Chemosensory Physiology of Nematodes

Total Page:16

File Type:pdf, Size:1020Kb

Chemosensory Physiology of Nematodes Fundam, appl, NemalOl" 1993, 16 (3), 193-198 Fomm article CHEMOSENSORY PHYSIOLOGY OF NEMATODES Jens AuMANN !nslilute ofPhylopalhology, University of Kiel, Hermann-Rodewald-Slrasse 9, 2300 Kiel l, Germany, Accepted for publication 20 October 1992, Key-words: Nematodes, chemosensory physiology, chemoreception, transduction, transmission, Little is yet known about the subject of this paper. Morphology and distribution of nematode cht. Several sciences like deve!opmental biology have profit­ mosensilla ed from the use of Caenorhabditis elegans as a mode! (Wood, 1988), Although the neuroanatomy of nema­ Nematode chemosensilla are composed of neurons, todes has been weil examined in this model, the neu­ gland cells and supporting cells. The neurons connect rosciences made progress with other animals, The se­ the outer surface with the nerve ring, Their dendritic quencing of the C. elegans genome as part of the Human nerve extensions are located in body pores and are thus Genome Project (Sulston el al., 1992) may, however, in contact with the external environment. The pores are lead to the structural and functional identification of filled with exudates that are produced in gland cells. many yet unknown molecules, and our knowledge of the Using these criteria, several sensilla can be cIassified as physiological processes involved in the recognition of chemosensitive. In the anterior region, amphids are gen­ chernical stimuli in nematodes may progress rapidly. erally considered to have a chemosensitive function. Other approaches appear more complicated. Despite Other anterior sensilla inside body pores with the same successful attempts by Jones el al. (1991) to record elec­ function are the inner labial sensilla, the outer labial trical activity of chemosensory neurons in nematodes, sensilla and the cephalic sensilla. In the posterior region, difficulties in the application of electrophysiological the phasmids of the Secernentea and the spicule recep­ methods are imposed by the small size of plant-parasitic tors of males probably act as chemosensilla. Nematode and free-living nematodes and by the preparation of chemosensilla have been described in detail (McLaren, suitable environmental conditions for animal-parasitic 1976a, b; Coomans, 1979; Wright, 1980, 1983; and species. Coomans & De Grisse, 1981), whereas Chalfie and The senses of taste and smell can be differentiated in White (1988) confined their description to C, elegans. vertebrates and in insects, but this differentiation ap­ A model ofvertebrate and insect olfaction pears meaningless for animais like nematodes that live in aquatic habitats (Schmidt-Nielsen, 1990). 1 will there­ The following model is based on various publications fore use the terms " chemosensilla " for the chemical (Augustine el al., 1987; Vogt el al., 1990; Bruch, 1990; sense organs and" chemosensitive " for their function. Burchell, 1991; Korsching, 1991) according to which The foIlowing paragraphs fust describe briefly the olfactory signaIs bind to the extracellular side of trans­ morphology and distribution of nematode chemosen­ membrane receptor proteins of dendritic nerve exten­ silla and present a model of vertebrate and insect olfac­ sions after they have passed the mucus layer of the ver­ tion. The conformity of this model with our present tebrate olfactory epithelium or the insect sensillum knowledge of nematode chemosensory physiology is Iymph. Binding is followed by the dissociation of the then discussed in the next five paragraphs. They are signal molecules from their receptors. The receptor pro­ arranged in the sequence of events that start with the teins activate G (or guanosine triphosphate-binding) diffusion of signal molecules into the chemosensillum­ proteins on the inner side of the cell membrane, which in associated exudates, i.e. pre-interactive events, receptor turn activate enzymes (adenylate cyclase or phospholi­ events, post-interactive events, transduction, and trans­ pase C) that catalyze the fonnation of secondary mess­ mission. Finally, the prospects for nematode control are engers (cyclic AMP or inositol trisphosphate, respec­ outlined from the data and hypotheses presented in the tively), These messengers then open secondary preceeding paragraphs. This paper is based on an idea messenger-gated ion channels. A rapid ion flux through expressed by Dodd and Castellucci (1991) :" ... ail sen­ the channels changes the e!ectric potential on the mem­ sory systems rely on the same basic principles of proc­ brane surface. This causes the opening of voltage-gated essing and organization not only in humans, but ion channe!s and the generation of an action potential. throughout much of phylogeny, " When the action potential has arrived at the chernical /SSN 1164-5571193/031l 93 06 S 2.60/ © Gaulhie1'-Villars - ORSTOM 193 r- l 2 HAl 1993 J. Aumann synapse between the sensory neuron and a neighbouring Receptor events 2 2 neuron, Ca +-channels are opened. The Ca +influx near Odorant receptor mo1ecules were probably identified the synapse causes the secretion of neurotransmitters at for the first time by Buck and Axel (1991). They the presynaptic side of the synaptic cleft. They bind to showed that these molecules from rat olfactory tissue receptors at the postsynaptic side of the cleft. Finally the belong to a family of G protein-coupled receptor pro­ animal reacts to the olfactory signal, for instance by the teins with seven trans-membrane spanning regions. One activation of motoneurons. of the most intensively studied members of this family is the 13-adrenergic receptor of vertebrates (Kobilka, Pre-interactive events 1992). Nematode receptor molecu]es are probably located In vertebrates and insects, the passage of hydrophobic on the surface of the dendritic nerve extensions of che­ olfactory signais through the aqueous mucus layer of the mosensilla. Little is known about their properties Gans­ vertebrate olfactory epithelium or through the aqueous son, 1987). Lectins, more or less specific carbohydrate­ insect sensillum Iymph may be aided by the binding of binding proteins or glycoproteins, have been shown to the signais to olfactory binding proteins, e.g. the odor­ inhibit the recognition of chemical signals in P. redivivus ant-binding proteins (OBP) of vertebrates and the phe­ Gansson & Nordbring-Hertz, 1984), C. elegans Geya­ romone-binding proteins (PBP) of insects (Carr el al., prakash el al., 1985) and Trichoslrongylus colubriformis 1990; Getchell & Getchell, 1990; Lerner el al., 1990; (Bone & Bottjer, 1985). It was assumed that inhibition Pelosi & Maida, 1990; Pevsner & Snyder, 1990). In ne­ resulted from lectin binding to receptor molecules, in­ matodes, however, signal molecules appear to be hydro­ dicating the occurrence of carbohydrate chains in these philic, because these animais live in aqueous environ­ molecules Gansson, 1987). However, the recognition of ments. Molecules with a function similar to the odorant­ chemical signais by males of Helerodera schachlii could and pheromone-binding proteins of vertebrates and not be inhibited by lectins (Aumann el al., 1990). These insects, respectively, therefore seem to be useless for ne­ differences between species are confirmed by the obser­ matodes. Neverthe1ess, this question is still unresolved, vation of Aumann and Wyss (1992) that severa] lectins since results of Jones el al. (1992) indicate that genes diffused into the amphidial pores of P. redivivus but not coding for proteins similar to insect olfactory binding of H. schachlii. An inhibition of chemorecognition of proteins are present in nematodes. H. schachlii males after treatrnent with the extracellulari­ The composition of gland cell-secreted exudates fill­ Iy acting sulfhydryl reagent mersalyl acid points to the ing the pores of nematode chemosensilla is important, occurrence of disulfide bridges in these molecules (Au­ because signal molecules have to pass the exudates on mann, 1991). Chalfie and Wolinsky (1990) suggested their way toward the receptors. These exudates have that the deg-l gene of C. elegans may encode ion chan­ been identified as glycoproteins in the amphids of Hele­ nels or membrane receptors in the nervous system. rodera schachlii males (Aumann, 1989). Several exper­ iments with other species from ail major trophic groups Post-interactive events have shown that lectins bind specifical!y to the exudates (Forrest & Robertson, 1986; McClure & Stynes, 1988; After binding of signais and the fol!owing transduc­ Aumann & Wyss, 1989; Aumann el al., 1991; Ibrahim, tion, a signal accumulation in the chemosensillum-asso­ 1991) or in the pore region of chemosensilla (Bowman ciated exudates has to be prevented; otherwise a sensi­ el al., 1988; Davis el a!., 1988; Forrest el al., 1988a, b; tive recognition of concentration gradients is not Bird el al., 1989; Robertson el al., 1989), indicating that guarameed (Stengl el al., 1992). Several mechanisms the sensillum exudates contain carbohydrates. It was preventing an accumulation of odorants have been dis­ postulated that sorne of these carbohydrates are sialic cussed : i) uptake into the vertebrate olfactory epitheli­ acids with a function in chemoreception (e.g. Zucker­ um and a subsequent enzymatic degradation (Lazard el man, 1983). They have been proposed to occur at the al., 1991); il) enzymatic degradation in the insect sensil­ chemosensilla of Panagrellus redivivus Gansson lum Iymph r:vogt el al., 1985); iil) binding to phero­ & N ordbring-Hertz, 1983, 1984) and Melozdogyne spp. mone-binding proteins
