(Family Scaridae) of the Great Barrier Reef of Australia with Description of a New Species

Total Page:16

File Type:pdf, Size:1020Kb

(Family Scaridae) of the Great Barrier Reef of Australia with Description of a New Species AUSTRALIAN MUSEUM SCIENTIFIC PUBLICATIONS Choat, J. Howard, and J. E. Randall, 1986. A revision of the parrotfishes (family Scaridae) of the Great Barrier Reef of Australia with description of a new species. Records of the Australian Museum 38(4): 175–239, coloured plates 1–11. [Published 1 December 1986, cover marked 1 December 1985]. doi:10.3853/j.0067-1975.38.1986.181 ISSN 0067-1975 Published by the Australian Museum, Sydney naturenature cultureculture discover discover AustralianAustralian Museum Museum science science is is freely freely accessible accessible online online at at www.australianmuseum.net.au/publications/www.australianmuseum.net.au/publications/ 66 CollegeCollege Street,Street, SydneySydney NSWNSW 2010,2010, AustraliaAustralia Records of the Australian Museum (1986) Vo!. 38: 175-228 175 A Review of the Parrotfishes (Family Scaridae) of the Great Barrier Reef of Australia with Description of a New Species J. HOWARD CHOATa AND JOHN E. RANDALI} aDepartment of Zoology, University of Auckland, PB Auckland, New Zealand* bBishop Museum, Box 19000-A, Honolulu, Hawaii 96817, USA. ABSTRACT. The family Scaridae is represented on the tropical and subtropical coasts of eastern Australia by 25 previously described species. Three species belong in the subfamily Sparisomatinae: Leptosearus vaigiensis (Quoy & Gaimard); Calotomus earolinus (Valenciennes); Calotomus spinidens (Quoy & Gaimard). The remainder are included in the subfamily Scarinae: Bolbometopon murieatum (Valenciennes); Cetosearus bieolor (Ruppell); Hipposearus longieeps (Valenciennes); Searus altipinnis (Steindachner); Searus bleekeri (de Beaufort); Searus dimidiatus Bleeker; Searus flavipeetoralis Schultz; Searus forsteni (Bleeker); Searus frenatus Lacepede; Searus frontalis Valenciennes; Searus ghobban Forssk3I; Searus gibbus Ruppell; Searus globieeps Valenciennes; Searus longipinnis Randall & Choat; Searus niger Forsskal; Searus ovieeps Valenciennes; Searus psittaeus Forsskal; Searus pyrrhurus (Jordan & Seale); Searus rivulatus Valenciennes; Searus rubroviolaeeus Bleeker; Searus sehlegeli (Bleeker); Searus sordidus Forssk3J; Searus spinus Kner. The scarid from Australian waters previously misidentified as Searus lunula (a synonym of Searusfestivus Valenciennes) represents an undescribed species Searus chameleon, described herein. Searus chameleon has a distribution that includes the western and southern Pacific. It is similar to S.festivus but differs in patterns of head and body colouration in the terminal phase, and in the head profile. All but three species listed above are most commonly encountered on the coral reefs of the Great Barrier Reef and the adjacent coral sea. The exceptions are the sparisomatine species Leptosearus vaigiensis and Calotomus spinidens, and the scarinine species Searus ghobban. The former two species are often associated with seagrass beds in coastal areas, while Searus ghobban frequents a variety of non­ reef habitats. Many of the species listed extend into northern and western Australian waters. Additional collecting is required to establish the limits and identities of the entire Australian scarid . fauna. Colour photographs of fresh specimens illustrating the different colour phases of all 27 species are provided. In addition, underwater colour photographs of most species are provided with an emphasis on those which show confusing patterns of short term variation in the initial colour phase. Illustrations of the juvenile phase are provided for some species. CHOAT, 1.H. & 1.E. RANDALL, 1986. A review of the parrotfishes (Family Scaridae) of the Great Barrier Reef of Australia, with description of a new species. Records of the Australian Museum 38(4): 175-239. CONTENTS Abstract 175 Introduction ................................................................... 176 Materials and Methods .......................................................... 177 Historical Review and Nomenclature of Australian Species .......................... 179 Zoo geography and Distribution .................................................. 184 Colour Phases and Reproduction ................................................. 188 Key to the Scarids of the Great Barrier Reef ....................................... 