrian representatives of the class Ho- Repository. —All homalozoan specimens de- moiostelea are known only from the United scribed in this paper are deposited with collec- States. Moreover, the only well-known species tions of the U.S. National Museum of Natural is the solutan Castericystis vali Ubaghs and History (USNM) in Washington, D.C. Illus- Robison, 1985, which is from the Marjum trated specimens have separate USNM num- Formation of late Middle Cambrian age and, bers (see figure captions). The remaining like most of the specimens described here, is ctenocystoids have been assigned USNM cata- from the House Range of Utah. Two fragmen- log number 432875a-j, the remaining homoio- tary specimens of an unnamed solutan have steleans are cataloged under USNM accession been described from the Weeks Formation of number 369516, and the remaining stylopho- latest Middle Cambrian age, also from the rans and associated fossils are cataloged under House Range (Ubaghs and Robison, 1985), USNM accession number 368342. and a single unnamed solutan stele has been Terminology. —Morphological terms used in described from the Whipple Cave Formation of this paper are defined in parts S (Ubaghs, 1968; late Late Cambrian age in Nevada (Ubaghs, Caster, 1968) and T (Sprinkle and Robison, 1963; Parsley and Caster, 1965). Additionally, 1978) of the Treatise on Invertebrate Paleontology. undescribed solutans have been reported from Acknowledgments. —This study would not the Lower Cambrian of Pennsylvania (Derstler, have been possible without the generous contri- 1975, 1981; Paul and Smith, 1984) and the butions and aid of others. We are especially lower Upper Cambrian of Alabama (Bell and indebted to Lloyd and Val Gunther, who dis- Sprinkle, 1980). Solutan specimens described covered all of the homalozoa-bearing beds on here from the Wheeler Formation add signifi- which the study is based and who made the cantly to this meager record of Cambrian ho- initial collections. Subsequently, Lloyd Gun- moiosteleans. ther, Metta Gunther, Frieda Gunther, Val Stylophora are equally rare in Cambrian Gunther, and Phillip Reese worked long and strata. In North America, an undescribed cor- hard to collect many more specimens. Funds to nute species has been reported from the Spence defray costs of collecting at the homoiostelean Shale of Utah (Robison and Sprinkle, 1969; and stylophoran localities were provided by the Sprinkle, 1976; Sprinkle and Robison, 1978) Smithsonian Institution through arrangements and two cornutes, Nevadaecystis americana made by I. G. Macintyre and F. J. Collier. Ubaghs, 1963, and Phyllocystis sp., have been Murielle Demaret-Fairon and Roger Fontaine described from the Whipple Cave Formation did most of the photography, and Marie Mas- (upper Upper Cambrian) of Nevada (Ubaghs, son aided in preparation of the line drawings. A 1963, 1968). In Europe, only three cornute preliminary draft of this paper was improved by species have been described: Ceratocystis perneri helpful suggestions from R. L. Kaesler and Ubaghs & Robison—Homalozoan Echinoderms of Utah 3 1 2 3 Fig. I. Ctenocyslis colodon n. sp. from upper Wheeler Formation, Drum Mountains.—/. Latex cast of superior surface, USNM 423872, X 12. 2. Inferior surface, USNM 423873, X 11.-3. Holotype, inferior surface, USNM 423874, X 10. James Sprinkle. Additional support was pro- upper Wheeler Formation. They are preserved vided by the National Science Foundation un- in a thin-bedded limestone and shale litho- der grant number EAR-8519324. facies, which has been interpreted to represent mostly pelagic settling of fine-grained sediment GEOLOGY AND PALEONTOLOGY in a deep-ramp environment (Rees, 1986:1060- 1061). Rare beds with common to abundant The Wheeler Formation in the House homalozoans suggest that these animals were Range and Drum Mountains of west-central gregarious and lived in small, discrete patches Utah is