Recommended publications
  • Journal of Nematology Volume 48 March 2016 Number 1
    JOURNAL OF NEMATOLOGY VOLUME 48 MARCH 2016 NUMBER 1 Journal of Nematology 48(1):1–6. 2016. Ó The Society of Nematologists 2016. Occurrence of Panagrellus (Rhabditida: Panagrolaimidae) Nematodes in a Morphologically Aberrant Adult Specimen of Rhynchophorus ferrugineus (Coleoptera: Dryophthoridae) 1 1 2* 1 1 1 MANUELA CAMEROTA, GIUSEPPE MAZZA, LYNN K. CARTA, FRANCESCO PAOLI, GIULIA TORRINI, CLAUDIA BENVENUTI, 1 1 1 BEATRICE CARLETTI, VALERIA FRANCARDI, AND PIO FEDERICO ROVERSI Abstract: An aberrant specimen of Rhynchophorus ferrugineus (Coleoptera: Dryophthoridae) also known as red palm weevil (RPW), the most economically important insect pest of palms in the world, was found among a batch of conspecifics reared for research purposes. A morphological analysis of this weevil revealed the presence of nematodes associated with a structured cuticle defect of the thorax. These nematodes were not able to be cultured, but were characterized by molecular analysis using 28S and 18S ribosomal DNA and shown to belong to the family Panagrolaimidae (Rhabditida), within a clade of Panagrellus. While most nematodes in the insect were juveniles, a single male adult was partially characterized by light microscopy. Morphometrics showed similarities to a species described from Germany. Excluding the entomopathogenic nematodes (EPN), only five other genera of entomophilic or saprophytic rhabditid nematodes are associated with this weevil. This is the first report of panagrolaimid nematodes associated with this invasive pest. Possible mechanisms of nematode-insect association are discussed. Key words: insect thorax defect, invasive species, nematode phoresy, physiological ecology, saprophagous nematode, sour paste nematode. Rhynchophorus ferrugineus, the RPW, is currently con- with RPW, and consider their possible effects as bio- sidered as the most damaging pest of palm species in control agents (Mazza et al., 2014).
    [Show full text]
  • Entomopathogenic Nematodes 37
    UCLA UCLA Electronic Theses and Dissertations Title Investigating the Neural Circuit for Carbon Dioxide Avoidance Behavior in Caenorhabditis elegans Permalink https://escholarship.org/uc/item/70m1v28x Author Carrillo, Mayra Publication Date 2015 Peer reviewed|Thesis/dissertation eScholarship.org Powered by the California Digital Library University of California UNIVERSITY OF CALIFORNIA Los Angeles Investigating the Neural Circuit for Carbon Dioxide Avoidance Behavior in Caenorhabditis elegans A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Microbiology, Immunology, and Molecular Genetics by Mayra Alejandra Carrillo 2015 ABSTRACT OF THE DISSERTATION Investigating the Neural Circuit for Carbon Dioxide Avoidance Behavior in Caenorhabditis elegans by Mayra Alejandra Carrillo Doctor of Philosophy in Microbiology, Immunology, and Molecular Genetics University of California, Los Angeles, 2015 Professor Elissa A. Hallem, Chair Carbon dioxide (CO2) is a byproduct of oxidative metabolism that can be sensed by different species including mammals, insects, and nematodes and can lead to both physiological and behavioral responses. In the free-living nematode Caenorhabditis elegans the behavioral response can be either avoidance or neutral to CO2, indicating that the behavior is flexible. In this thesis, I investigated the neural basis of behavioral flexibility. We found that the CO2 circuit can be modulated by diverse sensory neurons that respond to ambient oxygen (O2), temperature, and food odor. Additionally, we identified two interneurons downstream of the CO2- sensing BAG neurons, AIY and RIG, that have opposing roles in CO2-evoked responses. A decrease in AIY activity and an increase in RIG activity promote appropriate avoidance behavior to CO2 levels.
