Elettaria Cardamomum Maton.) Through Anther Culture / Microspore Culture

Total Page:16

File Type:pdf, Size:1020Kb

Elettaria Cardamomum Maton.) Through Anther Culture / Microspore Culture Production of haploids of cardamom (Elettaria cardamomum Maton.) through anther culture / microspore culture (1998-2002) Final report Submitted to Indian Council of Agricultural Research INDIAN INSTITUTE OF SPICES RESEARCH (Indian Council of Agricultural Research) Marikunnu P.O., Calicut – 673 012, Kerala Contents Page Annual report proforma 1 Objectives 1 Budget 2 Progress of Research (Annexure 1) 5 Introduction 6 Review of Literature 8 Materials and Methods 15 Results and Discussion 19 Summary and conclusions 39 References 41 Detailed Expenditure Statement (Annexure II): 48 Comments of Project Co-ordinator/Referee 52 (Annexure III) FINAL REPORT FOR RESEARCH SCHEME 1. Project Title : Production of haploids of cardamom (Elettaria cardamomum Maton.) through anther culture / microspore culture. 2. Sanction No. : F. No. 15(17)/95 – Hort. I Dated 24th July1997. 3. Date of start : 1-4-1998 4. Date of Termination : 31-3-2002 5. Institutions name : Indian Institute of Spices Research Place : Marikunnu District : Calicut State : Kerala Dept./Div. Name : Division of Crop Improvement and Biotechnology Actual Location : Indian Institute of Spices Research, Calicut (Location of research to be carried out) 6. Principal Investigator Name : Dr. PN Ravindran ( PC Spices till March 2000) Dr. K. Nirmal Babu ( After March 2000) Designation : Sr. Scientist Div./Section : Crop Improvement and Biotechnology Address : Indian Institute of Spices Research Marikunnu P.O. Calicut, Kerala E mail : [email protected] 7. Objectives ! The anther / microspore culture technology and subsequent production of dihaploids is an important means by which homozygous lines could be achieved for the subsequent production of high yielding hybrids exhibiting maximum heterosis. ! Production of haploids through the ' microspore callus ' is a sure way of introducing variation in the crop. The variations obtained may be useful in breeding, especially for developing disease tolerant lines. ! In cardamom, resistance to the katte virus seems to be a recessive character or a character controlled by cytoplasmic factors. Through anther / microspore culture, it is possible to fix the recessive genes in homozygous condition. ! Cardamom is a naturally cross-pollinated crop and the dihaploids from such hybrid plants are recombinant homozygous products useful in the fixation of gene loci. Additive effects are fixed in dihaploids. ! The ultimate aim of the project is to evolve high yielding disease resistant cardamom lines through crossing of dihaploids. 9. Duration of Scheme : 04 years. - 00 Months - 00 Days 10. Total Cost of Scheme : Rs. 7,78,430.00 Recurring Recurring (Contingency + TA+ Institutional charges) : Rs. 2,48,139.00 Pay of Officers : Rs. 4,13,035.00 Rs. 6,61,174.00 Name of Post Pay Scale No. of Post Total Scientist - - - Junior Research Fellow - - - Senior Research Fellow - - - Research Associate 8800.00 + 1 1,21,440.00 1320.00 (HRA) Others Nil Pay of officers Pay TA Other PF Contingency Instt. Total Year of Allow- charges Estab ances lishm ent I 1,21,440.00 - 10,000.00 - - 1,00,000.00 16,220.00 2,47,660.00 II 1,21,440.00 10,000.00 - - 1,00,000.00 16,370.00 2,47,810.00 II 1,21,440.00 10,000.00 - - 1,00,000.00 16,520.00 2,47,960.00 Total 3,64,320.00 30,000 - - 3,00,000.00 49,110.00 7,43,430.00 B. Non-Recurring 35,000.00 Total Budget Year Recurring Non-recurring Total I 2,47,660.00 35,000.00 2,82,660.00 II 2,47,810.00 2,47,810.00 III 2, 47,960.00 2,47,960.00 IV (Extension period)* 7,43,430.00 35,000.00 7,78,430.00 * No separate sanction for the extension period, The balance amount in the end of third year was sanctioned. 