PDF Download
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Atlantic-Mediterranean and Within- Mediterranean Molecular Variation in Coris Julis (L
Atlantic-Mediterranean and within- Mediterranean molecular variation in Coris julis (L. 1758) (Teleostei, Labridae) Item Type article Authors Fruciano, Carmelo; Hanel, Reinhold; Debes, Paul V.; Tigano, Concetta; Ferrito, Venera DOI 10.1007/s00227-011-1647-1 Download date 06/10/2021 13:55:31 Link to Item http://hdl.handle.net/1834/27459 Fruciano C, Hanel R, Debes PV, Tigano C, Ferrito V. 2011. Atlantic-Mediterranean and within-Mediterranean molecular variation in Coris julis (L. 1758) (Teleostei, Labridae). Marine Biology 158(6), 1271-1286. This is the accepted version of the manuscript. The final publication is available at http://link.springer.com/article/10.1007/s00227-011-1647-1 1 Atlantic-Mediterranean and within-Mediterranean molecular variation 2 in Coris julis (L. 1758) (Teleostei, Labridae) 3 4 Carmelo Fruciano, Reinhold Hanel, Paul V. Debes, Concetta Tigano, Venera Ferrito 5 C. Fruciano, C. Tigano, V. Ferrito – Dipartimento di Biologia “M. La Greca”, University of 6 Catania, via Androne 81 – 95124 Catania, Italy 7 R. Hanel - Institute of Fisheries Ecology, Johann Heinrich von Thünen-Institut (vTI), Federal 8 Research Institute for Rural Areas, Forestry and Fisheries, Palmaille 9 - 22767 Hamburg, 9 Germany 10 P.V. Debes – Department of Biology, Dalhousie University, 1355 Oxford Street, B3H 4J 11 Halifax, Canada 12 13 Corresponding author: Carmelo Fruciano - Telephone +39 095 7306023, Fax +39 095 14 327990, e-mail [email protected] 15 Keywords Coris julis, Labridae, Mediterranean Sea, Atlantic Ocean, control region 16 1 Fruciano C, Hanel R, Debes PV, Tigano C, Ferrito V. 2011. Atlantic-Mediterranean and within-Mediterranean molecular variation in Coris julis (L. -
Bolbometopon Muricatum) in North Maluku Waters Muhammad J
DNA barcode and phylogenetics of green humphead parrotfish (Bolbometopon muricatum) in North Maluku waters Muhammad J. Achmad, Riyadi Subur, Supyan, Nebuchadnezzar Akbar Faculty of Fisheries and Marine Sciences, Khairun University, Ternate, North Maluku, Indonesia. Corresponding author: N. Akbar, [email protected] Abstract. The green humphead parrotfish (Bolbometopon muricatum) is one of the large species inhabiting coral reefs in North Maluku waters, Indonesia. The declining fish populations due to excessive fishing has caused the green humphead parrotfish to be listed in the Red List of IUCN in the vulnerable category since 2012. The species could be highly endangered, bordering extinction in the future. Studies on the genetic identification of green humphead parrotfish could be considered critical in the policy of sustainable conservation and fish culture. This research is designed for the identification and analysis of the genetic relationship of green humphead parrotfish based on the COI (cytochrome-c-oxidase subunit I) gene. DNA samples were collected from 4 locations in North Maluku, Ternate Island, Morotai Island, Bacan Island and Sanan Island. The DNA from samples was extracted and the COI gene was amplified using PCR (Polymerase Chain Reaction). Furthermore, the amplicon was sequenced to observe the similarities with the NCBI GenBank database. The results of this study showed that the green humphead parrotfish from this study had high similarities (98-100%) with the green humphead parrotfish with the reference access no. KY235362.1. Based on the phylogenetic tree, the green humphead parrotfish originating from North Maluku has a genetic relationship with the green humphead parrotfish from the database, but with different molecular characters. -
Fluorescence Characterisation and Visual Ecology of Pseudocheilinid Wrasses Tobias Gerlach1*, Jennifer Theobald1, Nathan S