189 'Present Address: Department of Marine Biology, lames Cook University, Townsville, 4811, Australia 176 Records of the Australian Museum 38 Calotomus earolinus (Valenciennes) ................................................ 193 Calotumus spinidens (Quoy & Gaimard) ........................................... 194 Leptosearus vaigiensis (Quoy & Gaimard) .......................................... 194 Cetosearus bieolor (Riippell) ...................................................... 195 Hipposearus longieeps (Valenciennes) .............................................. 196 Bolbometopon murieatum (Valenciennes) ........................................... 197 Searus altipinnis (Steindachner) ................................................... 198 Searus bleekeri (De Beaufort) ..................................................... 199 Searus chameleon n.sp ........................................................... 199 Searus dimidiatus Bleeker ........................................................ 203 Searus flavipeetoralis Schultz ..................................................... 204 Searus forsteni (Bleeker) ......................................................... 204 Searus frenatus Lacepede .. .. 205 Searus frontalis Valenciennes ..................................................... 206 Searus ghobban (Forsskal) ........................................................ 207 Searus gibbus Riippell ........................................................... 209 Searus globieeps Valenciennes ..................................................... 210 Searus longipinnis Randall & Choat ............................................... 211 Searus niger (Forsskru) ........................................................... 213 Searus ovieeps Valenciennes ...................................................... 214 Searus psittaeus (Forsskru) ........................................................ 215 Searus pyrrhurus (Jordan & Seale) ................................................ 216 Searus rivulatus Valenciennes ..................................................... 217 Searus rubroviolaeeus Bleeker ..................................................... 219 Searus sehlegeli (Bleeker) ......................................................... 220 Searus sordidus (Forsskal) ........................................................ 221 Searus spinus (Kner) ............................................................. 222 Acknowledgements .............................................................. 223 References ...................................................................... 223 The Scaridae, a family of labroid fishes, are highly both taxonomically and ecologically and we prefer to characteristic of coral reef habitats. With few exceptions maintain this distinction at the f amiliallevel. We do not their geographical distribution is linked to that of accept the argument of Kaufman & Liem (1982) that tropical reef environments. The number of species of places the Labridae and Scaridae within the same scarids is not great when compared with other families family. of tropical perciform fishes. However, their relatively We follow Bruce & Randall (1985) in recognizing two large size, complex patterns of colour change, and subfamilies of Scaridae, the Sparisomatinae which conspicuous grazing habit have resulted in a continuing includes the genera Leptosearus and Calotomus, and interest in this group by ichthyologists and reef the Scarinae. The latter subfamily includes all the species biologists generally. characteristic of reef environments and constitutes the All members of the family Scaridae possess a main focus of this review. Sparisomatine parrotfishes continuous dorsal fin with 9 flexible spines and 10 soft are more likely to be encountered in non-reef rays, and an anal fin with 3 flexible spines and 9 soft environments such as seagrass beds and are not rays; pectoral fins have 2 unbranched rays (the first important members of the Great Barrier Reef fauna. always rudimentary) and 11-15 branched rays. Body Very few sparisomatine parrot fishes were observed or scales are always large and cycloid with 22-24 in the collected from eastern Australia. For structural details lateral line. There are 1-4 rows of cheek scales with of the three Australian species in this subfamily the varying numbers of scales in each row and 2-8 median reader is referred to the recent revision, Bruce & Randall predorsal scales. Gill rakers of scarids show considerable (1985). variation both within