    [Show full text]
  • STUDIES on the COPULATORY BEHAVIOUR of the FREE-LIVING NEMATODE PANAGRELLUS REDIVIVUS (GOODEY, 1945). by C.L. DUGGAL M.Sc. (Hons
    STUDIES ON THE COPULATORY BEHAVIOUR OF THE FREE-LIVING NEMATODE PANAGRELLUS REDIVIVUS (GOODEY, 1945). by C.L. DUGGAL M.Sc. (Hons. School) Panjab University A thesis submitted for the degree of Doctor of Philosophy in the University of London Imperial College Field Station, Ashurst Lodge, Sunninghill, Ascot, Berkshire. September 1977 2 AtSTRACT The copulatory behaviour of Panagrellus redivivus is described in detail and an attempt is made to relate copulation with the age and reproductive state of the nematodes. Male P. redivivus show both pre- and post-insemination coiling around the female and they use their spicules for probing and for opening the female gonopore. Morphological studies on the spicules have been made at both the light microscope level and the scanning electron microscope level in order to understand their functional importance during copulation. The process of insemination has been studied in some detail and the morphological changes occurring in the sperm during their migration from the seminal vesicle to the seminal receptacle have been recorded. It was found that during migration the sperm formed long chains by attaching themselves anterio-posteriorly, each sperm producing pseudopodial-like projections. The frequency of copulation in the male nematodes and its influence on the number of sperm produced and on the nematode life- span was examined, and compared with the development and longevity of aging virgin males. The number of sperm shed into the uterus of the female at the time of copulation was found to increase with increasing intervals between copulations. Similar observations were also made on the life-span and oocyte production in copulated and virgin females.
    [Show full text]
  • The Use of Non–Mammalian Infection Models to Study the Pathogenicity of Members of the Genus Burkholderia and Pseudomonas Aeruginosa
    Zurich Open Repository and Archive University of Zurich Main Library Strickhofstrasse 39 CH-8057 Zurich www.zora.uzh.ch Year: 2012 The use of non-mammalian infection models to study the pathogenicity of Pseudomonas aeruginosa and members of the genus Burkholderia Schwager, S Posted at the Zurich Open Repository and Archive, University of Zurich ZORA URL: https://doi.org/10.5167/uzh-74401 Dissertation Originally published at: Schwager, S. The use of non-mammalian infection models to study the pathogenicity of Pseudomonas aeruginosa and members of the genus Burkholderia. 2012, University of Zurich, Faculty of Science. The Use of Non–Mammalian Infection Models to Study the Pathogenicity of Members of the Genus Burkholderia and Pseudomonas aeruginosa Dissertation zur Erlangung der naturwissenschaftlichen Doktorwürde (Dr. sc. nat.) vorgelegt der Mathematisch-naturwissenschaftlichen Fakultät der Universität Zürich von Stephan Alois Michael Schwager aus Frauenfeld (TG) Promotionskomitee Prof. Dr. Leo Eberl (Vorsitz) Prof. Dr. Kathrin Riedel Prof. Dr. Jakob Pernthaler Zürich, 2012 Meiner Familie Table of Contents I. Summary ..................................................................................................................................... I II. Zusammenfassung ......................................................................................................................III III. Abbreviations ............................................................................................................................. V 1
    [Show full text]
  • Mating Clusters in the Mosquito Parasitic Nematode, Strelkovimermis Spiculatus ⇑ Limin Dong A,B,C, Manar Sanad D, Yi Wang C, Yanli Xu A,B, , Muhammad S.M
    Journal of Invertebrate Pathology 117 (2014) 19–25 Contents lists available at ScienceDirect Journal of Invertebrate Pathology journal homepage: www.elsevier.com/locate/jip Mating clusters in the mosquito parasitic nematode, Strelkovimermis spiculatus ⇑ Limin Dong a,b,c, Manar Sanad d, Yi Wang c, Yanli Xu a,b, , Muhammad S.M. Shamseldean d, Randy Gaugler c a Northeast Agricultural University, 59 Mucai Street, Xiangfang District, Harbin 150030, PR China b Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, 138 Haping Road, Harbin 150081, PR China c Center for Vector Biology, Rutgers University, 180 Jones Avenue, New Brunswick, NJ 08901-8536, USA d Department of Zoology and Agricultural Nematology, Faculty of Agriculture, Cairo University, 12613 Giza, Egypt article info abstract Article history: Mating aggregations in the mosquito parasitic nematode, Strelkovimermis spiculatus, were investigated in Received 26 November 2013 the laboratory. Female postparasites, through their attraction of males and, remarkably, other females, Accepted 23 January 2014 drive the formation of mating clusters. Clusters may grow in size by merging with other individual or Available online 31 January 2014 clusters. Female molting to the adult stage and reproductive success are enhanced in larger clusters. Male mating behavior is initiated when the female begins to molt to the adult stage by shedding dual juvenile Keywords: cuticles posteriorly. Males coil their tail around the adult cuticle, migrating progressively along the Strelkovimermis spiculatus female in intimate synchrony with the molting cuticle until the vulva is exposed and mating can occur. Aggregation The first arriving male is assured of access to a virgin female, as his intermediate location between the Copulatory plug Male–male competition vulva and subsequently arriving males blocks these competitors.