Gerlach et al. Frontiers in Zoology (2016) 13:13 DOI 10.1186/s12983-016-0145-1 RESEARCH Open Access Fluorescence characterisation and visual ecology of pseudocheilinid wrasses Tobias Gerlach1*, Jennifer Theobald1, Nathan S. Hart2, Shaun P. Collin2 and Nico K. Michiels1 Abstract Background: Wrasses represent the second largest family of marine fishes and display a high diversity of complex colours linked to ecological functions. Recently, red autofluorescent body colouration has been reported in some of these fishes. However, little is known about the distribution of such fluorescent body patterns in wrasses or the animals’ ability to perceive such colours. Results: Against this background, we (1) investigated long-wavelength emission autofluorescence in thirteen species of pseudocheilinid wrasses and (2) characterised the spectral absorbance of visual pigments in one of the examined species, the fairy wrasse Cirrhilabrus solorensis. Spectrophotometric analysis revealed that fluorescent body colouration is widespread and diverse within this clade, with considerable variation in both fluorescent pattern and maximum emission wavelength between species. Characterisation of visual pigments in retinal photoreceptors showed a single class of rod and three spectrally distinct cone photoreceptors, suggesting possible trichromacy. Conclusion: Combining the emission characteristics of fluorescence body colouration and the spectral sensitivity data of retinal cells suggests that the visual system of C. solorensis is sensitive to pseudocheilinid fluorescence. Keywords: Red fluorescence, Photoluminescence, Microspectrophotometry, Colour vision, Labridae Background wavelength (>600 nm) part of downwelling sunlight is Wrasses (Labridae) represent the second largest marine quickly absorbed by sea water, which is most transparent fish family, containing more than 600 species within 82 to blue light of wavelengths at around 480 nm [15–17]. -
Systematic Parasitology
1 PARINT-2016-37 2 3 High-intensity cardiac infections of Phthinomita heinigerae n. sp. 4 (Digenea: Aporocotylidae) in the orangelined cardinalfish, Taeniamia 5 fucata (Cantor), off Heron Island on the Great Barrier Reef 6 7 Matthew J. Nolan a, *, Cinzia Cantacessi b, Scott C. Cutmore c, Thomas H. Cribb c, and Terrence 8 L. Miller d, e, 9 10 a Department of Pathology and Pathogen Biology, Royal Veterinary College, University of London, North 11 Mymms, Hatfield AL9 7TA, United Kingdom 12 b Department of Veterinary Medicine, University of Cambridge, Cambridge CB3 0ES, United Kingdom 13 c School of Biological Sciences, The University of Queensland, St Lucia 4072, Australia. 14 d Centre for Sustainable Tropical Fisheries and Aquaculture, School of Marine and Tropical Biology, 15 James Cook University, PO Box 6811, Cairns 4878, Australia 16 e Fish Health Laboratory, Department of Fisheries Western Australia, 3 Baron-Hay Court, South Perth 17 6151, Australia 18 19 * Corresponding author at: the Department of Pathology and Pathogen Biology, Royal Veterinary 20 College, University of London, Hatfield, Hertfordshire AL9 7TA, United Kingdom. Tel.: +44 (0) 1707 66 21 6803. Email: [email protected] (M.J. Nolan). 22 23 Email addresses: 24 MJN: [email protected] 25 CC: [email protected] 26 SCC: [email protected] 27 THC: [email protected] 28 TLM: [email protected] 29 - 1 - 30 ABSTRACT 31 We report a new species of aporocotylid trematode (Platyhelminthes: Digenea) from the heart of the 32 orangelined cardinalfish, Taeniamia fucata (Cantor), from off Heron Island on the southern Great Barrier 33 Reef. -
Updated Checklist of Marine Fishes (Chordata: Craniata) from Portugal and the Proposed Extension of the Portuguese Continental Shelf
European Journal of Taxonomy 73: 1-73 ISSN 2118-9773 http://dx.doi.org/10.5852/ejt.2014.73 www.europeanjournaloftaxonomy.eu 2014 · Carneiro M. et al. This work is licensed under a Creative Commons Attribution 3.0 License. Monograph urn:lsid:zoobank.org:pub:9A5F217D-8E7B-448A-9CAB-2CCC9CC6F857 Updated checklist of marine fishes (Chordata: Craniata) from Portugal and the proposed extension of the Portuguese continental shelf Miguel CARNEIRO1,5, Rogélia MARTINS2,6, Monica LANDI*,3,7 & Filipe O. COSTA4,8 1,2 DIV-RP (Modelling and Management Fishery Resources Division), Instituto Português do Mar e da Atmosfera, Av. Brasilia 1449-006 Lisboa, Portugal. E-mail: [email protected], [email protected] 3,4 CBMA (Centre of Molecular and Environmental Biology), Department of Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal. E-mail: [email protected], [email protected] * corresponding author: [email protected] 5 urn:lsid:zoobank.org:author:90A98A50-327E-4648-9DCE-75709C7A2472 6 urn:lsid:zoobank.org:author:1EB6DE00-9E91-407C-B7C4-34F31F29FD88 7 urn:lsid:zoobank.org:author:6D3AC760-77F2-4CFA-B5C7-665CB07F4CEB 8 urn:lsid:zoobank.org:author:48E53CF3-71C8-403C-BECD-10B20B3C15B4 Abstract. The study of the Portuguese marine ichthyofauna has a long historical tradition, rooted back in the 18th Century. Here we present an annotated checklist of the marine fishes from Portuguese waters, including the area encompassed by the proposed extension of the Portuguese continental shelf and the Economic Exclusive Zone (EEZ). The list is based on historical literature records and taxon occurrence data obtained from natural history collections, together with new revisions and occurrences. -