and between species. The number The generic classification of the Scarinae used here of gill rakers within a species will also vary with the size follows that of Randall & Bruce (1983). The genus of the individual. Bolbometopon Smith is restricted to a single species, Important structural and ecological characters are the murieatum; Searus bieolor Riippell is placed in fusion of teeth to form beak-like dental plates, a Cetosearus. We recognize Hipposearus Smith as a valid pharyngeal apparatus in which flattened teeth form a genus for Searus longieeps Valenciennes and refer the grinding mill, the absence of a true stomach, and a genus Searops Schultz to the synonymy of Searus herbivorous habit. A minority of species selectively Forsskal. graze living corals. The scarids
Recommended publications
  • REEF FISH BIODIVERSITY on KANGAROO ISLAND Oceans of Blue Coast, Estuarine and Marine Monitoring Program
    2006-2007 Kangaroo Island Natural Resources ManagementDate2007 Board Kangaroo Island Natural Resources Management Board REEF FISH BIODIVERSITYKangaroo Island Natural ON Resources KANGAROO Management ISLAND Board SEAGRASS FAUNAL BIODIVERSITYREPORT TITLE ON KI Reef Fish Biodiversity on Kangaroo Island 1 REEF FISH BIODIVERSITY ON KANGAROO ISLAND Oceans of Blue Coast, Estuarine and Marine Monitoring Program A report prepared for the Kangaroo Island Natural Resources Management Board by Daniel Brock Martine Kinloch December 2007 Reef Fish Biodiversity on Kangaroo Island 2 Oceans of Blue The views expressed and the conclusions reached in this report are those of the author and not necessarily those of persons consulted. The Kangaroo Island Natural Resources Management Board shall not be responsible in any way whatsoever to any person who relies in whole or in part on the contents of this report. Project Officer Contact Details Martine Kinloch Coast and Marine Program Manager Kangaroo Island Natural Resources Management Board PO Box 665 Kingscote SA 5223 Phone: (08) 8553 4312 Fax: (08) 8553 4399 Email: [email protected] Kangaroo Island Natural Resources Management Board Contact Details Jeanette Gellard General Manager PO Box 665 Kingscote SA 5223 Phone: (08) 8553 4340 Fax: (08) 8553 4399 Email: [email protected] © Kangaroo Island Natural Resources Management Board This document may be reproduced in whole or part for the purpose of study or training, subject to the inclusion of an acknowledgment of the source and to its not being used for commercial purposes or sale. Reproduction for purposes other than those given above requires the prior written permission of the Kangaroo Island Natural Resources Management Board.
    [Show full text]
  • Bolbometopon Muricatum) in North Maluku Waters Muhammad J
    DNA barcode and phylogenetics of green humphead parrotfish (Bolbometopon muricatum) in North Maluku waters Muhammad J. Achmad, Riyadi Subur, Supyan, Nebuchadnezzar Akbar Faculty of Fisheries and Marine Sciences, Khairun University, Ternate, North Maluku, Indonesia. Corresponding author: N. Akbar, [email protected] Abstract. The green humphead parrotfish (Bolbometopon muricatum) is one of the large species inhabiting coral reefs in North Maluku waters, Indonesia. The declining fish populations due to excessive fishing has caused the green humphead parrotfish to be listed in the Red List of IUCN in the vulnerable category since 2012. The species could be highly endangered, bordering extinction in the future. Studies on the genetic identification of green humphead parrotfish could be considered critical in the policy of sustainable conservation and fish culture. This research is designed for the identification and analysis of the genetic relationship of green humphead parrotfish based on the COI (cytochrome-c-oxidase subunit I) gene. DNA samples were collected from 4 locations in North Maluku, Ternate Island, Morotai Island, Bacan Island and Sanan Island. The DNA from samples was extracted and the COI gene was amplified using PCR (Polymerase Chain Reaction). Furthermore, the amplicon was sequenced to observe the similarities with the NCBI GenBank database. The results of this study showed that the green humphead parrotfish from this study had high similarities (98-100%) with the green humphead parrotfish with the reference access no. KY235362.1. Based on the phylogenetic tree, the green humphead parrotfish originating from North Maluku has a genetic relationship with the green humphead parrotfish from the database, but with different molecular characters.