composed of an upward-shallowing on the seafloor. Little evidence of decay and sequence of marine shale and limestone. Thick- disarticulation prior to burial suggests that they ness of the formation ranges from as little as 128 were overwhelmed and buried alive, perhaps by m in the House Range to as much as 304 m in episodic storm deposits. the Drum Mountains. Rocks of the Wheeler Formation record the early infilling of the The Wheeler Formation contains a diverse House Range embayment, which was a broad biota. Trilobites are the most commonly pre- asymmetrical trough that deepened and wid- served fossils (Robison, 1964, 1971, 1984), but ened as it extended westward for some 400 km rare noncalcareous algae and soft-bodied ani- across the Middle Cambrian shelf of western mals (e.g., Conway Morris and Robison, in North America (Rees, 1986). Evidence that the press) indicate the original presence of a com- embayment was produced by a northeastward- munity much like that of the celebrated Burgess striking, high-angle fault has been presented by shale (Conway Morris, 1979, 1986; Whit- Rees (1986), who also described the lithofacies tington, 1985). Agnostoid trilobites of the up- of the embayment and interpreted their deposi- per Wheeler Formation are characteristic of the tional environments. upper Ptychagnostus atavus Interval-zone of mid- Homalozoans have been found only in the dle Middle Cambrian age (Robison, 1984). 4 The University of Kansas Paleontological Contributions—Paper 120 SYSTEMATIC DESCRIPTIONS Subphylum HOMALOZOA Whitehouse, 1941 Class CTENOCYSTOIDEA Robison and Sprinkle, 1969 Order CTENOCYSTIDA Ubaghs and Robison, new Description. —Characters of class (Sprinkle and Robison, 1978:T998-T1001). Discussion. —This taxon is established to complete the taxonomic hierarchy to which described ctenocystoid species are assigned. Family CTENOCYSTIDAE Sprinkle and Robison, 1978 Genus CTENOCYSTIS Robison and Sprinkle, 1969 1 2 CTENOCYSTIS COLODON new species Fig. 2. Shape of anterolateral inframarginal plates in two Figures 1, 2 species
Recommended publications
  • Zamora, S., Rahman, IA, & Smith, AB (2012). Plated Cambrian
    Zamora, S., Rahman, I. A., & Smith, A. B. (2012). Plated Cambrian bilaterians reveal the earliest stages of echinoderm evolution. PLoS ONE, 7(6), [e38296]. https://doi.org/10.1371/journal.pone.0038296 Publisher's PDF, also known as Version of record Link to published version (if available): 10.1371/journal.pone.0038296 Link to publication record in Explore Bristol Research PDF-document University of Bristol - Explore Bristol Research General rights This document is made available in accordance with publisher policies. Please cite only the published version using the reference above. Full terms of use are available: http://www.bristol.ac.uk/red/research-policy/pure/user-guides/ebr-terms/ Plated Cambrian Bilaterians Reveal the Earliest Stages of Echinoderm Evolution Samuel Zamora1, Imran A. Rahman2, Andrew B. Smith1* 1 Department of Palaeontology, The Natural History Museum, London, United Kingdom, 2 School of Geography, Earth & Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom Abstract Echinoderms are unique in being pentaradiate, having diverged from the ancestral bilaterian body plan more radically than any other animal phylum. This transformation arises during ontogeny, as echinoderm larvae are initially bilateral, then pass through an asymmetric phase, before giving rise to the pentaradiate adult. Many fossil echinoderms are radial and a few are asymmetric, but until now none have been described that show the original bilaterian stage in echinoderm evolution. Here we report new fossils from the early middle Cambrian of southern Europe that are the first echinoderms with a fully bilaterian body plan as adults. Morphologically they are intermediate between two of the most basal classes, the Ctenocystoidea and Cincta.
