Sky's the Limit for Stornext at NASA's Kennedy Space Center

Total Page:16

File Type:pdf, Size:1020Kb

Sky's the Limit for Stornext at NASA's Kennedy Space Center Image courtesy of NASA CASE STUDY Sky’s the Limit for StorNext at NASA’s Kennedy Space Center When NASA decided to create a fully digital solution for launch video capture and delivery systems at Kennedy Space Center—a 21st-century workflow for the post- Space Shuttle era— key priorities were performance, automation, and scalability. After an arduous request for proposal (RFP) process and a grueling acceptance test, the team installed a StorExcel-recommended solution based on Quantum StorNext Pro Studio and IPV Curator. StorNext is designed to give everyone faster access to the data, to make content searches “and retrieval quick and easy, and to reduce the amount of administration time. It’s a win on every count. Jeff Wolfe Communications system engineer, Abacus Technology FEATURED PRODUCTS ” Quantum gave us space in their Englewood, Colorado facility to set up and configure the exact system that we would be installing, so that we could perform all the acceptance “testing without interrupting any of the operations at Kennedy—it really worked well for us. Jeff Wolfe – Communications system engineer, Abacus Technology” SOLUTION OVERVIEW There are not very many imaging environments of-state processing center after each takeoff for more challenging—or more critical—than development and digitization. ∙ StorNext® Pro Studio the one that supports launches at NASA’s - StorNext QXS-1200 RAID array “It would take two days to get the film - Xcellis™ Workflow Director Kennedy Space Center. During the planned processed and available as a file, so the NASA - StorNext AEL500 Archive library liftoff of Exploration Mission 1 (EM-1), 80 to team could analyze the high-res slow-motion ∙ Brocade 6505 switches 100 cameras will capture the event from every ∙ IPV Curator media asset manager footage,” explains Jeff Wolfe, Communications possible angle, and keep tracking the rocket ∙ Telestream Vantage transcoder System Engineer at Abacus Technology, the and its payload until it is out of sight. The NASA contractor for imaging services. “The KEY BENEFITS data—which includes images and video taken asset management system we had at Kennedy with motion picture film and high-resolution ∙ Fully digital workflow gives users fast could not handle the complete process because access to files, eliminating delays video cameras at speeds of up to 1,000 frames ∙ Faster and easier access to content it was really more suited to documents than to per second—weigh in at around 200TB per through the IPV media asset manager video and image data. It meant that access to interface—integrating search, retrieval, mission. This information must be available and sharing of files into the workflow the image data was delayed.” ∙ Automated protection on multiple to engineers and flight specialists in several storage tiers ensures safety and different NASA centers as rapidly as possible. The still images and video files collected availability of NASA’s irreplaceable assets within NASA serve multiple purposes and ∙ Integrated archiving gives users access to content stored on high-capacity, UPGRADING PERFORMANCE, ACCESS, need to be available to different audiences economical LTO media AND CAPACITY in different formats and resolutions. ∙ StorNext compatibility with other systems, including Apple Xsan, makes Defining requirements for, selecting, testing, and Scientists use them to assess effectiveness it easy to share assets with public installing its first fully digital workflow system for of equipment, systems, and procedures. affairs editors ∙ Scalability and support for cloud and launch videos was a major task for NASA and the The security team uses them as part of its object storage provide options to support contractors overseeing the transition. The original surveillance procedures. And the public affairs future growth ∙ System pre-staging simplified system, which dates back to the days of the Space department uses them to communicate the acceptance testing and helped Shuttle program, started with analog tape or as agency’s mission to its internal audience streamline installation photographic film that had to be rushed to an out- and to provide images to the general public. At the same time, the list of organizations together and provide optimal value based on “ One of the things that we using Kennedy Space Center for launches our own experience,” says Kurt Clawson, CTO, like about StorNext is that is expanding, including Boeing, SpaceX, and Media & Technology at StorExcel. it gives us lots of options Blue Origin. NASA selected the solution that used Quantum for solving issues when “The video footage we collect is an irreplaceable StorNext 5 as the storage foundation and they come up, including asset that must be protected and retained, as IPV Curator as the media asset manager. well as being made available to a wide range StorNext Pro Studio offers an end-to-end use of the cloud and of different users at different locations, which workflow solution built with StorNext Q-Series object storage.” makes the management task