    [Show full text]
  • Marine Biodiversity of the South East NRM Region
    Marine Environment and Ecology Benthic Ecology Subprogram Marine Biodiversity of the South East NRM Region SARDI Publication No. F2009/000681-1 SARDI Research Report series No. 416 Keith Rowling, Shirley Sorokin, Leonardo Mantilla and David Currie SARDI Aquatic Sciences PO BOX 120 Henley Beach SA 5022 December 2009 Prepared for the Department for Environment and Heritage 1 Information Systems and Database Support Program Marine Biodiversity of the South East NRM Region Keith Rowling, Shirley Sorokin, Leonardo Mantilla and David Currie December 2009 SARDI Publication No. F2009/000681-1 SARDI Research Report Series No. 416 Prepared for the Department for Environment and Heritage 2 This Publication may be cited as: Rowling, K.P., Sorokin, S.J., Mantilla, L. & Currie, D.R.. (2009) Marine Biodiversity of the South East NRM Region. South Australian Research and Development Institute (Aquatic Sciences), Adelaide. SARDI Publication No. F2009/000681-1. South Australian Research and Development Institute SARDI Aquatic Sciences 2 Hamra Avenue West Beach SA 5024 Telephone: (08) 8207 5400 Facsimile: (08) 8207 5406 http://www.sardi.sa.gov.au DISCLAIMER The authors warrant that they have taken all reasonable care in producing this report. The report has been through the SARDI internal review process, and has been formally approved for release by the Chief of Division. Although all reasonable efforts have been made to ensure quality, SARDI does not warrant that the information in this report is free from errors or omissions. SARDI does not accept any liability for the contents of this report or for any consequences arising from its use or any reliance placed upon it.
    [Show full text]
  • Ecological Assessment of the Flora and Fauna of Flinders Reef Moreton Bay Marine Park, QLD Australia
    Ecological Assessment of the Flora and Fauna of Flinders Reef Moreton Bay Marine Park, QLD Australia Authors Roelfsema Chris, Elisa Bayraktarov, Cedric van den Berg, Sarah Breeze, Monique Grol, Tanya Kenyon, Simone de Kleermaeker, Jennifer Loder, Morana Mihaljević, Josh Passenger, Phoebe Rowland, Julie Vercelloni and Josh Wingerd Flinders Reef Ecological Assessment, Moreton Bay Marine Park, Queensland Final Report 12 December 2017 This report should be cited as: Roelfsema C.M., E. Bayraktarov, C. van den Berg, S. Breeze, M.G.G. Grol, T. Kenyon, S. de Kleermaeker, J. Loder, M. Mihaljević, J. Passenger, P. Rowland, J. Vercelloni and J. Wingerd (2017). Ecological Assessment of the Flora and Fauna of Flinders Reef, Moreton Bay Marine Park, Queensland. UniDive, The University of Queensland Underwater Club, Brisbane, Australia. The views and interpretation expressed in this report are those of the authors and not necessarily those of contributing agencies and organisations. UniDive FREA Final Report 12 December 2017 1 | Page UniDive FREA Final Report 12 December 2017 2 | Page Far and away, the greatest threat to the ocean, and thus to ourselves, is ignorance. But we can do something about that (Sylvia Earle). Humans are the only creatures with the ability to dive deep in the sea, fly high in the sky, send instant messages around the globe, reflect on the past, assess the present and imagine the future (Sylvia Earle). UniDive FREA Final Report 12 December 2017 3 | Page Table of Contents Table of Contents ........................................................................................................................................................