Langston R and H Spalding. 2017
A survey of fishes associated with Hawaiian deep-water Halimeda kanaloana (Bryopsidales: Halimedaceae) and Avrainvillea sp. (Bryopsidales: Udoteaceae) meadows Ross C. Langston1 and Heather L. Spalding2 1 Department of Natural Sciences, University of Hawai`i- Windward Community College, Kane`ohe,¯ HI, USA 2 Department of Botany, University of Hawai`i at Manoa,¯ Honolulu, HI, USA ABSTRACT The invasive macroalgal species Avrainvillea sp. and native species Halimeda kanaloana form expansive meadows that extend to depths of 80 m or more in the waters off of O`ahu and Maui, respectively. Despite their wide depth distribution, comparatively little is known about the biota associated with these macroalgal species. Our primary goals were to provide baseline information on the fish fauna associated with these deep-water macroalgal meadows and to compare the abundance and diversity of fishes between the meadow interior and sandy perimeters. Because both species form structurally complex three-dimensional canopies, we hypothesized that they would support a greater abundance and diversity of fishes when compared to surrounding sandy areas. We surveyed the fish fauna associated with these meadows using visual surveys and collections made with clove-oil anesthetic. Using these techniques, we recorded a total of 49 species from 25 families for H. kanaloana meadows and surrounding sandy areas, and 28 species from 19 families for Avrainvillea sp. habitats. Percent endemism was 28.6% and 10.7%, respectively. Wrasses (Family Labridae) were the most speciose taxon in both habitats (11 and six species, respectively), followed by gobies for H. kanaloana (six Submitted 18 November 2016 species). The wrasse Oxycheilinus bimaculatus and cardinalfish Apogonichthys perdix Accepted 13 April 2017 were the most frequently-occurring species within the H. -
Reef Fishes of the Bird's Head Peninsula, West
Check List 5(3): 587–628, 2009. ISSN: 1809-127X LISTS OF SPECIES Reef fishes of the Bird’s Head Peninsula, West Papua, Indonesia Gerald R. Allen 1 Mark V. Erdmann 2 1 Department of Aquatic Zoology, Western Australian Museum. Locked Bag 49, Welshpool DC, Perth, Western Australia 6986. E-mail: [email protected] 2 Conservation International Indonesia Marine Program. Jl. Dr. Muwardi No. 17, Renon, Denpasar 80235 Indonesia. Abstract A checklist of shallow (to 60 m depth) reef fishes is provided for the Bird’s Head Peninsula region of West Papua, Indonesia. The area, which occupies the extreme western end of New Guinea, contains the world’s most diverse assemblage of coral reef fishes. The current checklist, which includes both historical records and recent survey results, includes 1,511 species in 451 genera and 111 families. Respective species totals for the three main coral reef areas – Raja Ampat Islands, Fakfak-Kaimana coast, and Cenderawasih Bay – are 1320, 995, and 877. In addition to its extraordinary species diversity, the region exhibits a remarkable level of endemism considering its relatively small area. A total of 26 species in 14 families are currently considered to be confined to the region. Introduction and finally a complex geologic past highlighted The region consisting of eastern Indonesia, East by shifting island arcs, oceanic plate collisions, Timor, Sabah, Philippines, Papua New Guinea, and widely fluctuating sea levels (Polhemus and the Solomon Islands is the global centre of 2007). reef fish diversity (Allen 2008). Approximately 2,460 species or 60 percent of the entire reef fish The Bird’s Head Peninsula and surrounding fauna of the Indo-West Pacific inhabits this waters has attracted the attention of naturalists and region, which is commonly referred to as the scientists ever since it was first visited by Coral Triangle (CT). -