particularly high-performance disk storage and an Jeff Wolfe challenging,” explains Wolfe. LTO-based StorNext AEL500 archive, which Communications system includes StorNext Storage Manager for data engineer, Abacus Technology SELECTING A DIGITAL WORKFLOW SOLUTION management. IPV Curator provides an end-to- FOR NASA end asset management layer that coordinates ABOUT NASA NASA’s key requirements for a 21st-century media production, editing, and content workflow solution were high performance, management. Also included in the final system Founded in 1958, the National automation, and scalability. Perhaps one were Telestream Vantage for transcoding and a Aeronautics and Space of the most critical was the capability to Brocade fabric switch. Administration (NASA) leads the download all the data from the cameras within With the new StorNext solution, all the cameras world in the science associated 24 hours of a launch. The new system would with aeronautics and space record the launch events digitally, and the content also need to easily scale to support future exploration in accordance with its is downloaded to the StorNext QXS-1200 high- missions and higher resolution formats. And it mission to reach for new heights performance RAID storage. As soon as the would need to work with existing media asset and reveal the unknown for the content is ingested, metadata is created and it management and workflow solutions used benefit of humankind. NASA is logged into the IPV media asset manager, and by other offices, including Apple Xsan. NASA conducts its work in four principal two copies are created in the Fibre Channel- needed to easily share data in an automated organizations, called mission ” attached StorNext AEL500 archive on LTO media. workflow, so it needed an integrated asset directorates. Aeronautics manages The primary disk copy is accessed by users management foundation. NASA’s data is research focused on meeting global directly while the files are active. As content ages irreplaceable—making thorough testing demand for air mobility in ways and becomes inactive, it is removed from the and evaluation of the entire system prior to that are more environmentally disk, but a copy remains available in the archive installation at Kennedy Space Center a key friendly and sustainable, while for users to access. With StorNext, files and priority. And NASA needed a cost-effective also embracing revolutionary metadata are visible through the media asset solution with a strong return on investment. technology from outside aviation. manager for all content, whether they are located Human Exploration and Operations “We wanted to be absolutely sure it could handle on disk or in the archive. For long-term retention, focuses on International Space the load we were going to throw at it,” says Wolfe, the second tape copy is removed from the library Station operations, development “and we wanted help and support during the and stored in a secure, off-line location. of commercial spaceflight installation phase to make sure that any issues capabilities, and human exploration “With StorNext, video files get into the system at that might come up could get resolved quickly.” beyond low-Earth orbit. Science high speed. Everything is protected immediately explores the Earth, solar system STORNEXT PRO, IPV, AND TELESTREAM so the data is safe and secure, and all the assets and universe beyond; charts the AUTOMATE WORKFLOW, PROTECTION, are available immediately to users using a single best route of discovery; and reaps AND RETENTION IPV management interface,” says Wolfe. the benefits of Earth and space A key partner on the project was veteran “StorNext is designed to give everyone faster exploration for society. And Space content and workflow integrator StorExcel, the access to the data, to make content searches Technology rapidly develops, designer and supplier for the NASA solution. and retrieval quick and easy, and to reduce the innovates, demonstrates, and “We wanted to give NASA a state-of-the-art amount of administration time. It’s a win on infuses revolutionary, high-payoff video workflow system based on best-of- every count.” technologies that enable NASA’s breed solutions that we knew would work well future missions while providing economic benefit to the nation. www.quantum.com/customerstories CASE STUDY Image courtesy of NASA ABOUT STOREXCEL PRE-STAGING SIMPLIFIES SYSTEM Besides meeting the current ACCEPTANCE TESTING requirements at Kennedy Space Center, StorExcel is a reseller and systems The key to making the testing and the NASA team is looking ahead to the integrator that provides next- evaluation process run smoothly was next generation of storage challenges. generation content management the collaboration between Quantum and workflow automation “We know that we are going to see huge and StorExcel. Both companies worked solutions to meet the needs of increases in our storage requirements together to pre-stage the entire system for scale-out storage environments in the future,” Wolfe says, “with much acceptance prior to installation—validating in the public and private sector higher resolution formats, more users the storage system, and identifying markets.