    [Show full text]
  • Estimates of Sponge Consumption Rates on an Indo-Pacific Reef
    Vol. 672: 123–140, 2021 MARINE ECOLOGY PROGRESS SERIES Published August 19 https://doi.org/10.3354/meps13786 Mar Ecol Prog Ser Estimates of sponge consumption rates on an Indo-Pacific reef Charlotte Mortimer1, Matthew Dunn2, Abdul Haris3, Jamaluddin Jompa3, James Bell1,* 1School of Biological Sciences, Victoria University of Wellington, Wellington 6012, New Zealand 2The National Institute of Water and Atmospheric Research (NIWA), Wellington 6021, New Zealand 3Universitas Hasanuddin, Department of Marine Science, Makassar 90245, Indonesia ABSTRACT: Determining predator diets is essential for understanding the strength of top-down processes and how they cascade through food webs. This is especially important for sponges, key members of benthic communities, whose dominance has increased in recent years on some coral reefs. However, the diversity of spongivorous fishes and the sponges they consume are relatively unknown. Here, we estimated sponge consumption by spongivorous fishes in the Wakatobi Marine National Park, Indonesia. We deployed cameras to identify fish biting at the dominant reef sponge Xestospongia spp. and then used gut content analysis and fish abundance estimates to quantify sponge consumption. In total, 33 species from 10 families of reef fish were identified taking bites from Xestospongia spp.; however, the 2 most prolific sponge-grazers, Ctenochaetus binotatus and Chaetodon kleinii, had no sponge in their guts, showing that for some fish, bites on sponge surfaces are not reliable evidence of sponge consumption. Gut contents indicated that Pygoplites diacanthus was an obligate spongivore, while Pomacanthus imperator, P. xanthometo- pon, Zanclus cornutus and Siganus punctatus regularly consumed sponges. Sponge consumption by these 5 spongivores was estimated at 46.6 ± 18.3 g sponge 1000 m−2 d−1.
    [Show full text]
  • Citizens & Reef Science
    ACKNOWLEDGEMENTS Report Editor: Jennifer Loder Report Authors and Contributors: Jennifer Loder, Terry Done, Alex Lea, Annie Bauer, Jodi Salmond, Jos Hill, Lionel Galway, Eva Kovacs, Jo Roberts, Melissa Walker, Shannon Mooney, Alena Pribyl, Marie-Lise Schläppy Science Advisory Team: Dr. Terry Done, Dr. Chris Roelfsema, Dr. Gregor Hodgson, Dr. Marie-Lise Schläppy, Jos Hill Graphic Designers: Manu Taboada, Tyler Hood, Alex Levonis This work is licensed under a Creative Commons Attribution-Non Commercial 4.0 International License. To view a copy of this licence visit: http:// This project is supported by Reef Check creativecommons.org/licenses/by-nc/4.0/ Australia, through funding from the Australian Government. Requests and inquiries concerning reproduction and rights should be addressed to: Reef Check Foundation Ltd, PO Box 13204 George St Brisbane QLD 4003, Project achievements have been made [email protected] possible by a countless number of dedicated volunteers, collaborators, funders, advisors and industry champions. Citation: Thanks from us and our oceans. Volunteers, Staff and Supporters of Reef Check Australia (2015). Authors J. Loder, T. Done, A. Lea, A. Bauer, J. Salmond, J. Hill, L. Galway, E. Kovacs, J. Roberts, M. Walker, S. Mooney, A. Pribyl, M.L. Schläppy. Citizens & Reef Science: A Celebration of Reef Check Australia’s volunteer reef monitoring, education and conservation programs 2001- 2014. Reef Check Foundation Ltd. Cover photo credit: Undersea Explorer, GBR Photo by Matt Curnock (Russell Island, GBR) 3 Key messages FROM REEF CHECK AUSTRALIA 2001-2014 WELCOME AND THANKS • Reef monitoring is critical to understand • Across most RCA sites there was both human and natural impacts, as well evidence of reef health impacts.
