Closing Comments

Total Page:16

File Type:pdf, Size:1020Kb

Closing Comments Closing Comments The concept of a Shuttle supporting the assembly of a space station was not an entirely new idea when Space Station Freedom was authorized in 1984. Such concepts had been evaluated during the late 1960s, as the United States and the Soviet Union competed in the race to the Moon. By the early 1970s, the two nations were on more friendly terms and keen to participate in a joint project as Apollo was being phased out and a series of Salyut space stations were being introduced. The American proposal for an Apollo to dock with a Salyut was rejected, as was a proposal to have a Soyuz dock with Skylab. So Apollo docked with Soyuz in the summer of 1975. That program was so successful that talks began almost immediately to assess the pros- pects for a Shuttle-Salyut docking in the early 1980s. In parallel, NASA devised plans for the Shuttle to reactivate Skylab. Neither of these proposals bore fruit. By the early 1980s, the idea of using a Shuttle to assemble and resupply a large space station remained, and would become the lynchpin of the Space Station Freedom before plans for that, too, were revised. By the time of the collapse of the Soviet Union in 1991 the assembly of Mir had been underway for several years. But Russia, which inherited the station and the spacecraft which serviced it, was hard pressed to continue the requisite funding. Looking back two decades to the 1990s, the merger of the American Shuttle and the Russian space station programs seems so logical, since they complemented each other. From that cooperation emerged the Shuttle-Mir program which served as the precursor to the assembly of the International Space Station. But in the 1970s any suggestion of astro- nauts and cosmonauts working together in over fifty expeditions to two different space stations, Mir and the ISS, would have raised eyebrows. It was the Shuttle which served as the cornerstone, providing the capability to attain the goal of a continuously crewed inter- national research facility in Earth orbit. © Springer International Publishing AG 2017 209 D.J. Shayler, Linking the Space Shuttle and Space Stations, Springer Praxis Books, DOI 10.1007/978-3-319-49769-3 210 Closing Comments Endeavour stands on the pad ready to begin the assembly of the International Space Station, a task that would draw upon three decades of planning and development of the technologies required to assembly and supply a space station. With hindsight it was perhaps also fortuitous that the Americans did not go straight into space station assembly for the Freedom program without the experience of flying Shuttle to Mir first. True there was little high-profile work completed with the RMS or on EVA at the Russian station, but there was a lot more which laid the groundwork for a smoother transi- tion to the ISS than would likely have been possible without the Mir docking missions. Clearly standing out above everything else was the ability of the crews to put into prac- tice actual rendezvous, docking, undocking, and proximity operations around the station. There was also the less glamorous matter of logistical transfer to and from an already overcrowded and aging station. Learning to work with the Russian (as distinct from the Soviets with ASTP and Shuttle-Salyut talks) and their very different systems and Closing Comments 211 procedures, ideology, and approach was particularly useful, and a clear insight of what could be expected during assembly of the ISS. Important data was also obtained on the mechanics of having a Shuttle remain docked to a large object for several days, well in advance of embarking on the assembly of the ISS. Six months after the conclusion of the Shuttle-Mir program, STS-88, the first Shuttle mission to assemble the ISS was to link the first two elements of that station on-orbit (shown here in a computer graphic), marking the start of what would prove to be a thirteen year construction task. The Shuttle mission to Mir proved the long held view that the Space Shuttle system was compatible with a station in space. By the time of the final mission in June 1998, another Shuttle was being prepared to launch to kick off a far more ambitious project. After decades of planning, testing, proposing, debating, and rehearsing, it was finally time to apply all the lessons with one of the largest international construction projects yet attempted – the International Space Station. That story is related in the companion volume Assembling and Supplying the ISS: The Space Shuttle Fulfills Its Mission. Afterword Having learned the Russian language, trained in Star City and in Houston, and then flown on board Atlantis for the sixth Shuttle-Mir docking mission, I gained a good perspective on how two human spacefaring nations could learn from each other in a joint program. The Shuttle-Mir missions, also known as Phase-I