11. Total Amount sanctioned : 7,78,430.00 12. Total Amount Spent : 7,23,430.00 (as on 31.07.2002) See Annexure-II for details Consolidated statement of expenditure (1998–2002) Year Amount Opening Amount Amount Balance Balance Sanctioned balance released spent provision@ 1998–1999 2,82,660 - 2,13,420 1,85,939 27,481 - 1999–2000 2,47,810 27,481 2,85,370 2,33,791 79,060 - 2000–2001 2,47,960 79,060 1,16,060 97,457 97,663 - 2001-2002 - 97,663 1,08,580 1,41,700 64,543 - *2002 May - **64,543 - **64,543 0 - Total 7,78,430 - 7,23,430 7,23,430 0 55,000 ** The expenditure committed in March, 2002, and the payments made in May 2002 @ The amount under balance provision need not be released. 13. Result of Practical / Scientific value: ♣ Production of callus from cardamom anthers. ♣ Regeneration of shoots from cardamom anthers ♣ Rooting of shoots and anther derived plants were established in hardening facility. 14. Papers Published : Nil Manuscripts submitted : Nil Papers presented at scientific meetings : Nil Manuscripts under preparation : Nil 15. Detailed Progress Report : See Annexure - I Signature Principal Investigator Name : Dr. K. NIRMAL BABU Designation : Senior Scientist Indian Institute of Spices Research Marikunnu P.O. Calicut, Kerala. Director or Head of Institution / Station Date: 16. Comments of the Project Co-ordinator / Referee : See Annexure - III 17. Remarks of the Council: ANNEXURE - I Production of haploids of cardamom (Elettaria cardamomum Maton.) through anther culture / microspore culture ANNEXURE - I Progress of research Appointments The project was started with the joining of the research associate on 15th April 1998, at Indian Institute of Spices Research, Calicut. Dominic Joseph Research Associate 15.04.1998 – 31.08.2000 Benny Daniel Research Associate 30.03.2001 - 30.09.2001 Tajo Abraham Research Associate 06.10.2001 – 19.11.2001 Technical programmes 1. Standardization of optimum age of panicle and anther suitable for culture. 2. Standardization of cold treatment procedure, sterilization and inoculation procedure 3. Standardization of photoperiod and light conditions 4. Studies on pollen callus and pollen embryo development 5. Standardization of plant regeneration medium 6. Enhancing the repeatability of plant regeneration from anthers and anther derived callus. 7. Standardization of rooting and hardening 8. Cytological indexing of anther/anther callus derived plants and identification of haploids. 9. Microspore culture for enhanced haploid production. Introduction Elettaria cardamomum Maton, cardamom, also known as the queen of spices, is a native of the evergreen forests of South India. A perennial rhizomatous plant belonging to the Zingiberaceae family, is cultivated widely for its fruit, a capsule, which when mature and dry yields the cardamom of commerce. Cardamom is an important spices valued since time immemorial, for its pleasant flavour and is used directly for domestic and culinary purposes. Guatemala and India are the major cardamom producing centers and India earned a foreign exchange of Rs. 2760.3 lakhs by exporting 550 tonnes of cardamom in 1999-2000. About 7000 metrictones of cardamom are consumed in India itself every year. The Indian Institute of Spices Research, (IISR) holds more than 300 accessions of cardamom germplasm, which includes cultivars, improved varieties, wild and related species. Cardamom research, a major thrust area, is hampered by low yield of the prevailing lines and lack of variability in the population for resistance to devastating virus diseases. Thus, the productivity of cardamom is very low in India and this is mainly due to a number of diseases caused by viruses, bacteria, fungi and nematodes. Conventional breeding methods such as selection and hybridization are being utilized to increase the spectrum of variation. Evaluation and study of the genetic variability led to the isolation of few high yielding lines, one of which was released as CCS-1 (Coorg Cardamom Selection-1). Screening of segregating and irradiated populations did not yield any promising results with regard to resistance. Production of diploid homozygous pure lines is a very important step in hybrid breeding; this is traditionally achieved by many generations of backcrossing to reach homozygosity. This approach is time consuming and may result in inbreeding depression. By making use of haploid induction in