Wallops Station and the Creation of an American Space Program
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Robenschain GSFC July 2012
Goddard Space Flight Center NASA Goddard Space Flight Center • NASA’s first Space Flight Center (established 1959) • We TRANSFORM Human Understanding of Earth and Space • Largest Collection of Scientists & Engineers in the U.S. • Nearly 300 successful missions including the World’s First Weather Satellite and the Hubble Space Telescope • 2006 Nobel Prize in Physics [Big Bang/Cosmic Background] • Hubble Supported 2011 Nobel Prize in Physics • WMAP Team Awarded 2012 Gruber Prize for Cosmology 2 Our Facilities • GSFC Greenbelt, Maryland • GSFC Wallops Flight Facility, Virginia • IV&V Facility, West Virginia • Goddard Institute for Space Studies, New York Wallops Flight Facility • Ground Stations at White Sands Complex, New Mexico White Sands Complex Greenbelt Goddard Institute for Independent Verification and Space Studies Validation Facility 3 Our Lines of Business Cross Cutting Earth Science Technology and Capabilities Suborbital Platforms Astrophysics Planetary & Lunar Human Exploration Science & Operations Communications && Navigation GSFC’s Contributions to a Diverse Mission Portfolio QuikSCAT dinW dinW Voyager O-E1 O-E1 teoSer teoSer SBRE SBRE ACRIMSAT RHESSI TSOM TSOM TMMR TMMR Geotail OOHS OOHS aquA aquA ICESat DETMI DETMI SAMPEX Landsat 7 TRACE THEMIS TOPEX CALIPSO Tarer Tarer ECA ECA GRACE SORCE Cluster SOEP SOEP ODS ODS GEAMI GEAMI MIA MIA aruA aruA TSFA TSFA SGOE SGOE oPlar oPlar MGP MGP SMM SMM Solar-B XEBI XEBI PPN PPN Aquarius CloudSat TDRSS LMCD LMCD Osiris-Rex (Sample Return) PSBR PSBR PAMW PAMW TWINS Cassini (Instrument) -
A Quantitative Human Spacecraft Design Evaluation Model For
A QUANTITATIVE HUMAN SPACECRAFT DESIGN EVALUATION MODEL FOR ASSESSING CREW ACCOMMODATION AND UTILIZATION by CHRISTINE FANCHIANG B.S., Massachusetts Institute of Technology, 2007 M.S., University of Colorado Boulder, 2010 A thesis submitted to the Faculty of the Graduate School of the University of Colorado in partial fulfillment of the requirement for the degree of Doctor of Philosophy Department of Aerospace Engineering Sciences 2017 i This thesis entitled: A Quantitative Human Spacecraft Design Evaluation Model for Assessing Crew Accommodation and Utilization written by Christine Fanchiang has been approved for the Department of Aerospace Engineering Sciences Dr. David M. Klaus Dr. Jessica J. Marquez Dr. Nisar R. Ahmed Dr. Daniel J. Szafir Dr. Jennifer A. Mindock Dr. James A. Nabity Date: 13 March 2017 The final copy of this thesis has been examined by the signatories, and we find that both the content and the form meet acceptable presentation standards of scholarly work in the above mentioned discipline. ii Fanchiang, Christine (Ph.D., Aerospace Engineering Sciences) A Quantitative Human Spacecraft Design Evaluation Model for Assessing Crew Accommodation and Utilization Thesis directed by Professor David M. Klaus Crew performance, including both accommodation and utilization factors, is an integral part of every human spaceflight mission from commercial space tourism, to the demanding journey to Mars and beyond. Spacecraft were historically built by engineers and technologists trying to adapt the vehicle into cutting edge rocketry with the assumption that the astronauts could be trained and will adapt to the design. By and large, that is still the current state of the art. It is recognized, however, that poor human-machine design integration can lead to catastrophic and deadly mishaps. -
SPACE RESEARCH in POLAND Report to COMMITTEE
SPACE RESEARCH IN POLAND Report to COMMITTEE ON SPACE RESEARCH (COSPAR) 2020 Space Research Centre Polish Academy of Sciences and The Committee on Space and Satellite Research PAS Report to COMMITTEE ON SPACE RESEARCH (COSPAR) ISBN 978-83-89439-04-8 First edition © Copyright by Space Research Centre Polish Academy of Sciences and The Committee on Space and Satellite Research PAS Warsaw, 2020 Editor: Iwona Stanisławska, Aneta Popowska Report to COSPAR 2020 1 SATELLITE GEODESY Space Research in Poland 3 1. SATELLITE GEODESY Compiled by Mariusz Figurski, Grzegorz Nykiel, Paweł Wielgosz, and Anna Krypiak-Gregorczyk Introduction This part of the Polish National Report concerns research on Satellite Geodesy performed