    [Show full text]
  • Skeletonized Microfossils from the Lower–Middle Cambrian Transition of the Cantabrian Mountains, Northern Spain
    Skeletonized microfossils from the Lower–Middle Cambrian transition of the Cantabrian Mountains, northern Spain SÉBASTIEN CLAUSEN and J. JAVIER ÁLVARO Clausen, S. and Álvaro, J.J. 2006. Skeletonized microfossils from the Lower–Middle Cambrian transition of the Cantabrian Mountains, northern Spain. Acta Palaeontologica Polonica 51 (2): 223–238. Two different assemblages of skeletonized microfossils are recorded in bioclastic shoals that cross the Lower–Middle Cambrian boundary in the Esla nappe, Cantabrian Mountains. The uppermost Lower Cambrian sedimentary rocks repre− sent a ramp with ooid−bioclastic shoals that allowed development of protected archaeocyathan−microbial reefs. The shoals yield abundant debris of tube−shelled microfossils, such as hyoliths and hyolithelminths (Torellella), and trilobites. The overlying erosive unconformity marks the disappearance of archaeocyaths and the Iberian Lower–Middle Cambrian boundary. A different assemblage occurs in the overlying glauconitic limestone associated with development of widespread low−relief bioclastic shoals. Their lowermost part is rich in hyoliths, hexactinellid, and heteractinid sponge spicules (Eiffelia), chancelloriid sclerites (at least six form species of Allonnia, Archiasterella, and Chancelloria), cambroclaves (Parazhijinites), probable eoconchariids (Cantabria labyrinthica gen. et sp. nov.), sclerites of uncertain af− finity (Holoplicatella margarita gen. et sp. nov.), echinoderm ossicles and trilobites. Although both bioclastic shoal com− plexes represent similar high−energy conditions, the unconformity at the Lower–Middle Cambrian boundary marks a drastic replacement of microfossil assemblages. This change may represent a real community replacement from hyolithelminth−phosphatic tubular shells to CES (chancelloriid−echinoderm−sponge) meadows. This replacement coin− cides with the immigration event based on trilobites previously reported across the boundary, although the partial infor− mation available from originally carbonate skeletons is also affected by taphonomic bias.
    [Show full text]
  • PROGRAMME ABSTRACTS AGM Papers
    The Palaeontological Association 63rd Annual Meeting 15th–21st December 2019 University of Valencia, Spain PROGRAMME ABSTRACTS AGM papers Palaeontological Association 6 ANNUAL MEETING ANNUAL MEETING Palaeontological Association 1 The Palaeontological Association 63rd Annual Meeting 15th–21st December 2019 University of Valencia The programme and abstracts for the 63rd Annual Meeting of the Palaeontological Association are provided after the following information and summary of the meeting. An easy-to-navigate pocket guide to the Meeting is also available to delegates. Venue The Annual Meeting will take place in the faculties of Philosophy and Philology on the Blasco Ibañez Campus of the University of Valencia. The Symposium will take place in the Salon Actos Manuel Sanchis Guarner in the Faculty of Philology. The main meeting will take place in this and a nearby lecture theatre (Salon Actos, Faculty of Philosophy). There is a Metro stop just a few metres from the campus that connects with the centre of the city in 5-10 minutes (Line 3-Facultats). Alternatively, the campus is a 20-25 minute walk from the ‘old town’. Registration Registration will be possible before and during the Symposium at the entrance to the Salon Actos in the Faculty of Philosophy. During the main meeting the registration desk will continue to be available in the Faculty of Philosophy. Oral Presentations All speakers (apart from the symposium speakers) have been allocated 15 minutes. It is therefore expected that you prepare to speak for no more than 12 minutes to allow time for questions and switching between presenters. We have a number of parallel sessions in nearby lecture theatres so timing will be especially important.