Marine Fishes of the Azores: an Annotated Checklist and Bibliography
MARINE FISHES OF THE AZORES: AN ANNOTATED CHECKLIST AND BIBLIOGRAPHY. RICARDO SERRÃO SANTOS, FILIPE MORA PORTEIRO & JOÃO PEDRO BARREIROS SANTOS, RICARDO SERRÃO, FILIPE MORA PORTEIRO & JOÃO PEDRO BARREIROS 1997. Marine fishes of the Azores: An annotated checklist and bibliography. Arquipélago. Life and Marine Sciences Supplement 1: xxiii + 242pp. Ponta Delgada. ISSN 0873-4704. ISBN 972-9340-92-7. A list of the marine fishes of the Azores is presented. The list is based on a review of the literature combined with an examination of selected specimens available from collections of Azorean fishes deposited in museums, including the collection of fish at the Department of Oceanography and Fisheries of the University of the Azores (Horta). Personal information collected over several years is also incorporated. The geographic area considered is the Economic Exclusive Zone of the Azores. The list is organised in Classes, Orders and Families according to Nelson (1994). The scientific names are, for the most part, those used in Fishes of the North-eastern Atlantic and the Mediterranean (FNAM) (Whitehead et al. 1989), and they are organised in alphabetical order within the families. Clofnam numbers (see Hureau & Monod 1979) are included for reference. Information is given if the species is not cited for the Azores in FNAM. Whenever available, vernacular names are presented, both in Portuguese (Azorean names) and in English. Synonyms, misspellings and misidentifications found in the literature in reference to the occurrence of species in the Azores are also quoted. The 460 species listed, belong to 142 families; 12 species are cited for the first time for the Azores. -
Monitoring Functional Groups of Herbivorous Reef Fishes As Indicators of Coral Reef Resilience a Practical Guide for Coral Reef Managers in the Asia Pacifi C Region
Monitoring Functional Groups of Herbivorous Reef Fishes as Indicators of Coral Reef Resilience A practical guide for coral reef managers in the Asia Pacifi c Region Alison L. Green and David R. Bellwood IUCN RESILIENCE SCIENCE GROUP WORKING PAPER SERIES - NO 7 IUCN Global Marine Programme Founded in 1958, IUCN (the International Union for the Conservation of Nature) brings together states, government agencies and a diverse range of non-governmental organizations in a unique world partnership: over 100 members in all, spread across some 140 countries. As a Union, IUCN seeks to influence, encourage and assist societies throughout the world to conserve the integrity and diversity of nature and to ensure that any use of natural resources is equitable and ecologically sustainable. The IUCN Global Marine Programme provides vital linkages for the Union and its members to all the IUCN activities that deal with marine issues, including projects and initiatives of the Regional offices and the six IUCN Commissions. The IUCN Global Marine Programme works on issues such as integrated coastal and marine management, fisheries, marine protected areas, large marine ecosystems, coral reefs, marine invasives and protection of high and deep seas. The Nature Conservancy The mission of The Nature Conservancy is to preserve the plants, animals and natural communities that represent the diversity of life on Earth by protecting the lands and waters they need to survive. The Conservancy launched the Global Marine Initiative in 2002 to protect and restore the most resilient examples of ocean and coastal ecosystems in ways that benefit marine life, local communities and economies. -
APPENDIX 1 Classified List of Fishes Mentioned in the Text, with Scientific and Common Names