Recommended publications
  • Mission Task Checklist
    Expedition 321 Kennedy Space Center Visitor Complex Self-Guided Field Trip Facilitator’s Guide BEFORE YOU ARRIVE: Spend some time pre-teaching the history and science concepts for the exhibits you will be visiting. More information is available at www.nasa.gov (click on the “For Educators” tab) and www.kennedyspacecenter.com (click on the “Experience” tab). Make copies of the Expedition 321 Logbook for your students and chaperones. For a bifold booklet, print out the PDF file, make 2-sided copies (invert every other original when collating) and staple in the centerfold (set stapler to 5-1/2 inches). Assign students to teams and team positions. Ideally, there should be four students to a team; two or three teams can easily share one chaperone. Decide which activities you are going to explore. There are 20 tasks in the Expedition 321 Logbook, but it is unlikely that students will be able to complete all of these in a single day. WHEN YOU ARRIVE: If coming by bus, you will be dropped off and picked up in Parking Lot 4 near the main entrance. If coming by car, pay a parking fee for each vehicle. You may pick up your tickets at the Will Call / Group Sales window near the main gate. Have your reservation number as well as any required tax-exempt certificates. There will be a security check of your bags. No hard-sided coolers are permitted inside the complex. For guests requiring special assistance, wheelchairs are available for rent at Information Central. GROUP PHOTOS: There are several spots throughout the Kennedy Space Center Visitor Complex that are popular locations for group photos: Outside the main gate in front of the huge NASA logo sign or the John F.
    [Show full text]
  • Statement of Policy on Waiving Ground Safety Regulations At
    Commercial Space Transportation 800 Independence Ave., SW. Washington, DC 20591 DEPARTMENT OF TRANSPORTATION Federal Aviation Administration 14 CFR Parts 415, 417, 431, and 435 Statement of Policy on Waiving Ground Safety Regulations at Cape Canaveral Air Force Station, Vandenberg Air Force Base, Wallops Flight Facility, and Kennedy Space Center. AGENCY: Federal Aviation Administration (FAA), DOT ACTION: Policy Statement SUMMARY: This action establishes the FAA’s policy applicable to waivers of FAA ground safety requirements for licensed commercial launch and reentry activities at certain Federal ranges. The Federal ranges that currently meet the criteria for application of this policy are: Cape Canaveral Air Force Station, Vandenberg Air Force Base, Wallops Flight Facility, and Kennedy Space Center. DATES: The policy described herein will be effective 3 November 2020. FOR FURTHER INFORMATION CONTACT: For additional information concerning this action, contact Executive Director, Office of Operational Safety, via letter: 800 Independence Ave SW, Washington, DC 20591; via email: [email protected]; via phone: 202-267-7793. SUPPLEMENTARY INFORMATION: The Commercial Space Launch Act of 1984, as amended and codified at 51 U.S.C. §§ 50901-50923, authorizes the Department of Transportation, and the FAA through delegation, to oversee, license, and regulate commercial launch and reentry activities, and the operation of launch and reentry sites as carried out by U.S. citizens or within the United States. Section 50905(b)(3) allows the Secretary to waive a requirement, including the requirement to obtain a license, for an individual applicant if the Secretary decides that the waiver is in the public interest and will not jeopardize the public health and safety, safety of property, and national security and foreign policy interests of the United States.1 This policy statement provides public notice of the FAA’s approach to evaluating waiver applications under 51 U.S.C.