vitro, with a subsequent doubling of chromosome number, pure lines can be obtained and incorporated into breeding programmes for genetic improvement. Thus the anther / microspore culture technology and subsequent production of dihaploids through microspore callus, is a sure way for production of hybrids exhibiting maximum heterosis and introduction of variations into the crop. Furthermore, cardamom is a naturally cross-pollinated crop and the dihybrids from such hybrids will be recombinant homozygous products useful in the fixation of gene loci. The work in this project has been undertaken taking these factors into consideration. The main objectives of this project was production of dihaploids as an important means by which homozygous lines could be achieved for the subsequent production of high yielding hybrids exhibiting maximum heterosis. Production of dihaploids through microspore callus to realize the amount of variations that can be generated through androgenic callus regenerated haploids and dihaploids and utilize them for development of disease resistant varieties was also envisaged. Review of Literature Haploids are autonomous, sporophytic plants that have gametophytic chromosome number because they originate from a gametic cell. Haploids are valuable genetic material in genetic analysis and plant breeding. Natural haploid production has been described in many angiosperm species, but it is a rare phenomenon. Many attempts have been made to increase the efficiency of haploid production. Anther /microspore culture has been widely worked upon, since the initial report of proliferation of pollen grains in Gingko by Tulecke (1953). This was followed by reports on direct embryo development from microspores of Datura (Guha and Maheshwari, 1964, 1966) and development of complete haploid plants in Nicotiana (Bourgin and Nitsch, 1967). Techniques for culture of isolated microspores was developed by Nitsch (1974). The history and technique anther culture is reviewed by Maheswari (1996). Several mechanisms such as parthenogenesis and apogamy, chromosome elimination and somatic reduction, In vitro culture etc are known to result in haploid plants (Khush and Virmani 1996).
Recommended publications
  • Amomum Compactum) and True Cardamom (Elettaria Cardamomum
    NUSANTARA BIOSCIENCE ISSN: 2087-3948 Vol. 6, No. 1, pp.94-101 E-ISSN: 2087-3956 May 2014 DOI: 10.13057/nusbiosci/n060115 Short Communication:Comparisons of isozyme diversity in local Java cardamom (Amomum compactum) and true cardamom (Elettaria cardamomum) AHMAD DWI SETYAWAN1,♥, WIRYANTO1, SURANTO1, NURLIANI BERMAWIE2, SUDARMONO3 1Department of Biology, Faculty of Mathematics and Natural Sciences, Sebelas Maret University, Jl. Ir. Sutami 36a, Surakarta 57126, Central Java, Indonesia. Tel./fax.: +62-271-663375,♥email: [email protected] 2Indonesian Medicinal and Aromatic Crops Research Institute, Jl. Tentara Pelajar No.3, Cimanggu, Bogor 16111, West Java, Indonesia. 3Bogor Botanic Garden, Indonesian Institute of Sciences, Jl. Ir. H. Juanda No.13, Bogor16122, West Java, Indonesia. Manuscript received: 13 February 2014. Revision accepted: 28 April 2014. Abstract. Setyawan AD, Wiryanto, Suranto, Bermawie N, Sudarmono. 2014. Comparisons of isozyme diversity in local Java cardamom (Amomum compactum) and true cardamom (Elettaria cardamomum). Nusantara Bioscience 6: 94-101. Fruits of Java cardamoms (Amomum compactum) and true cardamoms (Elettaria cardamomum) had long been used as spices, flavoring agent, garnishing plants, etc. This research was conducted to find out: (i) variation of isozymic bands in some population of Java cardamoms and true cardamoms; and (ii) phylogenetic relationship of these cardamoms based on variation of isozymic bands. Plant material (i.e., rhizome) of Java cardamoms was collected from Bogor Botanical Garden, and plant material of true cardamoms was gathered from Indonesian Medicinal and Aromatic Crops Research Institute, Bogor, Indonesia. Ten accessions were assayed in every population. The two isozymic systems were assayed, namely esterase (EST) and peroxidase (PER, PRX).