    [Show full text]
  • A Probable Case of Heterochrony in the Solutan
    A probable case of heterochrony in the solutan Dendrocystites Barrande, 1887 (Echinodermata: Blastozoa) from the Upper Ordovician of the Prague Basin (Czech Republic) and a revision of the family Dendrocystitidae Bassler, 1938 FLEUR NOAILLES, BERTRAND LEFEBVRE & LIBOR KAIÈKA The morphology of the Late Ordovician solutan Dendrocystites is reevaluated based on more than 300 specimens from the Letná and Zahořany formations (Prague Basin, Czech Republic). This genus is reported for the first time from the Bohdalec Formation, and its presence is confirmed in the Vinice Formation. The morphology of all specimens of the stratigraphically older species D. barrandei (Sandbian) is identical to that of small to medium-size individuals of D. sedgwicki (Katian). Distinctive characters of D. sedgwicki occur only in the largest specimens, and are all size-related (more asymmetrical thecal outlines, stronger ornamentation, rosetting pattern of thecal plates, proliferation of platelets in the proxistele). Consequently, the transition from D. barrandei to D. sedgwicki is interpreted as the result of heterochronic processes, with the largest individuals of D. sedgwicki displaying hyperadult morphologies (hyper- morphosis). Dendrocystites is locally abundant in both the Letná and Zahořany formations, but extremely rare in the deeper deposits of the Vinice and Bohdalec formations. This pattern coincides closely with first order fluctuations of the sea-level in the Prague Basin. The life orientation and implied feeding strategy of Dendrocystites and other solutans are both critically discussed. Several independent lines of evidence suggest that solutans were more likely detritus-feeders. Finally, it is proposed that two morphologically distinct patterns of dististele organization were elaborated independently from the polyplated, undifferentiated stalk-like appendage of Coleicarpus (plesiomorphic condition).
    [Show full text]
  • PUBLICATIONS by JAMES SPRINKLE 1965 -- Sprinkle, James
    PUBLICATIONS BY JAMES SPRINKLE 1965 -- Sprinkle, James. 1965. Stratigraphy and sedimentary petrology of the lower Lodgepole Formation of southwestern Montana. M.I.T. Department of Geology and Geophysics, unpublished Senior Thesis, 29 p. (see #56 and 66 below) 1966 1. Sprinkle, James and Gutschick, R. C. 1966. Blastoids from the Sappington Formation of southwest Montana (Abst.). Geological Society of America Special Paper 87:163-164. 1967 2. Sprinkle, James and Gutschick, R. C. 1967. Costatoblastus, a channel fill blastoid from the Sappington Formation of Montana. Journal of Paleon- tology, 41(2):385-402. 1968 3. Sprinkle, James. 1968. The "arms" of Caryocrinites, a Silurian rhombiferan cystoid (Abst.). Geological Society of America Special Paper 115:210. 1969 4. Sprinkle, James. 1969. The early evolution of crinozoan and blastozoan echinoderms (Abst.). Geological Society of America Special Paper 121:287-288. 5. Robison, R. A. and Sprinkle, James. 1969. A new echinoderm from the Middle Cambrian of Utah (Abst.). Geological Society of America Abstracts with Programs, 1(5):69. 6. Robison, R. A. and Sprinkle, James. 1969. Ctenocystoidea: new class of primitive echinoderms. Science, 166(3912):1512-1514. 1970 -- Sprinkle, James. 1970. Morphology and Evolution of Blastozoan Echino- derms. Harvard University Department of Geological Sciences, unpublished Ph.D. Thesis, 433 p. (see #8 below) 1971 7. Sprinkle, James. 1971. Stratigraphic distribution of echinoderm plates in the Antelope Valley Limestone of Nevada and California. U.S. Geological Survey Professional Paper 750-D (Geological Survey Research 1971):D89-D98. 1973 8. Sprinkle, James. 1973. Morphology and Evolution of Blastozoan Echino- derms. Harvard University, Museum of Comparative Zoology Special Publication, 283 p.