    [Show full text]
  • Kennedy Space Center Visitor's Complex
    Kennedy Space Center Visitor Complex Fact Sheet MEDIA CONTACTS For information on Kennedy Space Center Visitor Complex, sidebar stories, photo opportunities and shooting stand-ups, or to request a press kit, please contact: · Andrea Farmer, PR Manager, 321-449-4318 or [email protected] · Jillian Dick, PR Representative, 321-449-4273 or [email protected] KENNEDY SPACE CENTER VISITOR COMPLEX OVERVIEW Each year, more than 1.5 million guests from around the world experience their very own space adventure by exploring the exciting past, present and future of America’s space program at Kennedy Space Center Visitor Complex. Built in 1967 as a means for NASA astronauts’ and employees’ families to view space center operations, today the Visitor Complex is one of Central Florida’s most popular tourist destinations. Since 1995, when Delaware North Companies Parks & Resorts began managing the Visitor Complex, every aspect of this 70-acre facility has been entirely redeveloped and enhanced. From larger-than-life IMAX® films to live shows, hands-on activities and behind-the-scenes tours, Kennedy Space Center Visitor Complex offers guests an educational, entertaining and comprehensive space program experience. LIVE SHOWS/PROGRAMS Kennedy Space Center Tour: This tour takes guests on a narrated, video supplemented bus tour of Kennedy Space Center. The first stop is the LC-39 Observation Gantry, where guests enjoy a panoramic view of KSC and the Space Shuttle launch pads, as well as the rocket launch pads at Cape Canaveral Air Force Station. Buses then drive by the Vehicle Assembly Building (VAB) and the Orbiter Processing Facility. The second stop is the Apollo/Saturn V Center, which provides visitors with an inspirational and exhilarating look into America’s quest for the moon.
    [Show full text]
  • Kennedy Space Center Visitor Complex
    Location: Kennedy Space Center, Florida Kennedy Space Center Architect: Studio A Architecture Designers: DesignShop BRPH Visitor Complex Products: Acrovyn by Design®, Acrovyn® Wall Panels, Acrovyn® Crash Rails About the Project To add to guests’ out-of-this-world experience While Florida is famous for its at Kennedy Space Center Visitor Complex, magical theme parks and multiple parts of two areas were selected beautiful beaches, for for redesign, including the IMAX Theater stargazers, the state and Heroes & Legends featuring the is best known as the U.S. Astronaut Hall of Fame. home of Kennedy Space Center. Each year, guests The project required updates to visit Kennedy Space the lobby and concession areas Center Visitor Complex to of the IMAX Theater, inspired by experience fascinating exhibits the largest artificial body in orbit that display the full range of – the International Space Station. space and rocket history, as well as Enhancements to the Heroes & Legends stunning space footage that provides attraction were to inspire future generations insight about NASA’s deep space exploration. of astronauts while paying homage to the history of space exploration. ace program. celebrate NASA’s sp Acrovyn by Design’s custom graphics Larger-than- life Acrovyn by Design murals take visitors on a journey through each exhibit. Design Goals Results Kennedy Space Center Visitor Complex partnered with Kennedy Space Center Visitor Complex’s IMAX Theater lobby DesignShop on plans to stylize its IMAX Theater lobby area, and was transformed to look
    [Show full text]
  • Apollo 7 Mission Report December 1968
    oolt_o,.IoJo Ioeloolo_oIQeieIolo_le= :::::::::::::::::::::::........... MSC-PA-R-68-15 °°,°°,°%=*oQ*.,oI,,,*°io°%%-°°° %Io%%oloooootoolliol "_ NATIONAL AERONAUTICS AND SPACE ADMINISTRATION :.:,.......... .%%o.'ao.'aoa'.%*e" I .:.:.:.:.:.:.:.:.:.:.:. ==-..-.-,%,o,=O= °%* :-:':.:.:.:':-:':.:C': t.¢3 ":':':':':':':':':':':" t'_ .'-o%%°..Q.',%.o...'.°•°.%'='• • i ::::::::::::::::::::::: ¢O .:.:.:.:,:.:.:•:.:.:.:, '_ %%%%:::::::::::::::::::::::*:%°...%-.%. APOLLO 7 MISSION REPORT _ i .:•:,:.:':.:.:•:.:.:.:, ,4: ::::::::::::::::::::::: ::::::::::::::::::::::: | o%%%%%°o=o%•o%•o 0 ::::::::::::::::::::::: (/) .:.:.:.:.:.:.:.:.:.:.:. _ =_iiiiii!_iiiiiiiiiiiiiii ,oO.%Oo%,,o.%,.