    [Show full text]
  • Well-Known Plants in Each Angiosperm Order
    Well-known plants in each angiosperm order This list is generally from least evolved (most ancient) to most evolved (most modern). (I’m not sure if this applies for Eudicots; I’m listing them in the same order as APG II.) The first few plants are mostly primitive pond and aquarium plants. Next is Illicium (anise tree) from Austrobaileyales, then the magnoliids (Canellales thru Piperales), then monocots (Acorales through Zingiberales), and finally eudicots (Buxales through Dipsacales). The plants before the eudicots in this list are considered basal angiosperms. This list focuses only on angiosperms and does not look at earlier plants such as mosses, ferns, and conifers. Basal angiosperms – mostly aquatic plants Unplaced in order, placed in Amborellaceae family • Amborella trichopoda – one of the most ancient flowering plants Unplaced in order, placed in Nymphaeaceae family • Water lily • Cabomba (fanwort) • Brasenia (watershield) Ceratophyllales • Hornwort Austrobaileyales • Illicium (anise tree, star anise) Basal angiosperms - magnoliids Canellales • Drimys (winter's bark) • Tasmanian pepper Laurales • Bay laurel • Cinnamon • Avocado • Sassafras • Camphor tree • Calycanthus (sweetshrub, spicebush) • Lindera (spicebush, Benjamin bush) Magnoliales • Custard-apple • Pawpaw • guanábana (soursop) • Sugar-apple or sweetsop • Cherimoya • Magnolia • Tuliptree • Michelia • Nutmeg • Clove Piperales • Black pepper • Kava • Lizard’s tail • Aristolochia (birthwort, pipevine, Dutchman's pipe) • Asarum (wild ginger) Basal angiosperms - monocots Acorales
    [Show full text]
  • Ethnomedicinal Profile of Flora of District Sialkot, Punjab, Pakistan
    ISSN: 2717-8161 RESEARCH ARTICLE New Trend Med Sci 2020; 1(2): 65-83. https://dergipark.org.tr/tr/pub/ntms Ethnomedicinal Profile of Flora of District Sialkot, Punjab, Pakistan Fozia Noreen1*, Mishal Choudri2, Shazia Noureen3, Muhammad Adil4, Madeeha Yaqoob4, Asma Kiran4, Fizza Cheema4, Faiza Sajjad4, Usman Muhaq4 1Department of Chemistry, Faculty of Natural Sciences, University of Sialkot, Punjab, Pakistan 2Department of Statistics, Faculty of Natural Sciences, University of Sialkot, Punjab, Pakistan 3Governament Degree College for Women, Malakwal, District Mandi Bahauddin, Punjab, Pakistan 4Department of Chemistry, Faculty of Natural Sciences, University of Gujrat Sialkot Subcampus, Punjab, Pakistan Article History Abstract: An ethnomedicinal profile of 112 species of remedial Received 30 May 2020 herbs, shrubs, and trees of 61 families with significant Accepted 01 June 2020 Published Online 30 Sep 2020 gastrointestinal, antimicrobial, cardiovascular, herpetological, renal, dermatological, hormonal, analgesic and antipyretic applications *Corresponding Author have been explored systematically by circulating semi-structured Fozia Noreen and unstructured questionnaires and open ended interviews from 40- Department of Chemistry, Faculty of Natural Sciences, 74 years old mature local medicine men having considerable University of Sialkot, professional experience of 10-50 years in all the four geographically Punjab, Pakistan diversified subdivisions i.e. Sialkot, Daska, Sambrial and Pasrur of E-mail: [email protected] district Sialkot with a total area of 3106 square kilometres with ORCID:http://orcid.org/0000-0001-6096-2568 population density of 1259/km2, in order to unveil botanical flora for world. Family Fabaceae is found to be the most frequent and dominant family of the region. © 2020 NTMS.