    [Show full text]
  • New Records of Coral Reef Fishes from Andaman and Nicobar Islands 179 ISSN 0375-1511
    RAJAN and SREERAJ : New records of coral reef fishes from Andaman and Nicobar Islands 179 ISSN 0375-1511 Rec. zool. Surv. India : 115(Part-2) : 179-189, 2015 NEW RECORDS OF CORAL REEF FISHES FROM ANDAMAN AND NICOBAR ISLANDS PT RAJAN AND CR SREERAJ Zoological Survey of India, Andaman and Nicobar Regional Centre, Port Blair-744102 Email: [email protected] INTRODUCTION 2003a, 2003b, 2007), Rao et al. (1992, 1992a, Andaman Nicobar Islands situated in the Bay 1992b, 1994, 1993a, 1993b, 1997, 2000), Rao of Bengal between 6o45´-13 45´N and 92o10´- (2003, 2009), Rao and Kamla Devi (1996, 1997a, 94o15´E, consist of 352 islands 220 islets and 1997b, 1998, 2004), Soundararajan and Dam Roy rock and cover a distance of almost 470 km over (2004), Remadevi et al. (2010) Rajaram et al. North South, with a coastline of 1962 km, and (2007), Ramakrishna et al., 2010. Smith-Vaniz, bring in for India an Exclusive Economic Zone 2011, Smith-Vaniz & Allen (2012) and Rajan and (EEZ) of 600 thousand sq km. The coast is under Sreeraj (2014). the influence of a diverse set of oceanographical MATERIALS AND METHODS and ecological conditions. The shelf topography The new records of fishes were made by field of these islands show frequent rises supporting surveys and underwater observations in the coral coral reefs, which are characterized as fringing reef ecosystem of Havelock Island, near Light reefs on the eastern side and barrier reefs off west House, 12, 02,765N / 92, 57,923 E. Fringing reef coast; the depressions are known as passages and following the contour of the land, depth from straits.
    [Show full text]
  • Reef Fishes of the Bird's Head Peninsula, West
    Check List 5(3): 587–628, 2009. ISSN: 1809-127X LISTS OF SPECIES Reef fishes of the Bird’s Head Peninsula, West Papua, Indonesia Gerald R. Allen 1 Mark V. Erdmann 2 1 Department of Aquatic Zoology, Western Australian Museum. Locked Bag 49, Welshpool DC, Perth, Western Australia 6986. E-mail: [email protected] 2 Conservation International Indonesia Marine Program. Jl. Dr. Muwardi No. 17, Renon, Denpasar 80235 Indonesia. Abstract A checklist of shallow (to 60 m depth) reef fishes is provided for the Bird’s Head Peninsula region of West Papua, Indonesia. The area, which occupies the extreme western end of New Guinea, contains the world’s most diverse assemblage of coral reef fishes. The current checklist, which includes both historical records and recent survey results, includes 1,511 species in 451 genera and 111 families. Respective species totals for the three main coral reef areas – Raja Ampat Islands, Fakfak-Kaimana coast, and Cenderawasih Bay – are 1320, 995, and 877. In addition to its extraordinary species diversity, the region exhibits a remarkable level of endemism considering its relatively small area. A total of 26 species in 14 families are currently considered to be confined to the region. Introduction and finally a complex geologic past highlighted The region consisting of eastern Indonesia, East by shifting island arcs, oceanic plate collisions, Timor, Sabah, Philippines, Papua New Guinea, and widely fluctuating sea levels (Polhemus and the Solomon Islands is the global centre of 2007). reef fish diversity (Allen 2008). Approximately 2,460 species or 60 percent of the entire reef fish The Bird’s Head Peninsula and surrounding fauna of the Indo-West Pacific inhabits this waters has attracted the attention of naturalists and region, which is commonly referred to as the scientists ever since it was first visited by Coral Triangle (CT).