of the ISS program, proved extremely valu- able to all parties. NASA learned about long-duration missions and how to resupply a space station and contribute to its assembly. And the Russians learned how to cooperate with the Americans on the operational and human aspects. Also, when funds were missing in Moscow, the US financial contribution helped to keep Mir alive until the ISS became permanently manned. Once this Shuttle-Mir cooperation was well established, it just happened that the three types of worst life threatening, space emergencies occurred (fire, atmosphere toxicity, and air leak) within a period of a few months. The Russians demonstrated repeatedly their abil- ity to manage successfully such situations, while the Americans showed their capability to maintain full trust in their new partners, even though US astronauts were on Mir during those emergencies. Without the vision, the leadership, and ultimately the success of this program, it is evident that the ISS would have not survived the Columbia accident in 2003, since there would have been no spaceships available to maintain its operations. This would have been catastrophic also for the programs of the other international partners. The Europeans, under their ESA umbrella, benefited well from the Shuttle-Mir pro- gram. They participated simultaneously through both the docking missions and several independent missions on board Mir, flying payloads and testing rendezvous technologies. As a result of this involvement with Mir, ESA was well prepared to exploit the Columbus laboratory of the ISS and to operate the ATV resupply vessel. © Springer International Publishing AG 2017 212 D.J. Shayler, Linking the Space Shuttle and Space Stations, Springer Praxis Books, DOI 10.1007/978-3-319-49769-3 Afterword 213 ESA astronaut Jean-François Clervoy. (Courtesy J-F. Clervoy) Looking back at Shuttle-Mir, one can easily comprehend how the lessons learned have been applied to more than fifteen years of continuous successful exploitation of the ISS by more than fifteen partner nations. As an astronaut, like many of my space flyer colleagues, I can only hope that this suc- cess will open the door to cooperation with the Chinese, before the ISS has to be disman- tled. We would then be allowed to talk about a truly worldwide, and not just international cooperation, in pursuing humankind’s destiny in space and increasing wisdom on Earth. Jean-François Clervoy ESA Astronaut Class of 1992 (CNES astronaut 1985–1992) Mission Specialist 3, STS-66, Atlantis (ATLAS 3) Mission Specialist 1, STS-84, Atlantis-Mir (sixth docking) Mission Specialist 2, STS-103, Discovery (HST service mission SM-3A) Abbreviations AAP Apollo Applications Program AFB Air Force Base ALT Approach and Landing Tests APAS Androgynous Peripheral Attachment System APU Auxiliary Power Unit ASTP Apollo Soyuz Test Project ASVS Advanced Space Vision System BUp Back-Up (astronaut) Capcom Capsule Communicator CB Astronaut Office, NASA JSC (CB = Directorate Mail Code) CDR Commander CDR Critical Design Review CEIT Crew Equipment Interface Test CG Center of Gravity CM Command Module (Apollo) CMG Control Moment Gyro CNES Centre National d’Etudes Spatiales (French National Space Agency) COAS Crew Optical Alignment Sight CR Cosmonaut Researcher (on Mir) CSA Canadian Space Agency CSM Command and Service Module (Apollo) CTB Crew Transfer Bag DAP Digital Auto Pilot DM Docking Module DOR Director of Operations in Russia DSO Detailed Supplementary Objective DTO Detailed Test Objective EAFB Edwards Air Force Base © Springer International Publishing AG 2017 214 D.J. Shayler, Linking the Space Shuttle and Space Stations, Springer Praxis Books, DOI 10.1007/978-3-319-49769-3 Abbreviations 215 EMTT EVA Maintenance Task Team (Freedom) EMU Extravehicular Mobility Unit EO-XX Space station main expedition crew (Ekspeditsiya Osnovnaya) ESA European Space Agency ESRO European Space Research Organization ET External Tank EVA Extra Vehicular Activity (spacewalking) FCR Flight Control Room FD Flight Director (‘Flight’) FE Flight Engineer FGB Funktsionalno-Gruzovoy Blok (Functional Cargo Block) FY Financial Year (Fiscal) GAS Get Away Special GSFC (Robert F.) Goddard Space Flight Center (NASA, Greenbelt, Maryland) HB High Bay H-Bar Horizontal Bar (rendezvous mode) HHL Hand-Held Laser HST Hubble Space Telescope HTV H-II Transfer Vehicle (Japanese) IFA In-Flight Anomaly IFM In-Flight Maintenance IMU Inertial Measurement Unit ISS International Space Station IVA Intra Vehicular Activity JSC (Lyndon B.) Johnston Space Center (NASA, Houston, Texas) JWG Joint Working Group KSC (John F.) Kennedy Space Center (NASA, Florida) LB Low Bay LCC Launch Control Center LDEF Long Duration
Recommended publications
  • Endeavour Set to Leave International Space Station Today 24 March 2008