-.o,- ..,,,,oo,o,. oo.o,,,oo,o•ooo.,,oo,o. ,o,,,,•oo,o oo.°ooo,...o•°.,,,.o,,o • ., .... ,o,.o ,°,,o.,o,,,. •.,,,ooo,oo,,.,,.,,o.,o ::::::::::::::::::::::: ::::::::::::::::::::::: ::::::::::::::::::::::: ::::::::::::::::::::::: ::::::::::::::::::::::: .=%Oo=..=*oO.-.°..=%. ::::::::::::::::::::::: i:i:!:i:!:i:i:i:i:i:i:i ,,,:::::::::::=,o.,,.,. ::::::::::::::::::::::: iii!!iiiiiii!!!!!!!!! .:.:.:.:.:.:.:.:.:.:. • • • • • o_%%%,o• ::::::::::::::::::::: :::::::::::::::::::::: ::::::::::::::::::::: • ,,_•o%O_%%,.%o • • ::::::::::::::::::::::: ::::::::::::::::::::::: ::::::::::::::::::::::: ::::::::::::::::::::::: ::::::::::::::::::::::: ::::::::::::::::::::::: ::::::::::::::::::::::: Oo,o,,O•,,O,Oo%,.,o%• ::::::::::::::::::::::: :::::::::::::::::::::: ::::::::::::::::::::::: DISTRIBUTION AND REFERENCING .,.,,.o.,o, ...oo,o,,,o.%-.-,,°,,,o,oo o=o,.-,, •:.:,:.:,:,:,:.:,:.:.:, This
    [Show full text]
  • Closing Comments
    Closing Comments The concept of a Shuttle supporting the assembly of a space station was not an entirely new idea when Space Station Freedom was authorized in 1984. Such concepts had been evaluated during the late 1960s, as the United States and the Soviet Union competed in the race to the Moon. By the early 1970s, the two nations were on more friendly terms and keen to participate in a joint project as Apollo was being phased out and a series of Salyut space stations were being introduced. The American proposal for an Apollo to dock with a Salyut was rejected, as was a proposal to have a Soyuz dock with Skylab. So Apollo docked with Soyuz in the summer of 1975. That program was so successful that talks began almost immediately to assess the pros- pects for a Shuttle-Salyut docking in the early 1980s. In parallel, NASA devised plans for the Shuttle to reactivate Skylab. Neither of these proposals bore fruit. By the early 1980s, the idea of using a Shuttle to assemble and resupply a large space station remained, and would become the lynchpin of the Space Station Freedom before plans for that, too, were revised. By the time of the collapse of the Soviet Union in 1991 the assembly of Mir had been underway for several years. But Russia, which inherited the station and the spacecraft which serviced it, was hard pressed to continue the requisite funding. Looking back two decades to the 1990s, the merger of the American Shuttle and the Russian space station programs seems so logical, since they complemented each other.
    [Show full text]
  • Mission Task Checklist
    MISSION TASK CHECKLIST Entryway Discovery (page 2) Astronaut Encounter (page 3) Astronaut Autograph (page 3) Where in the World? (page 4) Mission Patch (page 5) Wild Neighbors (page 6) NASA Speak (page 7) Journey To Mars: Explorers Wanted (page 7) The Orion spacecraft is the Science On A Sphere (page 8) crew vehicle NASA is Move the Galaxy (page 8) currently developing for future deep-space missions. Mapping Survey (page 9) Crew Conference (page 10) Shuttle Launch Experience (page 15) EXPEDITION Bus Tour (page16) Touch the Moon (page16) LOGBOOK Energy for the Future (page 11-12) From Sketchpad to Launchpad (page 13) Team Name: ______________________________ ISS Live! (page 14) Rocket Garden Rap (page 17) Commander (teacher): ______________________ Rocket Search (page 18) Pilot (chaperone): __________________________ Mission Specialist 1 (MS1): ________________________ For more cool information and activities, visit www.nasa.gov and click on the “For Students” tab! Mission Specialist 2 (MS2): ________________________ Mission Specialist 3 (MS3): ________________________ Mission Specialist 4 (MS4): ________________________ MISSION TASK: Rocket Search LOCATION: Rocket Garden Expedition 321 YOU ARE GO FOR LAUNCH The rockets on display here are real, space worthy rockets left over from the early days of space exploration. Unlike the space shuttle, they are all “expendable” rockets, which means they were designed to be used only once. Some of these were Welcome the Kennedy Space Center Visitor Complex, the only place surplus, while others were designed for missions that were later canceled. on Earth where human beings have left the planet, traveled to Find the following items in the Rocket Garden and in the Word Search puzzle.