in Poland from 2018 to 2020. The activity of the Polish institutions in the field of satellite geodesy and navigation are focused on the several main fields: • global and regional GPS and SLR measurements in the frame of International GNSS Service (IGS), International Laser Ranging Service (ILRS), International Earth Rotation and Reference Systems Service (IERS), European Reference Frame Permanent Network (EPN), • Polish geodetic permanent network – ASG-EUPOS, • modeling of ionosphere and troposphere, • practical utilization of satellite methods in local geodetic applications, • geodynamic study, • metrological control of Global Navigation Satellite System (GNSS) equipment, • use of gravimetric satellite missions, • application of GNSS in overland, maritime and air navigation, • multi-GNSS application in geodetic studies. Report -
Mission Task Checklist
Expedition 321 Kennedy Space Center Visitor Complex Self-Guided Field Trip Facilitator’s Guide BEFORE YOU ARRIVE: Spend some time pre-teaching the history and science concepts for the exhibits you will be visiting. More information is available at www.nasa.gov (click on the “For Educators” tab) and www.kennedyspacecenter.com (click on the “Experience” tab). Make copies of the Expedition 321 Logbook for your students and chaperones. For a bifold booklet, print out the PDF file, make 2-sided copies (invert every other original when collating) and staple in the centerfold (set stapler to 5-1/2 inches). Assign students to teams and team positions. Ideally, there should be four students to a team; two or three teams can easily share one chaperone. Decide which activities you are going to explore. There are 20 tasks in the Expedition 321 Logbook, but it is unlikely that students will be able to complete all of these in a single day. WHEN YOU ARRIVE: If coming by bus, you will be dropped off and picked up in Parking Lot 4 near the main entrance. If coming by car, pay a parking fee for each vehicle. You may pick up your tickets at the Will Call / Group Sales window near the main gate. Have your reservation number as well as any required tax-exempt certificates. There will be a security check of your bags. No hard-sided coolers are permitted inside the complex. For guests requiring special assistance, wheelchairs are available for rent at Information Central. GROUP PHOTOS: There are several spots throughout the Kennedy Space Center Visitor Complex that are popular locations for group photos: Outside the main gate in front of the huge NASA logo sign or the John F. -
Technical History of the Environmental Control System for Project Mercury
https://ntrs.nasa.gov/search.jsp?R=19670029737 2020-03-24T01:19:15+00:00Z NASA TECHNICAL NOTE -NASA L_-TN D-4126 cp. \ LO KI TECHNICAL HISTORY OF THE ENVIRONMENTAL CONTROL SYSTEM FOR PROJECT MERCURY by Frank H, Samonski, Jr. Manned Spacecrafi Center Hozcston, Texas NATIONAL AERONAUTICS AND SPACE ADMINISTRATION WASHINGTON, D. C. OCTOBER 1967 ?" TECH LIBRARY KAFB, "I I llllll lllll1llll lllll Hlll IYH lllll Ill1 Ill 0330793 NASA TN D-4126 TECHNICAL HISTORY OF THE ENVIRONMENTAL CONTROL SYSTEM FOR PROJECT MERCURY By Frank H. Samonski, Jr. Manned Spacecraft Center Houston, Texas NATIONAL AERONAUTICS AND SPACE ADMINISTRATION ~~ For sale by the Clearinghouse for Federal Scientific and Technical Information Springfield, Virginia 22151 - CFSTl price $3.00 I ABSTRACT This report presents a technical history of the environmental control system for Project Mercury. Significant system changes and flight experience with the environmental control system are described. Attention is also given to the structure of test pro- grams employed to satisfy the mission objectives. ii CONTENTS Section Page SUMMARY .................................... 1 INTRODUCTION ................................. 1 ENVIRONMENTAL CONTROL SYSTEM DESCRIPTION ............ 2 Pressure-Suit Subsystem .......................... 2 Cabin Subsystem ............................... 5 SYSTEM CHANGES ............................... 7 Oxygen-Supply Filler Valve ......................... 7 Pressure- Switch Deletion .......................... 7 Oxygen Flow Sensor ............................ -
UK Space Agency Annual Report and Accounts 2018-19 HC2258