    Endeavour Set to Leave International Space Station Today 24 March 2008 who replaced European Space Agency astronaut Léopold Eyharts on the station. Eyharts is returning to Earth aboard Endeavour. The astronauts also performed five spacewalks while on the station. Endeavour is scheduled to land at Kennedy Space Center, Fla., Wednesday. Source: NASA STS-123 Mission Specialist Léopold Eyharts, pictured in the foreground, and Pilot Gregory H. Johnson work at the robotics station in the International Space Station's U.S. laboratory, Destiny. Credit: NASA The crew of space shuttle Endeavour is slated to leave the International Space Station today. The STS-123 and Expedition 16 crews will bid one another farewell, and the hatches between the two spacecraft will close at 5:13 p.m. EDT. Endeavour is scheduled to undock from the International Space Station at 7:56 p.m., ending its 12-day stay at the orbital outpost. STS-123 arrived at the station March 12, delivering the Japanese Logistics Module - Pressurized Section, the first pressurized component of the Japan Aerospace Exploration Agency’s Kibo laboratory, to the station. The crew of Endeavour also delivered the final element of the station’s Mobile Servicing System, the Canadian-built Dextre, also known as the Special Purpose Dextrous Manipulator. In addition, the STS-123 astronauts delivered Expedition 16 Flight Engineer Garrett Reisman, 1 / 2 APA citation: Endeavour Set to Leave International Space Station Today (2008, March 24) retrieved 24 September 2021 from https://phys.org/news/2008-03-endeavour-international-space-station-today.html This document is subject to copyright.
    [Show full text]
  • Mission Task Checklist
    Expedition 321 Kennedy Space Center Visitor Complex Self-Guided Field Trip Facilitator’s Guide BEFORE YOU ARRIVE: Spend some time pre-teaching the history and science concepts for the exhibits you will be visiting. More information is available at www.nasa.gov (click on the “For Educators” tab) and www.kennedyspacecenter.com (click on the “Experience” tab). Make copies of the Expedition 321 Logbook for your students and chaperones. For a bifold booklet, print out the PDF file, make 2-sided copies (invert every other original when collating) and staple in the centerfold (set stapler to 5-1/2 inches). Assign students to teams and team positions. Ideally, there should be four students to a team; two or three teams can easily share one chaperone. Decide which activities you are going to explore. There are 20 tasks in the Expedition 321 Logbook, but it is unlikely that students will be able to complete all of these in a single day. WHEN YOU ARRIVE: If coming by bus, you will be dropped off and picked up in Parking Lot 4 near the main entrance. If coming by car, pay a parking fee for each vehicle. You may pick up your tickets at the Will Call / Group Sales window near the main gate. Have your reservation number as well as any required tax-exempt certificates. There will be a security check of your bags. No hard-sided coolers are permitted inside the complex. For guests requiring special assistance, wheelchairs are available for rent at Information Central. GROUP PHOTOS: There are several spots throughout the Kennedy Space Center Visitor Complex that are popular locations for group photos: Outside the main gate in front of the huge NASA logo sign or the John F.
    [Show full text]
  • Space Reporter's Handbook Mission Supplement
    CBS News Space Reporter's Handbook - Mission Supplement Page 1 The CBS News Space Reporter's Handbook Mission Supplement Shuttle Mission STS-125: Hubble Space Telescope Servicing Mission 4 Written and Produced By William G. Harwood CBS News Space Analyst [email protected] CBS News 5/10/09 Page 2 CBS News Space Reporter's Handbook - Mission Supplement Revision History Editor's Note Mission-specific sections of the Space Reporter's Handbook are posted as flight data becomes available. Readers should check the CBS News "Space Place" web site in the weeks before a launch to download the latest edition: http://www.cbsnews.com/network/news/space/current.html DATE RELEASE NOTES 08/03/08 Initial STS-125 release 04/11/09 Updating to reflect may 12 launch; revised flight plan 04/15/09 Adding EVA breakdown; walkthrough 04/23/09 Updating for 5/11 launch target date 04/30/09 Adding STS-400 details from FRR briefing 05/04/09 Adding trajectory data; abort boundaries; STS-400 launch windows Introduction This document is an outgrowth of my original UPI Space Reporter's Handbook, prepared prior to STS-26 for United Press International and updated for several flights thereafter due to popular demand. The current version is prepared for CBS News. As with the original, the goal here is to provide useful information on U.S. and Russian space flights so reporters and producers will not be forced to rely on government or industry public affairs officers at times when it might be difficult to get timely responses. All of these data are available elsewhere, of course, but not necessarily in one place.