    [Show full text]
  • Dissertation Introduction
    COMMUNITY STRUCTURE, LIFE HISTORY, AND MOVEMENT PATTERNS OF PARROTFISHES: LARGE PROTOGYNOUS FISHERY SPECIES A DISSERTATION SUBMITTED TO THE GRADUATE DIVISION OF THE UNIVERSITY OF HAWAI‛I IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY IN ZOOLOGY (ECOLOGY, EVOLUTION AND CONSERVATION BIOLOGY) DECEMBER 2008 By Kathrine G. Howard Dissertation Committee: James D. Parrish, Chairperson Charles Birkeland David Carlon Kathleen Cole Matthew McGranaghan We certify that we have read this dissertation and that, in our opinion, it is satisfactory in scope and quality as a dissertation for the degree of Doctor of Philosophy in Zoology (Ecology, Evolution and Conservation Biology). DISSERTATION COMMITTEE ___________________________ Chairperson ___________________________ ___________________________ ___________________________ ___________________________ ii ACKNOWLEDGMENTS I would like to thank my committee members and especially Dr. James Parrish for guidance and support. Thanks also to Kelly Boyle, Tim Clark, Jeremy Claisse, T. Erin Cox, Emily Donham, Sean Fujimoto, Jim Hawhee, Danielle Jayewardene, Luc Mehl, Amanda Meyer, Susan Knight, Ling Ong, Matt Ross, Brett Schumacher, Linda Thurston, and Nick Whitney for specimen collection, contributions in the field, and lab assistance. Special thanks to Megan Bushnell, Dr. J.Howard Choat, Dr. Kathleen Cole, Jeremy Claisse, and Dr. Ross Langston for guidance and assistance with laboratory techniques. Additional thanks to Pat Aldrich and Jeremy Claisse for statistical assistance. This work benefited from discussion with Dr. Alan Friedlander. Logistical support for research conducted on Oahu was provided by the Hawai‛i Cooperative Fishery Research Unit, William Aila, and Paul Sensano. Thanks also to Kaloko-Honokohau National Park and Hawai‛i Division of Aquatic Resources for logistical assistance on the island of Hawai‛i.
    [Show full text]
  • Download Full Article 1.0MB .Pdf File
    Memoirs of the Museum of Victoria 57( I): 143-165 ( 1998) 1 May 1998 https://doi.org/10.24199/j.mmv.1998.57.08 FISHES OF WILSONS PROMONTORY AND CORNER INLET, VICTORIA: COMPOSITION AND BIOGEOGRAPHIC AFFINITIES M. L. TURNER' AND M. D. NORMAN2 'Great Barrier Reef Marine Park Authority, PO Box 1379,Townsville, Qld 4810, Australia ([email protected]) 1Department of Zoology, University of Melbourne, Parkville, Vic. 3052, Australia (corresponding author: [email protected]) Abstract Turner, M.L. and Norman, M.D., 1998. Fishes of Wilsons Promontory and Comer Inlet. Victoria: composition and biogeographic affinities. Memoirs of the Museum of Victoria 57: 143-165. A diving survey of shallow-water marine fishes, primarily benthic reef fishes, was under­ taken around Wilsons Promontory and in Comer Inlet in 1987 and 1988. Shallow subtidal reefs in these regions are dominated by labrids, particularly Bluethroat Wrasse (Notolabrus tet­ ricus) and Saddled Wrasse (Notolabrus fucicola), the odacid Herring Cale (Odax cyanomelas), the serranid Barber Perch (Caesioperca rasor) and two scorpidid species, Sea Sweep (Scorpis aequipinnis) and Silver Sweep (Scorpis lineolata). Distributions and relative abundances (qualitative) are presented for 76 species at 26 sites in the region. The findings of this survey were supplemented with data from other surveys and sources to generate a checklist for fishes in the coastal waters of Wilsons Promontory and Comer Inlet. 23 I fishspecies of 92 families were identified to species level. An additional four species were only identified to higher taxonomic levels. These fishes were recorded from a range of habitat types, from freshwater streams to marine habitats (to 50 m deep).