Annual Report and Accounts 2018-19 HC 2258 Delivering an excellent space programme with the maximum economic, scientific and policy benefit for the UK UK Space Agency Annual Report and Accounts 2018-19 Presented to the House of Commons pursuant to section 7 of the Government Resources and Accounts Act 2000. Ordered by the House of Commons to be printed on 4 July 2019. HC 2258 © Crown copyright 2019 This publication is licensed under the terms of the Open Government Licence v3.0 except where otherwise stated. To view this licence, visit nationalarchives.gov.uk/doc/open-government-licence/version/3 Where we have identified any third-party copyright information you will need to obtain permission from the copyright holders concerned. This publication is available on our website at: www.gov.uk/official-documents Any enquiries regarding this publication should be sent to us at [email protected] ISBN 978-1-5286-1332-3 CCS0519290152 07/19 Printed on paper containing 75% recycled fibre content minimum. Printed in the UK on behalf of the Controller of Her Majesty’s Stationery Office. UK SPACE AGENCY ANNUAL REPORT AND ACCOUNTS 2018-19 CONTENTS PERFORMANCE REPORT Overview 6 Chief Executive’s statement 7 Highlights in 2018-19 8 About the UK Space Agency 11 What could stop us achieving our objectives? 12 Our finances 14 Our people 18 Performance Analysis 20 How we have performed 21 2018-19 performance in detail 27 Our plans for the future 37 ACCOUNTABILITY REPORT Audit Committee Chairman 39 Corporate Governance 40 Director’s Report 41 Statement of Accounting Officer’s responsibilities 45 Governance Statement 46 Remuneration and Staff Report 57 Parliamentary Accountability and Audit 69 The certificate and report of the Comptroller and Auditor General to the House of Commons 70 ACCOUNTS Financial Statements 76 Notes to the financial statements for the year ended 31 March 2019 80 Glossary 93 3 PERFORMANCE REPORT OVERVIEW 6 UK SPACE AGENCY ANNUAL REPORT AND ACCOUNTS 2018-19 CHIEF EXECUTIVE’S STATEMENT Stevenage for an event that unveiled the winning name. -
Doing Business with Wallops Flight Facility
National Aeronautics and Space Administration Doing Business with NASA’s Wallops Flight Facility NASA’s Wallops Flight Facility (WFF) in Virginia provides agile, low-cost flight and launch range ser- vices to meet government and commercial sector needs for accessing flight regimes worldwide from the Earth’s surface to the moon and beyond. As a multi-user facility with operational launch range, spaceport, and airfield assets, Wallops is well-positioned to meet ongoing and emerging needs in the science, aerospace, defense, and commercial industries. WALLOPS RANGE The Wallops Range supports many of the mission activities around WFF and abroad. Project managers utlize the support of range services to provide a broad array of technical and instrumentation services, such as radar, optical tracking, telemetry, meteorological, command and control, surveillance and recovery, financial analysis and engineering services to support scientific research and technology development. WALLOPS MOBILE ASSETS Wallops has semi-permanent downrange instrumentation as well as mobile instrumentation to include radar, telemetry, command/control, and data systems that can be transported to offsite and remote locations. Campaigns have been conducted from the semi-permanent locations in Bermuda and North Carolina, as well as from the Arctic and Antarctic regions, South America, Africa, Europe, Australia and even at sea, with our mobile systems. WFF personnel have extensive experience in planning and conducting downrange support and mobile campaigns, developing equipment and systems to support these operations. Downrange and mobile systems include the following: C-band radar, meteorology, optical tracking, orbital tracking, flight termination, telemetry, timing, surveillance, and recovery. Keith Thompson, Wallops Advanced Projects Office | 757-824-1680 www.nasa.gov/wallops MID-ATLANTIC REGIONAL SPACEPORT Virginia’s Mid-Atlantic Regional Spaceport at Wallops supports two launch facilities, one medium-lift liquid-fueled pad and a medium-lift solid propellant pad. -
Statement of Policy on Waiving Ground Safety Regulations At