    [Show full text]
  • Tventy Five Years with CANADARM
    Canada celebrates Tventy five years with CANADARM -Canada’s ticket to the Space Shuttle and ISS Human participation is necessary in order to build large constructions in Like a space – that is a fact, to put it mildly human arm - but without the use of the right tools it will be impossible. With nerves When the plans for a shuttle of copper wiring, system first were introduced, a bones of graphite manipulator system was introduced as fibre, and electric a necessity, a robotic arm that could motors for muscles, deploy and retrieve space hardware Canadarm is like from the payload bay of the shuttle. the human arm. It Canadian industrial companies has rotating joints: accepted the challenge, and the two at the shoulder, manipulator system, Canadarm, made one at the elbow its space debut in November, 1981. and three at the The design and building of the Shuttle wrist. At 15 metres Remote Manipulator System also and weighing less marked the beginning of Canada’s than 480 kilograms, close collaboration with NASA in Canadarm can manned space flight. lift over 30,000 But the development did not kilograms in the stop there. A similar system for the weightlessness of Canadarm2 gives Canadian scientists space station was developed, and in space-or the mass of a fully loaded access to the Station’s laboratory April 2001, Space Shuttle Endeavour bus, using less electricity than a facilities to conduct experiments. delivered a package that was Canada’s teakettle. It also entitles key contribution to the International The brain of “In fact, the Station could Canada to send the system is a an astronaut to Space Station, the Canadarm 2.
    [Show full text]
  • Bibliographic Essay and Chapter Notes
    BIBLIOGRAPHIC ESSAY People make history; then, the history becomes documented through primary texts and official records. However, the history of Shuttle-Mir comes first from those who experienced it. This book presents the human side through a detailed chronology and background information. Much of the material was provided by the NASA Johnson Space Center Oral History Project for which dozens of Shuttle-Mir participants (see list below) offered their words, their stories, their memories. Historian Stephen Ambrose wrote in the introduction to his book, Citizen Soldiers, “Long ago my mentors … taught me to let my characters speak for themselves by quoting them liberally. They were there. I wasn't. They saw with their own eyes; they put their lives on the line. I didn't. They speak with an authenticity no one else can match. Their phrases, their word choices, their slang are unique — naturally enough, as their experiences were unique.” 1 Shuttle-Mir was likewise unique. And, its oral histories will continue through the years to illustrate the humanity and illuminate the importance of the Program. Also, this book reflects the changing of the times. The Internet came of age during the Shuttle-Mir Program, and many of the book’s sources reflect the Internet’s capabilities. For historical background, NASA history offices maintain an ever-growing library of electronic texts. NASA’s various Centers maintain Internet Web sites pertinent to their missions, such as the Shuttle launch records at Kennedy Space Center and human spaceflight information at the Johnson Space Center (JSC). During and after the Program, JSC hosted a Shuttle-Mir Web site that included weekly updates and interviews.