    [Show full text]
  • Contributions in BIOLOGY and GEOLOGY
    MILWAUKEE PUBLIC MUSEUM Contributions In BIOLOGY and GEOLOGY Number 51 November 29, 1982 A Compendium of Fossil Marine Families J. John Sepkoski, Jr. MILWAUKEE PUBLIC MUSEUM Contributions in BIOLOGY and GEOLOGY Number 51 November 29, 1982 A COMPENDIUM OF FOSSIL MARINE FAMILIES J. JOHN SEPKOSKI, JR. Department of the Geophysical Sciences University of Chicago REVIEWERS FOR THIS PUBLICATION: Robert Gernant, University of Wisconsin-Milwaukee David M. Raup, Field Museum of Natural History Frederick R. Schram, San Diego Natural History Museum Peter M. Sheehan, Milwaukee Public Museum ISBN 0-893260-081-9 Milwaukee Public Museum Press Published by the Order of the Board of Trustees CONTENTS Abstract ---- ---------- -- - ----------------------- 2 Introduction -- --- -- ------ - - - ------- - ----------- - - - 2 Compendium ----------------------------- -- ------ 6 Protozoa ----- - ------- - - - -- -- - -------- - ------ - 6 Porifera------------- --- ---------------------- 9 Archaeocyatha -- - ------ - ------ - - -- ---------- - - - - 14 Coelenterata -- - -- --- -- - - -- - - - - -- - -- - -- - - -- -- - -- 17 Platyhelminthes - - -- - - - -- - - -- - -- - -- - -- -- --- - - - - - - 24 Rhynchocoela - ---- - - - - ---- --- ---- - - ----------- - 24 Priapulida ------ ---- - - - - -- - - -- - ------ - -- ------ 24 Nematoda - -- - --- --- -- - -- --- - -- --- ---- -- - - -- -- 24 Mollusca ------------- --- --------------- ------ 24 Sipunculida ---------- --- ------------ ---- -- --- - 46 Echiurida ------ - --- - - - - - --- --- - -- --- - -- - - ---
    [Show full text]
  • Reinterpretation of the Enigmatic Ordovician Genus Bolboporites (Echinodermata)
    Reinterpretation of the enigmatic Ordovician genus Bolboporites (Echinodermata). Emeric Gillet, Bertrand Lefebvre, Véronique Gardien, Emilie Steimetz, Christophe Durlet, Frédéric Marin To cite this version: Emeric Gillet, Bertrand Lefebvre, Véronique Gardien, Emilie Steimetz, Christophe Durlet, et al.. Reinterpretation of the enigmatic Ordovician genus Bolboporites (Echinodermata).. Zoosymposia, Magnolia Press, 2019, 15 (1), pp.44-70. 10.11646/zoosymposia.15.1.7. hal-02333918 HAL Id: hal-02333918 https://hal.archives-ouvertes.fr/hal-02333918 Submitted on 13 Nov 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. 1 Reinterpretation of the Enigmatic Ordovician Genus Bolboporites 2 (Echinodermata) 3 4 EMERIC GILLET1, BERTRAND LEFEBVRE1,3, VERONIQUE GARDIEN1, EMILIE 5 STEIMETZ2, CHRISTOPHE DURLET2 & FREDERIC MARIN2 6 7 1 Université de Lyon, UCBL, ENSL, CNRS, UMR 5276 LGL-TPE, 2 rue Raphaël Dubois, F- 8 69622 Villeurbanne, France 9 2 Université de Bourgogne - Franche Comté, CNRS, UMR 6282 Biogéosciences, 6 boulevard 10 Gabriel, F-2100 Dijon, France 11 3 Corresponding author, E-mail: [email protected] 12 13 Abstract 14 Bolboporites is an enigmatic Ordovician cone-shaped fossil, the precise nature and systematic affinities of 15 which have been controversial over almost two centuries.