    [Show full text]
  • Phylogeny and Taxonomy of the Genus Elettaria Maton
    Cardamoms of South East Asia: phylogeny and taxonomy of the genus Elettaria Maton Helena Båserud Mathisen Master of Science Thesis 2014 Department of Biosciences Faculty of Mathematics and Natural Sciences University of Oslo, Norway © Helena Båserud Mathisen 2014 Cardamoms of South East Asia: phylogeny and taxonomy of the genus Elettaria Illustration on the front page: From White (1811) https://www.duo.uio.no/ Print: Reprosentralen, University of Oslo Acknowledgements There are plenty of people who deserve a big depth of gratitude when I hand in my master thesis today. First of all, I would like to thank my supervisors Axel Dalberg Poulsen, Charlotte Sletten Bjorå and Mark Newman for all help, patience and valuable input over the last 1.5 years, and especially the last couple of weeks. I could not have done this without you guys! Thanks to the approval of our research permit from the Forest Department in Sarawak, Axel and I were able to travel to Borneo and collect plants for my project. I would like to thank the Botanical Research Centre at Semenggoh Wildlife Centre in Sarawak, for all the help we got, and a special thanks goes to Julia, Ling and Vilma for planning and organizing the field trips for us. I would never have mastered the lab technics at Tøyen without good help and guideance from Audun. Thank you for answering my numerous questions so willingly. I would also like to thank My Hanh, Kjersti, Anette and Kine, for inviting me over for dinner and improving my draft and of course my fellow students at the botanical museum (Anne Marte, Karen and Øystein).
    [Show full text]
  • Outline of Angiosperm Phylogeny
    Outline of angiosperm phylogeny: orders, families, and representative genera with emphasis on Oregon native plants Priscilla Spears December 2013 The following listing gives an introduction to the phylogenetic classification of the flowering plants that has emerged in recent decades, and which is based on nucleic acid sequences as well as morphological and developmental data. This listing emphasizes temperate families of the Northern Hemisphere and is meant as an overview with examples of Oregon native plants. It includes many exotic genera that are grown in Oregon as ornamentals plus other plants of interest worldwide. The genera that are Oregon natives are printed in a blue font. Genera that are exotics are shown in black, however genera in blue may also contain non-native species. Names separated by a slash are alternatives or else the nomenclature is in flux. When several genera have the same common name, the names are separated by commas. The order of the family names is from the linear listing of families in the APG III report. For further information, see the references on the last page. Basal Angiosperms (ANITA grade) Amborellales Amborellaceae, sole family, the earliest branch of flowering plants, a shrub native to New Caledonia – Amborella Nymphaeales Hydatellaceae – aquatics from Australasia, previously classified as a grass Cabombaceae (water shield – Brasenia, fanwort – Cabomba) Nymphaeaceae (water lilies – Nymphaea; pond lilies – Nuphar) Austrobaileyales Schisandraceae (wild sarsaparilla, star vine – Schisandra; Japanese
    [Show full text]
  • Medicinal Practices of Sacred Natural Sites: a Socio-Religious Approach for Successful Implementation of Primary
    Medicinal practices of sacred natural sites: a socio-religious approach for successful implementation of primary healthcare services Rajasri Ray and Avik Ray Review Correspondence Abstract Rajasri Ray*, Avik Ray Centre for studies in Ethnobiology, Biodiversity and Background: Sacred groves are model systems that Sustainability (CEiBa), Malda - 732103, West have the potential to contribute to rural healthcare Bengal, India owing to their medicinal floral diversity and strong social acceptance. *Corresponding Author: Rajasri Ray; [email protected] Methods: We examined this idea employing ethnomedicinal plants and their application Ethnobotany Research & Applications documented from sacred groves across India. A total 20:34 (2020) of 65 published documents were shortlisted for the Key words: AYUSH; Ethnomedicine; Medicinal plant; preparation of database and statistical analysis. Sacred grove; Spatial fidelity; Tropical diseases Standard ethnobotanical indices and mapping were used to capture the current trend. Background Results: A total of 1247 species from 152 families Human-nature interaction has been long entwined in has been documented for use against eighteen the history of humanity. Apart from deriving natural categories of diseases common in tropical and sub- resources, humans have a deep rooted tradition of tropical landscapes. Though the reported species venerating nature which is extensively observed are clustered around a few widely distributed across continents (Verschuuren 2010). The tradition families, 71% of them are uniquely represented from has attracted attention of researchers and policy- any single biogeographic region. The use of multiple makers for its impact on local ecological and socio- species in treating an ailment, high use value of the economic dynamics. Ethnomedicine that emanated popular plants, and cross-community similarity in from this tradition, deals health issues with nature- disease treatment reflects rich community wisdom to derived resources.