    [Show full text]
  • Statement of Policy on Waiving Ground Safety Regulations At
    Commercial Space Transportation 800 Independence Ave., SW. Washington, DC 20591 DEPARTMENT OF TRANSPORTATION Federal Aviation Administration 14 CFR Parts 415, 417, 431, and 435 Statement of Policy on Waiving Ground Safety Regulations at Cape Canaveral Air Force Station, Vandenberg Air Force Base, Wallops Flight Facility, and Kennedy Space Center. AGENCY: Federal Aviation Administration (FAA), DOT ACTION: Policy Statement SUMMARY: This action establishes the FAA’s policy applicable to waivers of FAA ground safety requirements for licensed commercial launch and reentry activities at certain Federal ranges. The Federal ranges that currently meet the criteria for application of this policy are: Cape Canaveral Air Force Station, Vandenberg Air Force Base, Wallops Flight Facility, and Kennedy Space Center. DATES: The policy described herein will be effective 3 November 2020. FOR FURTHER INFORMATION CONTACT: For additional information concerning this action, contact Executive Director, Office of Operational Safety, via letter: 800 Independence Ave SW, Washington, DC 20591; via email: [email protected]; via phone: 202-267-7793. SUPPLEMENTARY INFORMATION: The Commercial Space Launch Act of 1984, as amended and codified at 51 U.S.C. §§ 50901-50923, authorizes the Department of Transportation, and the FAA through delegation, to oversee, license, and regulate commercial launch and reentry activities, and the operation of launch and reentry sites as carried out by U.S. citizens or within the United States. Section 50905(b)(3) allows the Secretary to waive a requirement, including the requirement to obtain a license, for an individual applicant if the Secretary decides that the waiver is in the public interest and will not jeopardize the public health and safety, safety of property, and national security and foreign policy interests of the United States.1 This policy statement provides public notice of the FAA’s approach to evaluating waiver applications under 51 U.S.C.
    [Show full text]
  • Paper Session III-B - Space Station On-Orbit Assembly and Operation
    1991 (28th) Space Achievement: A Global The Space Congress® Proceedings Destiny Apr 25th, 1:00 PM - 4:00 PM Paper Session III-B - Space Station On-Orbit Assembly and Operation L. P. Morata Vice President, Deputy General Manager, McDonnell Douglas Space Systems Company, Huntington Beach CA F. David Riel Deputy Director, System Engineering and Integration, McDonnell Douglas Space Systems Company- Space Station Division Follow this and additional works at: https://commons.erau.edu/space-congress-proceedings Scholarly Commons Citation Morata, L. P. and Riel, F. David, "Paper Session III-B - Space Station On-Orbit Assembly and Operation" (1991). The Space Congress® Proceedings. 9. https://commons.erau.edu/space-congress-proceedings/proceedings-1991-28th/april-25-1991/9 This Event is brought to you for free and open access by the Conferences at Scholarly Commons. It has been accepted for inclusion in The Space Congress® Proceedings by an authorized administrator of Scholarly Commons. For more information, please contact [email protected]. SPACE STATION FREEDOM ASSEMBLY AND OPERATIONS Larry P. Morata Vice President, Deputy Project Manager—DDT&E McDonnell Douglas Space Systems Company-Space Station Division Huntington Beach, California and F. David Kiel Deputy Director, System. Engineering and Integration McDonnell Douglas Space Systems Company-Space Station Division Huntington Beach, California ABSTRACT Eight Man. Crew Capability (EMCC) by 31 December 2000 as shown, in Figure 1. The United States and its international partners are well Recent design, on the way to developing Space Station Freedom which will changes as part: of the SSF program restructure activity have be a very large orbiting facility with many capabilities for altered the Space Station configu­ ration and design from conducting space operations.
    [Show full text]
  • Space Shuttle Program
    Space Shuttle program The Space Shuttle Columbia seconds after engine ignition, 1981 (NASA). For the first two missions only, the external fuel tank spray-on foam insulation (SOFI) was painted white. Subsequent missions have featured an unpainted tank thus exposing the orange/rust colored foam insulation. This resulted in a weight saving of over 1,000 lb (450 kg), a savings that translated directly to added payload capacity to orbit. NASA's Space Shuttle, officially called Space Transportation System (STS), is the United States government's sole manned launch vehicle currently in service. The winged shuttle orbiter is launched vertically, carrying usually five to seven astronauts and up to about 22,700 kg (50,000 lbs) of payload into low earth orbit. When its mission is complete, it reenters the earth's atmosphere and makes an unpowered gliding horizontal landing, usually on a runway at Kennedy Space Center. The Space Shuttle orbiter was manufactured by North American Rockwell, now part of the Boeing Company. Martin Marietta (now part of Lockheed Martin) designed the external fuel tank and Morton Thiokol (now part of Alliant Techsystems (ATK)) designed the solid rocket boosters. The Shuttle is the first orbital spacecraft designed for partial reusability. It carries large payloads to various orbits, provides crew rotation for the International Space Station (ISS), and performs servicing missions. While the vehicle was designed with the capacity to recover satellites and other payloads from orbit and return them to Earth, this capacity has not been used often; it is, however, an important use of the Space Shuttle in the context of the ISS program, as only very small amounts of experimental material, hardware needing to be repaired, and trash can be returned by Soyuz.