    [Show full text]
  • DNA Barcoding of Commercially Important Reef Fishes in Weh Island, Aceh, Indonesia
    DNA barcoding of commercially important reef fishes in Weh Island, Aceh, Indonesia Nur Fadli1,*, Siti Azizah Mohd Nor2,3,*, Ahmad Sofiman Othman3, Hizir Sofyan4 and Zainal A. Muchlisin1 1 Faculty of Marine and Fisheries, Syiah Kuala University, Banda Aceh, Aceh, Indonesia 2 Institute of Marine Biotechnology, Universiti Malaysia Terengganu, Terengganu, Malaysia 3 School of Biological Sciences, Universiti Sains Malaysia, Penang, Malaysia 4 Faculty of Mathematics and Natural Science, Syiah Kuala University, Banda Aceh, Aceh, Indonesia * These authors contributed equally to this work. ABSTRACT Knowledge on the precise identification of fish resources is critical for sustainable fisheries management. This study employs the DNA barcoding approach to generate a molecular taxonomic catalogue of commercially important reef fishes in the waters of Weh Island (Aceh Province), the most northerly inhabited island in the biodiverse Indonesian Archipelago. The waters not only support artisanal fisheries but also a feeder for the industry in the greater island of Aceh. In total, 230 specimens from 72 species belonging to 32 genera and 17 families were DNA barcoded, representing a major segment of the captured reef fish taxa and a quarter of fish species diversity that had previously been recorded. The sequence read lengths were 639 bp revealing 359 conserved sites, 280 variable sites, 269 parsimony informative and 11 singletons. Our molecular findings paralleled the morphological identification with no evidence of cryptic species or new species discovery. This study is a significant contribution to the fisheries statistics of this area, which would facilitate assessment of species catch composition and hence for strategizing management plans. It is an important input to Submitted 6 August 2019 the DNA barcode library of Indonesian marine fishes and to the global DNA barcode Accepted 9 July 2020 entries in general.
    [Show full text]
  • Training Manual Series No.15/2018
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by CMFRI Digital Repository DBTR-H D Indian Council of Agricultural Research Ministry of Science and Technology Central Marine Fisheries Research Institute Department of Biotechnology CMFRI Training Manual Series No.15/2018 Training Manual In the frame work of the project: DBT sponsored Three Months National Training in Molecular Biology and Biotechnology for Fisheries Professionals 2015-18 Training Manual In the frame work of the project: DBT sponsored Three Months National Training in Molecular Biology and Biotechnology for Fisheries Professionals 2015-18 Training Manual This is a limited edition of the CMFRI Training Manual provided to participants of the “DBT sponsored Three Months National Training in Molecular Biology and Biotechnology for Fisheries Professionals” organized by the Marine Biotechnology Division of Central Marine Fisheries Research Institute (CMFRI), from 2nd February 2015 - 31st March 2018. Principal Investigator Dr. P. Vijayagopal Compiled & Edited by Dr. P. Vijayagopal Dr. Reynold Peter Assisted by Aditya Prabhakar Swetha Dhamodharan P V ISBN 978-93-82263-24-1 CMFRI Training Manual Series No.15/2018 Published by Dr A Gopalakrishnan Director, Central Marine Fisheries Research Institute (ICAR-CMFRI) Central Marine Fisheries Research Institute PB.No:1603, Ernakulam North P.O, Kochi-682018, India. 2 Foreword Central Marine Fisheries Research Institute (CMFRI), Kochi along with CIFE, Mumbai and CIFA, Bhubaneswar within the Indian Council of Agricultural Research (ICAR) and Department of Biotechnology of Government of India organized a series of training programs entitled “DBT sponsored Three Months National Training in Molecular Biology and Biotechnology for Fisheries Professionals”.
    [Show full text]