    [Show full text]
  • Reply to €˜Re-Evaluating the Phylogenetic Position
    MATTERS ARISING https://doi.org/10.1038/s41467-020-14922-9 OPEN Reply to ‘Re-evaluating the phylogenetic position of the enigmatic early Cambrian deuterostome Yanjiahella’ ✉ Timothy P. Topper1,2 , Junfeng Guo3, Sébastien Clausen 4, Christian B. Skovsted2 & Zhifei Zhang 1 REPLYING TO Zamora, et al. Nature Communications https://doi.org/10.1038/s41467-020-14920-x (2020) ecently we documented a bilaterally symmetrical, solitary not detectable using light photography and SEM, as predicted. The 2 1234567890():,; organism, Yanjiahella biscarpa from the early Cambrian statement from Zamora et al. that latex casting could have R 1 (Fortunian) of China . We interpreted that Y. biscarpa resolved many of the uncertainties surrounding the composition, possessed an echinoderm-like plated theca, a muscular stalk shape and arrangement of the plates and the morphology of the similar to hemichordates and a pair of long, feeding appendages. stalk is an overstatement and ambitiously delivered without direct Our interpretation and our phylogenetic analysis suggest that examination of the fossil specimens. Y. biscarpa is a stem-echinoderm, which would confirm that The stereom microstructure of Cambrian echinoderms is poorly echinoderms acquired plates before pentaradial symmetry and known5, as the majority of specimens are preserved as moulds, or that their history is firmly rooted in bilateral forms. Zamora et al.2 recrystallized skeletons and the primary three-dimensional mor- however, have criticized our interpretation, arguing against an phology of their stereom has been obscured4–6. Generally, only echinoderm affinity, instead suggesting that the phylogenetic superficial pitting is preserved and it is this pitting that is inter- placement of Y.
    [Show full text]
  • The Weeks Formation Konservat-Lagerstätte and the Evolutionary Transition of Cambrian Marine Life
    Downloaded from http://jgs.lyellcollection.org/ by guest on October 1, 2021 Review focus Journal of the Geological Society Published Online First https://doi.org/10.1144/jgs2018-042 The Weeks Formation Konservat-Lagerstätte and the evolutionary transition of Cambrian marine life Rudy Lerosey-Aubril1*, Robert R. Gaines2, Thomas A. Hegna3, Javier Ortega-Hernández4,5, Peter Van Roy6, Carlo Kier7 & Enrico Bonino7 1 Palaeoscience Research Centre, School of Environmental and Rural Science, University of New England, Armidale, NSW 2351, Australia 2 Geology Department, Pomona College, Claremont, CA 91711, USA 3 Department of Geology, Western Illinois University, 113 Tillman Hall, 1 University Circle, Macomb, IL 61455, USA 4 Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK 5 Museum of Comparative Zoology and Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA 02138, USA 6 Department of Geology, Ghent University, Krijgslaan 281/S8, B-9000 Ghent, Belgium 7 Back to the Past Museum, Carretera Cancún, Puerto Morelos, Quintana Roo 77580, Mexico R.L.-A., 0000-0003-2256-1872; R.R.G., 0000-0002-3713-5764; T.A.H., 0000-0001-9067-8787; J.O.-H., 0000-0002- 6801-7373 * Correspondence: [email protected] Abstract: The Weeks Formation in Utah is the youngest (c. 499 Ma) and least studied Cambrian Lagerstätte of the western USA. It preserves a diverse, exceptionally preserved fauna that inhabited a relatively deep water environment at the offshore margin of a carbonate platform, resembling the setting of the underlying Wheeler and Marjum formations. However, the Weeks fauna differs significantly in composition from the other remarkable biotas of the Cambrian Series 3 of Utah, suggesting a significant Guzhangian faunal restructuring.