    [Show full text]
  • Specterintro.Pdf
    SPECTER OF THE MONOLITH BARRY VACKER 1 Greetings on behalf of the people of our planet. We step out of our solar system into the universe seeking only peace and friendship, to teach if we are called upon, to be taught if we are fortunate. We know full well that our planet and all its inhabitants are a small part of this immense universe that surrounds us, and it is with humility and hope that we take this step. — Kurt Waldheim, Secretary General of the United Nations (1977) This is the first message on the Golden Record, which is located on the Voyager spacecraft that left the solar system. 2 SPECTER OF THE MONOLITH Nihilism, the Sublime, and Human Destiny in Space — From Apollo and Hubble to 2001, Star Trek, and Interstellar TABLE OF CONTENTS THE MONOLITH AND MOONWALKING 1. Earthrise and 2001 2. “A Rope over an Abyss” 2. Specter of the Monolith 3. Moonwalking into the Future 4. About This Book PART 1: SPECTER OF THE MONOLITH 1. CONFRONTING NIHILISM AND THE SUBLIME 1. NASA’s Ultimate Challenge 2. Pre-Copernican Centrality and Cosmic Narcissism 3. Cosmic Nihilism and the Sublime Cosmic sublime 4. The Apollo Moment “One giant leap” Contemplating our place in the cosmos on TV United in the celebration of human achievement 5. The Earth “Selfie” The two versions of Earthrise 6. Confronting Nihilism with Genesis The “expanse of nothing” Acceleration and reversal 7. Apollo: What Happened? Space spores The moon landings were not faked Multiple meanings of Apollo 8. Voyager and Hubble Pale Blue Dot Message of hope Voyager, Hollywood, and the meaning of life The Hubble Deep Field images Looking and launching into the cosmos 9.
    [Show full text]
  • Post Increment Evaluation Report Increment 11 International Space
    SSP 54311 Baseline WWW.NASAWATCH.COM Post Increment Evaluation Report Increment 11 International Space Station Program Baseline June 2006 National Aeronautics and Space Administration International Space Station Program Johnson Space Center Houston, Texas Contract Number: NNJ04AA02C WWW.NASAWATCH.COM SSP 54311 Baseline - WWW.NASAWATCH.COM REVISION AND HISTORY PAGE REV. DESCRIPTION PUB. DATE - Initial Release (Reference per SSCD XXXXXX, EFF. XX-XX-XX) XX-XX-XX WWW.NASAWATCH.COM SSP 54311 Baseline - WWW.NASAWATCH.COM INTERNATIONAL SPACE STATION PROGRAM POST INCREMENT EVALUATION REPORT INCREMENT 11 CHANGE SHEET Month XX, XXXX Baseline Space Station Control Board Directive XXXXXX/(X-X), dated XX-XX-XX. (X) CHANGE INSTRUCTIONS SSP 54311, Post Increment Evaluation Report Increment 11, has been baselined by the authority of SSCD XXXXXX. All future updates to this document will be identified on this change sheet. WWW.NASAWATCH.COM SSP 54311 Baseline - WWW.NASAWATCH.COM INTERNATIONAL SPACE STATION PROGRAM POST INCREMENT EVALUATION REPORT INCREMENT 11 Baseline (Reference SSCD XXXXXX, dated XX-XX-XX) LIST OF EFFECTIVE PAGES Month XX, XXXX The current status of all pages in this document is as shown below: Page Change No. SSCD No. Date i - ix Baseline XXXXXX Month XX, XXXX 1-1 Baseline XXXXXX Month XX, XXXX 2-1 - 2-2 Baseline XXXXXX Month XX, XXXX 3-1 - 3-3 Baseline XXXXXX Month XX, XXXX 4-1 - 4-15 Baseline XXXXXX Month XX, XXXX 5-1 - 5-10 Baseline XXXXXX Month XX, XXXX 6-1 - 6-4 Baseline XXXXXX Month XX, XXXX 7-1 - 7-61 Baseline XXXXXX Month XX, XXXX A-1 - A-9 Baseline XXXXXX Month XX, XXXX B-1 - B-3 Baseline XXXXXX Month XX, XXXX C-1 - C-2 Baseline XXXXXX Month XX, XXXX D-1 - D-92 Baseline XXXXXX Month XX, XXXX WWW.NASAWATCH.COM SSP 54311 Baseline - WWW.NASAWATCH.COM INTERNATIONAL SPACE STATION PROGRAM POST INCREMENT EVALUATION REPORT INCREMENT 11 JUNE 2006 i SSP 54311 Baseline - WWW.NASAWATCH.COM SSCB APPROVAL NOTICE INTERNATIONAL SPACE STATION PROGRAM POST INCREMENT EVALUATION REPORT INCREMENT 11 JUNE 2006 Michael T.