    [Show full text]
  • NASA Symbols and Flags in the US Manned Space Program
    SEPTEMBER-DECEMBER 2007 #230 THE FLAG BULLETIN THE INTERNATIONAL JOURNAL OF VEXILLOLOGY www.flagresearchcenter.com 225 [email protected] THE FLAG BULLETIN THE INTERNATIONAL JOURNAL OF VEXILLOLOGY September-December 2007 No. 230 Volume XLVI, Nos. 5-6 FLAGS IN SPACE: NASA SYMBOLS AND FLAGS IN THE U.S. MANNED SPACE PROGRAM Anne M. Platoff 143-221 COVER PICTURES 222 INDEX 223-224 The Flag Bulletin is officially recognized by the International Federation of Vexillological Associations for the publication of scholarly articles relating to vexillology Art layout for this issue by Terri Malgieri Funding for addition of color pages and binding of this combined issue was provided by the University of California, Santa Barbara Library and by the University of California Research Grants for Librarians Program. The Flag Bulletin at the time of publication was behind schedule and therefore the references in the article to dates after December 2007 reflect events that occurred after that date but before the publication of this issue in 2010. © Copyright 2007 by the Flag Research Center; all rights reserved. Postmaster: Send address changes to THE FLAG BULLETIN, 3 Edgehill Rd., Winchester, Mass. 01890 U.S.A. THE FLAG BULLETIN (ISSN 0015-3370) is published bimonthly; the annual subscription rate is $68.00. Periodicals postage paid at Winchester. www.flagresearchcenter.com www.flagresearchcenter.com 141 [email protected] ANNE M. PLATOFF (Annie) is a librarian at the University of Cali- fornia, Santa Barbara Library. From 1989-1996 she was a contrac- tor employee at NASA’s Johnson Space Center. During this time she worked as an Information Specialist for the New Initiatives Of- fice and the Exploration Programs Office, and later as a Policy Ana- lyst for the Public Affairs Office.
    [Show full text]
  • The Apollo-Soyuz Test Project Medical Report
    NASA SP-411 The Apollo-Soyuz Test Project Medical Report National Aeronautics and Space Administration THE APOLLO-SOYUZ TEST PROJECT MEDICAL REPORT , .. Ji I NASA SP-411 The Apollo-Soyuz Test Project Medical Report Compiled by Arnauld E. Nicogossian,M.D. 1977 Scientific and Technical Information Office National Aeronautics and Space Administration Washington, DC For sale by the National Technical Information Service Springfield, Virginia 22161 Price - $6.00 Library of Congress Cataloging in Publication Data Apollo Soyuz Test Project. The Apollo-Soyuz Test Project medical report. (NASA SP ; 411) Bibliography: p. Includes index. 1. Space medicine. 2. Apollo-Soyuz Test Project. 3. Space flight-Physiological effect. I. Nicogossian, Arnauld E. II. Lyndon B. Johnson Space Center. III. Title. IV. Series: United States. National Aero­ nautics and Space Administration. NASA SP ; 411. RC1l35.A66 616.9'80214 77-2370 FOREWORD The Apollo-Soyuz Test Project (ASTP) was both an end and a beginning. It was the final flight of the highly successful Apollo program. It was the last time that three U.S. astronauts, tightly packed into a command module, would launch from an expendable booster, elbow their way through space, and then return gracefully to a salty splashdown. But it was the first time that an international purpose to manned flight was demonstrated. Joint docking and the sharing of quarters, experiments, and pro­ visions have all symbolized the feasibility and the will of cooperative space explora­ tion. As we summarize the Life Sciences findings of this mission, we look forward to the future. We are confident that international manned missions will continue in ever increasing frequency and duration.