    [Show full text]
  • The Genetic Factors of Bilaterian Evolution Peter Heger1*, Wen Zheng1†, Anna Rottmann1, Kristen a Panfilio2,3, Thomas Wiehe1
    RESEARCH ARTICLE The genetic factors of bilaterian evolution Peter Heger1*, Wen Zheng1†, Anna Rottmann1, Kristen A Panfilio2,3, Thomas Wiehe1 1Institute for Genetics, Cologne Biocenter, University of Cologne, Cologne, Germany; 2Institute for Zoology: Developmental Biology, Cologne Biocenter, University of Cologne, Cologne, Germany; 3School of Life Sciences, University of Warwick, Gibbet Hill Campus, Coventry, United Kingdom Abstract The Cambrian explosion was a unique animal radiation ~540 million years ago that produced the full range of body plans across bilaterians. The genetic mechanisms underlying these events are unknown, leaving a fundamental question in evolutionary biology unanswered. Using large-scale comparative genomics and advanced orthology evaluation techniques, we identified 157 bilaterian-specific genes. They include the entire Nodal pathway, a key regulator of mesoderm development and left-right axis specification; components for nervous system development, including a suite of G-protein-coupled receptors that control physiology and behaviour, the Robo- Slit midline repulsion system, and the neurotrophin signalling system; a high number of zinc finger transcription factors; and novel factors that previously escaped attention. Contradicting the current view, our study reveals that genes with bilaterian origin are robustly associated with key features in extant bilaterians, suggesting a causal relationship. *For correspondence: [email protected] Introduction The taxon Bilateria consists of multicellular animals
    [Show full text]
  • Plated Cambrian Bilaterians Reveal the Earliest Stages of Echinoderm Evolution
    Zamora, S., Rahman, I. A., & Smith, A. B. (2012). Plated Cambrian bilaterians reveal the earliest stages of echinoderm evolution. PLoS ONE, 7(6), [e38296]. https://doi.org/10.1371/journal.pone.0038296 Publisher's PDF, also known as Version of record Link to published version (if available): 10.1371/journal.pone.0038296 Link to publication record in Explore Bristol Research PDF-document University of Bristol - Explore Bristol Research General rights This document is made available in accordance with publisher policies. Please cite only the published version using the reference above. Full terms of use are available: http://www.bristol.ac.uk/red/research-policy/pure/user-guides/ebr-terms/ Plated Cambrian Bilaterians Reveal the Earliest Stages of Echinoderm Evolution Samuel Zamora1, Imran A. Rahman2, Andrew B. Smith1* 1 Department of Palaeontology, The Natural History Museum, London, United Kingdom, 2 School of Geography, Earth & Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom Abstract Echinoderms are unique in being pentaradiate, having diverged from the ancestral bilaterian body plan more radically than any other animal phylum. This transformation arises during ontogeny, as echinoderm larvae are initially bilateral, then pass through an asymmetric phase, before giving rise to the pentaradiate adult. Many fossil echinoderms are radial and a few are asymmetric, but until now none have been described that show the original bilaterian stage in echinoderm evolution. Here we report new fossils from the early middle Cambrian of southern Europe that are the first echinoderms with a fully bilaterian body plan as adults. Morphologically they are intermediate between two of the most basal classes, the Ctenocystoidea and Cincta.
    [Show full text]
  • The Fossil Record of the Cambrian “Explosion”: Resolving the Tree of Life Critics As Posing Challenges to Evolution
    Article The Fossil Record of the Cambrian “Explosion”: 1 Resolving the Tree of Life Keith B. Miller Keith B. Miller The Cambrian “explosion” has been the focus of extensive scientifi c study, discussion, and debate for decades. It has also received considerable attention by evolution critics as posing challenges to evolution. In the last number of years, fossil discoveries from around the world, and particularly in China, have enabled the reconstruction of many of the deep branches within the invertebrate animal tree of life. Fossils representing “sister groups” and “stem groups” for living phyla have been recognized within the latest Precambrian (Neoproterozoic) and Cambrian. Important transitional steps between living phyla and their common ancestors are preserved. These include the rise of mollusks from their common ancestor with the annelids, the evolution of arthropods from lobopods and priapulid worms, the likely evolution of brachiopods from tommotiids, and the rise of chordates and echinoderms from early deuterostomes. With continued new discoveries, the early evolutionary record of the animal phyla is becoming ever better resolved. The tree of life as a model for the diversifi cation of life over time remains robust, and strongly supported by the Neoproterozoic and Cambrian fossil record. he most fundamental claim of bio- (such as snails, crabs, or sea urchins) as it logical evolution is that all living does to the fi rst appearance and diversi- T organisms represent the outer tips fi cation of dinosaurs, birds, or mammals. of a diversifying, upward- branching tree This early diversifi cation of invertebrates of life. The “Tree of Life” is an extreme- apparently occurred around the time of ly powerful metaphor that captures the the Precambrian/Cambrian boundary over essence of evolution.
    [Show full text]