    [Show full text]
  • Commercial Orbital Transportation Services
    National Aeronautics and Space Administration Commercial Orbital Transportation Services A New Era in Spaceflight NASA/SP-2014-617 Commercial Orbital Transportation Services A New Era in Spaceflight On the cover: Background photo: The terminator—the line separating the sunlit side of Earth from the side in darkness—marks the changeover between day and night on the ground. By establishing government-industry partnerships, the Commercial Orbital Transportation Services (COTS) program marked a change from the traditional way NASA had worked. Inset photos, right: The COTS program supported two U.S. companies in their efforts to design and build transportation systems to carry cargo to low-Earth orbit. (Top photo—Credit: SpaceX) SpaceX launched its Falcon 9 rocket on May 22, 2012, from Cape Canaveral, Florida. (Second photo) Three days later, the company successfully completed the mission that sent its Dragon spacecraft to the Station. (Third photo—Credit: NASA/Bill Ingalls) Orbital Sciences Corp. sent its Antares rocket on its test flight on April 21, 2013, from a new launchpad on Virginia’s eastern shore. Later that year, the second Antares lifted off with Orbital’s cargo capsule, (Fourth photo) the Cygnus, that berthed with the ISS on September 29, 2013. Both companies successfully proved the capability to deliver cargo to the International Space Station by U.S. commercial companies and began a new era of spaceflight. ISS photo, center left: Benefiting from the success of the partnerships is the International Space Station, pictured as seen by the last Space Shuttle crew that visited the orbiting laboratory (July 19, 2011). More photos of the ISS are featured on the first pages of each chapter.
    [Show full text]
  • Spaceport News Pioneering the Future America's Gateway to the Universe
    May 14, 1999 Vol. 38, No. 10 Fortieth Anniversary Spaceport News Pioneering the Future America's gateway to the universe. Leading the world in preparing and launching missions to Earth and beyond. John F. Kennedy Space Center Preparing GOES to go Packing up for a trip to the space station Packing li ght isn't an option for the seven-member crew of STS-96, scheduled to lift off to the Inter­ national Space Station (ISS) on May 20 from Kennedy Space Center's Launch Pad 39B. The 10-day flight will take about two tons of supplies - including laptop computers, a printer, cameras, maintenance tools, spare parts and clothing- to the orbiting space station in the SPACEHAB double module. Discovery will be the first orbiter to dock with the fledgling station since the crew of Endeavour departed the outpost in December 1998. At Astrotech in Titusville, STS-96 will also be the first Fla., the GOES-L weather logistics flight to the new station. satellite was encapsulated in Discovery will spend five days its fairing before transfer to linked to the ISS, transferring and Launch Pad 36B at Cape installing gear that could not be Canaveral Air Station. The fourth of a new (See STS-96, Page 5) advanced series of geo­ At left, In the payload changeout room at stationary weather satellites Launch Pad 39B, technicians moved the for the National Oceanic and SPACEHAB double module from the payload canister on April 28 and placed it Atmospheric Administration in Space Shuttle Discovery's payload bay (NOAA), GOES-Lis a three­ for STS-96.
    [Show full text]