    [Show full text]
  • The Original Documents Are Located in Box 64
    The original documents are located in Box 64, folder “Bicentennial Exposition on Science and Technology, Cape Canaveral, FL - Brochures and Photographs” of the John Marsh Files at the Gerald R. Ford Presidential Library. Copyright Notice The copyright law of the United States (Title 17, United States Code) governs the making of photocopies or other reproductions of copyrighted material. Gerald R. Ford donated to the United States of America his copyrights in all of his unpublished writings in National Archives collections. Works prepared by U.S. Government employees as part of their official duties are in the public domain. The copyrights to materials written by other individuals or organizations are presumed to remain with them. If you think any of the information displayed in the PDF is subject to a valid copyright claim, please contact the Gerald R. Ford Presidential Library. Digitized from Box 64 of The John Marsh Files at the Gerald R. Ford Presidential Library PREVIEW 3rd Century America Visit The BICENTENNIAL EXPOSITION ON SCIENCE AND TECHNOLOGY OPEN DAILY MAY 30 thru LABOR DAY KENNEDY SPACE CENTER, FLA. Bicentennial News Center, PA-PIB Kennedy Space Center, FL 32899 Enter a Launch Control Center ftring room to witness a thrilling reenactment of the final minute of countdown, launch and the firSt minutes of flight of an Apollo/Saturn. Exhibitors include the Department of Health, Education and Welfare; Treasury Department; Energy Research and Development Administra­ tion; American Revolution Bicentennial Admin­ istration; Environmental Protection Agency; National Endowment for the Arts; Department of Defense; Department of Housing and Urban Development; Department of Interior; National Science Foundation; Community Services Ad­ ministration; Department of Agriculture; Depart­ ment of Commerce; the U.S.
    [Show full text]
  • "Lessons Learned on Design"
    The Journal of Space Safety Engineering 6 (2019) 3–14 Contents lists available at ScienceDirect The Journal of Space Safety Engineering journal homepage: www.elsevier.com/locate/jsse Lessons learned on design T Gary Johnson J&P Technologies, 2045 Space Park Dr., Ste. 200, Houston, TX 77058, United States 1. Introduction technology for aerospace, and three inverters with two AC buses was the redundancy level. One inverter was always offline as a spare. Future spacecraft designers and managers need to be aware of problems, corrective actions, and the resulting lessons learned to avoid 2.1. Apollo 10 (May 1969): fuel cell failure experiencing the same problems in new programs. Fewer and fewer people with firsthand experience of the design, test, and operations of After docking with the Command and Service Module (CSM) and past programs, such as Apollo, are available today to pass on their jettisoning the LM while the CSM was in lunar orbit, a caution and experience. warning alarm sounded, and the Fuel Cell 1 AC circuit breaker tripped, I worked on all the major human spaceflight programs beginning due to a short in the hydrogen pump, causing the loss of Fuel Cell 1. The with Apollo. I started my career in 1964 at NASA's Manned Spacecraft CM pilot told the commander he thought another one would go out as Center (MSC), which is now Johnson Space Center (JSC), in the soon as they got to the back side of the moon. Halfway through the next Engineering and Development Directorate, transferring to the Mission night side pass, an alarm occurred on Fuel Cell 2 due to a fluctuation on Operations Directorate, and later in the Safety, Reliability, and Quality the condenser exit temperature.
    [Show full text]
  • Wallops Station and the Creation of an American Space Program
    By Harold D. NASA SP-4311 WALLOPS STATION AND THE CREATION OF AN AMERICAN SPACE PROGRAM HaroldD. WallaceJr. The NASA History Series National Aeronautics and Space Administration NASA History Office Office of Policy and Plans Washington, D.C. 1997 Library of Congress Cataloging-in-Publication Data Wallace, Harold 0., 1960­ Wallops Station and the Creation of an American Space Program/ Harold D. Wallace Jr. p. cm.- (The NASA history series) (NASA SP: 4311) Includes bibliographical references ( p. ) and Index. 1. Wallops Flight Facility-History. 2. Astronautics-United States-History. I. Title. IL Series: NASA SP: 4311. TL862.W35W35 1997 97-30983 629.4'09755' 16-dc21 CIP To the Memory of Florence C. Anderson- who always believed that an education was something that could never be taken away. TABLE OF CONTENTS Chapter ~ Acknowledgment ........................................................................................... v About the Author............................................................................................ vii List of Acronyms............................................................................................. ix Maps of Wallops ............................................................................................. xi I. INTRODUCTION.................................................................................... 1 Notes...................................................................................................... 17 II. SPUTNIK, NASA, AND INDEPENDENCE......................................
    [Show full text]