Commercial Space Transportation 800 Independence Ave., SW. Washington, DC 20591 DEPARTMENT OF TRANSPORTATION Federal Aviation Administration 14 CFR Parts 415, 417, 431, and 435 Statement of Policy on Waiving Ground Safety Regulations at Cape Canaveral Air Force Station, Vandenberg Air Force Base, Wallops Flight Facility, and Kennedy Space Center. AGENCY: Federal Aviation Administration (FAA), DOT ACTION: Policy Statement SUMMARY: This action establishes the FAA’s policy applicable to waivers of FAA ground safety requirements for licensed commercial launch and reentry activities at certain Federal ranges. The Federal ranges that currently meet the criteria for application of this policy are: Cape Canaveral Air Force Station, Vandenberg Air Force Base, Wallops Flight Facility, and Kennedy Space Center. DATES: The policy described herein will be effective 3 November 2020. FOR FURTHER INFORMATION CONTACT: For additional information concerning this action, contact Executive Director, Office of Operational Safety, via letter: 800 Independence Ave SW, Washington, DC 20591; via email: [email protected]; via phone: 202-267-7793. SUPPLEMENTARY INFORMATION: The Commercial Space Launch Act of 1984, as amended and codified at 51 U.S.C. §§ 50901-50923, authorizes the Department of Transportation, and the FAA through delegation, to oversee, license, and regulate commercial launch and reentry activities, and the operation of launch and reentry sites as carried out by U.S. citizens or within the United States. Section 50905(b)(3) allows the Secretary to waive a requirement, including the requirement to obtain a license, for an individual applicant if the Secretary decides that the waiver is in the public interest and will not jeopardize the public health and safety, safety of property, and national security and foreign policy interests of the United States.1 This policy statement provides public notice of the FAA’s approach to evaluating waiver applications under 51 U.S.C. -
Procedures for Sana Registry Specification
PROCEDURES FOR SANA REGISTRY SPECIFICATION CCSDS RECORD CCSDS 313.2-Y-2 YELLOW BOOK October 2020 PROCEDURES FOR SANA REGISTRY SPECIFICATION CCSDS RECORD CCSDS 313.2-Y-2 YELLOW BOOK October 2020 PROCEDURES FOR SANA REGISTRY SPECIFICATION AUTHORITY Issue: CCSDS Record, Issue 2 Date: October 2020 Location: Washington, DC, USA This document has been approved for publication by the Management Council of the Consultative Committee for Space Data Systems (CCSDS). The procedure for review and authorization of CCSDS documents is detailed in Organization and Processes for the Consultative Committee for Space Data Systems (CCSDS A02.1-Y-4). This document is published and maintained by: CCSDS Secretariat National Aeronautics and Space Administration Washington, DC, USA Email: [email protected] CCSDS 313.2-Y-2 Page i October 2020 PROCEDURES FOR SANA REGISTRY SPECIFICATION FOREWORD Through the process of normal evolution, it is expected that expansion, deletion, or modification of this document may occur. This Record is therefore subject to CCSDS document management and change control procedures, which are defined in Organization and Processes for the Consultative Committee for Space Data Systems (CCSDS A02.1-Y-4). Current versions of CCSDS documents are maintained at the CCSDS Web site: http://www.ccsds.org/ Questions relating to the contents or status of this document should be sent to the CCSDS Secretariat at the email address indicated on page i. CCSDS 313.2-Y-2 Page ii October 2020 PROCEDURES FOR SANA REGISTRY SPECIFICATION At time of publication, the active Member and Observer Agencies of the CCSDS were: Member Agencies – Agenzia Spaziale Italiana (ASI)/Italy. -
Project Mercury Fact Sheet
NASA Facts National Aeronautics and Space Administration Langley Research Center Hampton, Virginia 23681-0001 April 1996 FS-1996-04-29-LaRC ___________________________________________________________________________ Langley’s Role in Project Mercury Project Mercury Thirty-five years ago on May 5, 1961, Alan Shepard was propelled into space aboard the Mercury capsule Freedom 7. His 15-minute suborbital flight was part of Project Mercury, the United States’ first man-in-space program. The objectives of the Mer- cury program, eight unmanned flights and six manned flights from 1961 to 1963, were quite specific: To orbit a manned spacecraft around the Earth, investigate man’s ability to function in space, and to recover both man and spacecraft safely. Project Mercury included the first Earth orbital flight made by an