    [Show full text]
  • A Survey of Selected Economic Plants Virgil S
    Eastern Illinois University The Keep Masters Theses Student Theses & Publications 1981 A Survey of Selected Economic Plants Virgil S. Priebe Eastern Illinois University This research is a product of the graduate program in Botany at Eastern Illinois University. Find out more about the program. Recommended Citation Priebe, Virgil S., "A Survey of Selected Economic Plants" (1981). Masters Theses. 2998. https://thekeep.eiu.edu/theses/2998 This is brought to you for free and open access by the Student Theses & Publications at The Keep. It has been accepted for inclusion in Masters Theses by an authorized administrator of The Keep. For more information, please contact [email protected]. T 11 F:SIS H El"">RODUCTION CERTIFICATE TO: Graduate Degree Candidates who have written formal theses. SUBJECT: Permission to reproduce theses. The University Library is rece1vrng a number of requests from other institutions asking permission to reproduce disse rta tions for inclusion in their library holdings. Although no copyright laws are involved, we feel that professional courtesy demands that permission be obtained from the author before we allow theses to be copied. Please sign one of the following statements: Booth Library of Eastern Illinois University has my permission to l end my thesis to a reputable college or university for the purpose of copying it for inclusion in that institution's library or res e ar ch holdings• . �� /ft/ ff nfl. Author I respectfully request Booth Library of Eastern Illinois University not allow my thesis be reproduced because -----� ---------- ---··· ·--·· · ----------------------------------- Date Author m A Survey o f Selected Economic Plants (TITLE) BY Virgil S.
    [Show full text]
  • The Origin of Monocotyledons from Dicotyledons, Through Self-Adaptation to a Moist
    The Origin of Monocotyledons from Dicotyledons, through Self-adaptation to a Moist. or Aquatic Habit.1 BY G. HENSLOW, M.A., F.L.S., F.G.S., F.R.H.S., V.M.H. CONTENTS. SECTIONS. i PAGE 1. INTRODUCTION . 717 2. Evidences from Geology ........... 718 3. Distribution and Percentages of the Natural Orders of Monocotyledons ns com- pared with those of Dicotyledons . 719 4. Degeneracy of Monocotyledons 720 5. Possible Aquatic Origin.of Palms 723 6. Leaves of Large Size characteristic of many Aquatic Plants .... 734 7. Water-storage Organs ........... 724 8. The Requirement of much Water by many Terrestrial Monocotyledons . 724 9. Cycads and Monocotyledons . 725 10. Monocotyledonous Dicotyledons . • 727 11. The Effects of Water upon Roots 731 12. Origin of the formerly called 'Endogenous' Arrangement of the Cauline Bundles of Monocotyledons . ........ 73a 13. The Forms and Structure of Aquatic Leaves are the Result of the Direct Action of Water -735 14. The Reticulated Venation of some Monocotyledons is only imitative of that of Dicotyledons 736 15. Reproductive Organs ............ 737 16. Cytological and Embryological Investigations 738 17. Speculations on the Arrest of one Cotyledon ....... 74° 18. Non-inheritance, Imperfect and Complete Inheritance, of Acquired Characters . 741 19. Isolation and Natural Selection 743 20. CONCLUSION 743 1. INTRODUCTION. EARLY twenty years ago (1892), I pointed out that there is a large N number of coincidences between the morphological and anatomical characters of Monocotyledons and Aquatic Dicotyledons, sufficient, in fact, to justify the conception that the former class had been evolved from the latter. Beyond a limited extent in experiments upon adaptation, the 1 Supplementary Observations and Experiments to ' A Theoretical Origin of Endogens from Exogens, through Self-adaptation to an Aquatic Habit'.