APPENDIX 1 Classified list of fishes mentioned in the text, with scientific and common names. ___________________________________________________________ Scientific names and classification are from Nelson (1994). Families are listed in the same order as in Nelson (1994), with species names following in alphabetical order. The common names of British fishes mostly follow Wheeler (1978). Common names of foreign fishes are taken from Froese & Pauly (2002). Species in square brackets are referred to in the text but are not found in British waters. Fishes restricted to fresh water are shown in bold type. Fishes ranging from fresh water through brackish water to the sea are underlined; this category includes diadromous fishes that regularly migrate between marine and freshwater environments, spawning either in the sea (catadromous fishes) or in fresh water (anadromous fishes). Not indicated are marine or freshwater fishes that occasionally venture into brackish water. Superclass Agnatha (jawless fishes) Class Myxini (hagfishes)1 Order Myxiniformes Family Myxinidae Myxine glutinosa, hagfish Class Cephalaspidomorphi (lampreys)1 Order Petromyzontiformes Family Petromyzontidae [Ichthyomyzon bdellium, Ohio lamprey] Lampetra fluviatilis, lampern, river lamprey Lampetra planeri, brook lamprey [Lampetra tridentata, Pacific lamprey] Lethenteron camtschaticum, Arctic lamprey] [Lethenteron zanandreai, Po brook lamprey] Petromyzon marinus, lamprey Superclass Gnathostomata (fishes with jaws) Grade Chondrichthiomorphi Class Chondrichthyes (cartilaginous -
(Family Scaridae) of the Great Barrier Reef of Australia with Description of a New Species
AUSTRALIAN MUSEUM SCIENTIFIC PUBLICATIONS Choat, J. Howard, and J. E. Randall, 1986. A revision of the parrotfishes (family Scaridae) of the Great Barrier Reef of Australia with description of a new species. Records of the Australian Museum 38(4): 175–239, coloured plates 1–11. [Published 1 December 1986, cover marked 1 December 1985]. doi:10.3853/j.0067-1975.38.1986.181 ISSN 0067-1975 Published by the Australian Museum, Sydney naturenature cultureculture discover discover AustralianAustralian Museum Museum science science is is freely freely accessible accessible online online at at www.australianmuseum.net.au/publications/www.australianmuseum.net.au/publications/ 66 CollegeCollege Street,Street, SydneySydney NSWNSW 2010,2010, AustraliaAustralia Records of the Australian Museum (1986) Vo!. 38: 175-228 175 A Review of the Parrotfishes (Family Scaridae) of the Great Barrier Reef of Australia with Description of a New Species J. HOWARD CHOATa AND JOHN E. RANDALI} aDepartment of Zoology, University of Auckland, PB Auckland, New Zealand* bBishop Museum, Box 19000-A, Honolulu, Hawaii 96817, USA. ABSTRACT. The family Scaridae is represented on the tropical and subtropical coasts of eastern Australia by 25 previously described species. Three species belong in the subfamily Sparisomatinae: Leptosearus vaigiensis (Quoy & Gaimard); Calotomus earolinus (Valenciennes); Calotomus spinidens (Quoy & Gaimard). The remainder are included in the subfamily Scarinae: Bolbometopon murieatum (Valenciennes); Cetosearus bieolor (Ruppell); Hipposearus longieeps -
The Marine Biodiversity and Fisheries Catches of the Pitcairn Island Group
The Marine Biodiversity and Fisheries Catches of the Pitcairn Island Group THE MARINE BIODIVERSITY AND FISHERIES CATCHES OF THE PITCAIRN ISLAND GROUP M.L.D. Palomares, D. Chaitanya, S. Harper, D. Zeller and D. Pauly A report prepared for the Global Ocean Legacy project of the Pew Environment Group by the Sea Around Us Project Fisheries Centre The University of British Columbia 2202 Main Mall Vancouver, BC, Canada, V6T 1Z4 TABLE OF CONTENTS FOREWORD ................................................................................................................................................. 2 Daniel Pauly RECONSTRUCTION OF TOTAL MARINE FISHERIES CATCHES FOR THE PITCAIRN ISLANDS (1950-2009) ...................................................................................... 3 Devraj Chaitanya, Sarah Harper and Dirk Zeller DOCUMENTING THE MARINE BIODIVERSITY OF THE PITCAIRN ISLANDS THROUGH FISHBASE AND SEALIFEBASE ..................................................................................... 10 Maria Lourdes D. Palomares, Patricia M. Sorongon, Marianne Pan, Jennifer C. Espedido, Lealde U. Pacres, Arlene Chon and Ace Amarga APPENDICES ............................................................................................................................................... 23 APPENDIX 1: FAO AND RECONSTRUCTED CATCH DATA ......................................................................................... 23 APPENDIX 2: TOTAL RECONSTRUCTED CATCH BY MAJOR TAXA ............................................................................