American, John Glenn in February 1962. The five-year program was a modest first step. Shepard’s flight had been overshadowed by Russian Yuri Gagarin’s orbital mission just three weeks earlier. President Kennedy and the Congress were NASA Langley Research Center photo #59-8027 concerned that America catch up with the Soviets. Langley researchers conduct an impact study test of the Seizing the moment created by Shepard’s success, on Mercury capsule in the Back River in Hampton, Va. May 25, 1961, the President made his stirring chal- lenge to the nation –– that the United States commit Langley Research Center, established in 1917 itself to landing a man on the moon and returning as the National Advisory Committee for Aeronautics him to Earth before the end of the decade. Apollo (NACA) Langley Memorial Aeronautical Labora- was to be a massive undertaking –– the nation’s tory, was the first U.S. -
Kennedy Space Center Visitor's Complex
Kennedy Space Center Visitor Complex Fact Sheet MEDIA CONTACTS For information on Kennedy Space Center Visitor Complex, sidebar stories, photo opportunities and shooting stand-ups, or to request a press kit, please contact: · Andrea Farmer, PR Manager, 321-449-4318 or [email protected] · Jillian Dick, PR Representative, 321-449-4273 or [email protected] KENNEDY SPACE CENTER VISITOR COMPLEX OVERVIEW Each year, more than 1.5 million guests from around the world experience their very own space adventure by exploring the exciting past, present and future of America’s space program at Kennedy Space Center Visitor Complex. Built in 1967 as a means for NASA astronauts’ and employees’ families to view space center operations, today the Visitor Complex is one of Central Florida’s most popular tourist destinations. Since 1995, when Delaware North Companies Parks & Resorts began managing the Visitor Complex, every aspect of this 70-acre facility has been entirely redeveloped and enhanced. From larger-than-life IMAX® films to live shows, hands-on activities and behind-the-scenes tours, Kennedy Space Center Visitor Complex offers guests an educational, entertaining and comprehensive space program experience. LIVE SHOWS/PROGRAMS Kennedy Space Center Tour: This tour takes guests on a narrated, video supplemented bus tour of Kennedy Space Center. The first stop is the LC-39 Observation Gantry, where guests enjoy a panoramic view of KSC and the Space Shuttle launch pads, as well as the rocket launch pads at Cape Canaveral Air Force Station. Buses then drive by the Vehicle Assembly Building (VAB) and the Orbiter Processing Facility. The second stop is the Apollo/Saturn V Center, which provides visitors with an inspirational and exhilarating look into America’s quest for the moon. -
9538\Ariel View.Pdf
Cover story.qxd 2/5/07 4:59 pm Page 14 An Ariel view of UK spacecraft It’s 40 years since t was 5 May 1967, just before 12pm, when a satellite was designed by the Space Scout rocket was launched from NASA’s West- Department of the Royal Aircraft Estab- the first UK designed and I ern Test Range in California, witnessed by a lishment (RAE), Farnborough, with group of British scientists and engineers wit- British Aircraft Corporation and GEC as manufactured satellite nessed. The successful launch assured the precious the main industrial contractors. cargo – and the engineers – a place in UK engi- At the time, relatively little was known was launched. How has neering history. about the space environment, although Sitting atop the four stage Scout was Ariel III the RAE did simulate vacuum, radiation – the first entirely UK built satellite and third in and thermal effects on Ariel and its pay- the UK satellite industry an Anglo-American cooperative space research load. Meanwhile, thanks to the RAE’s SkyLark programme to extend atmospheric and ionos- rockets, which had been providing upper atmos- developed? pheric investigations. The small observatory car- phere research data since 1957, many of the test ried five British experiments and a tape recorder payloads used by Ariel had been proved in rocket Vanessa Knivett to obtain data. launch and simply required adaptation. Sputnik 1, the first man made satellite, had Ariel III was approximately 66in high and 30in explores. been launched almost 10 years earlier, on 4 Octo- in diameter. Four booms hinged out from the ber 1957.