    [Show full text]
  • Antimicrobial Activity of Amomum Subulatum and Elettaria Cardamomum Against Dental Caries Causing Microorganisms
    Ethnobotanical Leaflets 13: 840-49, 2009. Antimicrobial Activity of Amomum subulatum and Elettaria cardamomum Against Dental Caries Causing Microorganisms K.R.Aneja and Radhika Joshi* Department of Microbiology, Kurukshetra University, Kurukshetra- 136119. India *Corresponding Author: [email protected] Issued July 01, 2009 Abstract The in vitro antimicrobial activity of Amomum subulatum and Elettaria cardamomum fruit extracts were studied against Streptococcus mutans, Staphylococcus aureus, Lactobacillus acidophilus, Candida albicans and Saccharomyces cerevisiae. The acetone, ethanol and methanol extracts of the selected plants exhibited antimicrobial activity against all tested microorganism except L. acidophilus. The most susceptible microorganism was S.aureus followed by S.mutans, S.cerevisiae and C.albicans in case of Amomum subulatum while in the case of Elettaria cardamomum; S.aureus was followed by C.albicans, S. cerevisiae and S.mutans. The largest mean zone of inhibition was obtained with the ethanolic extract of A. subulatum and acetonic extract of E.cardamomum against Staphylococcus aureus (16.32mm and 20.96mm respectively). Minimum inhibitory concentrations (MIC) of the extracts were also determined against the four selected microorganisms showing zones of inhibition ≥10mm. This study depicts that ethanol and acetone extracts of fruits of Amomum subulatum and Elettaria cardamomum can be used as a potential source of novel antimicrobial agents used to cure dental caries. Keywords: Dental caries, Amomum subulatum, Elettaria cardamomum, zone of inhibition, minimum inhibitory concentration. Introduction Dental caries is a very common problem that affects all age groups. It is a process in which the enamel and the dentine are demineralised by acids produced by bacterial fermentation of carbohydrates (de Soet and de Graaff, 1998).
    [Show full text]
  • The Role of Elettaria Cardamomum (L.) Maton in Inflammatory, Gastrointestinal and Stress Disorders
    Mehjabeen et al / Int. J. Pharm. Phytopharmacol. Res. 2015; 4 (6): 302-305 ISSN (Online) 2249-6084 (Print) 2250-1029 International Journal of Pharmaceutical and Phytopharmacological Research (eIJPPR) [Impact Factor – 0.852] Journal Homepage: www.eijppr.com Research Article The Role of Elettaria cardamomum (L.) Maton in Inflammatory, Gastrointestinal and Stress Disorders Mehjabeen1*, Mansoor Ahmad2, Noorjahan3, Farah-Saeed4, Asif Bin Rehman5 1Department of Pharmacology, Faculty of Pharmacy, Federal Urdu University of Arts, Science and Technology, Karachi-75300, Pakistan. 2Research Institute of Pharmaceutical Sciences, Department of Pharmacognosy, University of Karachi, Karachi-75270, Pakistan. 3Department of Pharmacology, Dow College of Pharmacy, Dow University of Health Sciences Karachi, Pakistan. 4Department of Pharmacognosy, Dow College of Pharmacy, Dow University of Health Sciences Karachi, Pakistan. 5Department of Pharmacology, Hamdard college of Medicine and Dentistry, Hamdard University Karachi, Pakistan. Article info Abstract At present there are many anti-inflammatory, antipsychotic and anti-ulcer drugs available but their undesirable Article History: effects limiting the use in chronic state of disease. Elettaria cardamomum (L.) Maton is one of the traditionally Received 26 December 2014 used medicines which contain volatile oil and other active constituents. This study was made to determine the Accepted 13 March 2015 altered behavior, gastrointestinal and inflammatory disorders in mice. The drug showed antidepressant potential followed by sedative effect at the dose of 300 and 500mg/kg, whereas at 200mg/kg the crude extract showed anxiolytic effect. The analgesic effect through tail flick and hot plate and acetic acid induced writhing Keywords: E. cardamomum methods exhibited dose dependant increase in reaction time. extract displayed mild Analgesic, Anti-inflammatory, insecticidal activity that is 20-40%.
    [Show full text]
  • The Evolutionary and Biogeographic Origin and Diversification of the Tropical Monocot Order Zingiberales
    Aliso: A Journal of Systematic and Evolutionary Botany Volume 22 | Issue 1 Article 49 2006 The volutE ionary and Biogeographic Origin and Diversification of the Tropical Monocot Order Zingiberales W. John Kress Smithsonian Institution Chelsea D. Specht Smithsonian Institution; University of California, Berkeley Follow this and additional works at: http://scholarship.claremont.edu/aliso Part of the Botany Commons Recommended Citation Kress, W. John and Specht, Chelsea D. (2006) "The vE olutionary and Biogeographic Origin and Diversification of the Tropical Monocot Order Zingiberales," Aliso: A Journal of Systematic and Evolutionary Botany: Vol. 22: Iss. 1, Article 49. Available at: http://scholarship.claremont.edu/aliso/vol22/iss1/49 Zingiberales MONOCOTS Comparative Biology and Evolution Excluding Poales Aliso 22, pp. 621-632 © 2006, Rancho Santa Ana Botanic Garden THE EVOLUTIONARY AND BIOGEOGRAPHIC ORIGIN AND DIVERSIFICATION OF THE TROPICAL MONOCOT ORDER ZINGIBERALES W. JOHN KRESS 1 AND CHELSEA D. SPECHT2 Department of Botany, MRC-166, United States National Herbarium, National Museum of Natural History, Smithsonian Institution, PO Box 37012, Washington, D.C. 20013-7012, USA 1Corresponding author ([email protected]) ABSTRACT Zingiberales are a primarily tropical lineage of monocots. The current pantropical distribution of the order suggests an historical Gondwanan distribution, however the evolutionary history of the group has never been analyzed in a temporal context to test if the order is old enough to attribute its current distribution to vicariance mediated by the break-up of the supercontinent. Based on a phylogeny derived from morphological and molecular characters, we develop a hypothesis for the spatial and temporal evolution of Zingiberales using Dispersal-Vicariance Analysis (DIVA) combined with a local molecular clock technique that enables the simultaneous analysis of multiple gene loci with multiple calibration points.
    [Show full text]
  • Collections Policy
    Chicago Botanic Garden COLLECTIONS POLICY 1 Collections Policy July 2018 2 COLLECTIONS POLICY TABLE OF CONTENTS Mission Statement ................................................................................................................... 1 Intent of Collections Policy Document ..................................................................................... 1 Purpose of Collections .............................................................................................................. 1 Scope of Collections ................................................................................................................. 1 1) Display Plant Collections .......................................................................................... 2 Seasonal Display Collections ........................................................................... 2 Permanent Display Gardens ............................................................................ 2 Aquatic Garden ................................................................................... 2 Bonsai Collection ................................................................................. 3 Graham Bulb Garden .......................................................................... 3 Grunsfeld Children’s Growing Garden ................................................. 3 Circle Garden ....................................................................................... 3 Kleinman Family Cove ........................................................................
    [Show full text]