    [Show full text]
  • Improving Nematode Culture Techniques and Their Effects On
    Journal of Applied Ichthyology J. Appl. Ichthyol. 31 (2015), 1–9 Received: April 5, 2014 © 2014 Blackwell Verlag GmbH Accepted: June 3, 2014 ISSN 0175–8659 doi: 10.1111/jai.12645 Improving nematode culture techniques and their effects on amino acid profile with considerations on production costs By B. H. Buck1,2,J.Bruggemann€ 3, M. Hundt4, A. A. Bischoff5, B. Grote1, S. Strieben1 and W. Hagen6 1Alfred Wegener Institute, Helmholtz Center for Polar and Marine Research (AWI), Bremerhaven, Germany; 2University of Applied Science, Bremerhaven, Germany; 3Institute for Marine Resources (IMARE), Bremerhaven, Germany; 4Institute for Environmental Sciences, University of Koblenz-Landau, Landau, Germany; 5Lehrstuhl fur€ Aquakultur und Sea-Ranching, Agrar- und Umweltwissenschaftliche Fakultat€ der Universitat€ Rostock, Rostock, Germany; 6Marine Zoology, University of Bremen, Bremen, Germany Summary ing diversification of aquaculture and the lack of knowledge The purpose of this study was to investigate the effectiveness about new species concerning their nutrient requirements. of 11 different culture media for production of the free-living Aquaculture thus still depends on live food for the initial nematode Turbatrix aceti. Several other harvesting methods feeding period. Although substantial efforts have been were tested in addition to mass production. A further focus invested in the development of small particle-sized formu- was the investigation of amino acid alterations caused by the lated feeds for the culture of fish and crustacean larvae, application of various media during the culture of T. aceti numerous species still depend on live food to meet their and two additional nematode species, Panagrellus redivivus nutritional requirements during the onset of exogenous feed- and Caenorhabditis elegans.
    [Show full text]
  • Bacterial-Feeding Nematode Growth and Preference for Biocontrol Isolates of the Bacterium Burkholderia Cepacia
    Journal of Nematology 32(4):362–369. 2000. © The Society of Nematologists 2000. Bacterial-Feeding Nematode Growth and Preference for Biocontrol Isolates of the Bacterium Burkholderia cepacia Lynn K. Carta1 Abstract: The potential of different bacterial-feeding Rhabditida to consume isolates of Burkholderia cepacia with known agricultural biocontrol ability was examined. Caenorhabditis elegans, Diploscapter sp., Oscheius myriophila, Pelodera strongyloides, Pristionchus pacificus, Zeldia punctata, Panagrellus redivivus, and Distolabrellus veechi were tested for growth on and preference for Escherichia coli OP50 or B. cepacia maize soil isolates J82, BcF, M36, Bc2, and PHQM100. Considerable growth and preference variations occurred between nematode taxa on individual bacterial isolates, and between different bacterial isolates on a given nematode. Populations of Diploscapter sp. and P. redivivus were most strongly suppressed. Only Z. punctata and P. pacificus grew well on all isolates, though Z. punctata preferentially accumulated on all isolates and P. pacificus had no preference. Oscheius myriophila preferentially accumulated on growth- supportive Bc2 and M36, and avoided less supportive J82 and PHQM100. Isolates with plant-parasitic nematicidal properties and poor fungicidal properties supported the best growth of three members of the Rhabditidae, C. elegans, O. myriophila, and P. strongyloides. Distolabrellus veechi avoided commercial nematicide M36 more strongly than fungicide J82. Key words: accumulation, attraction Caenorhabditis elegans, Diploscapter sp., Distolabrellus veechi, ecology, Escherichia coli OP50, nutrition, Oscheius myriophila, Panagrellus redivivus, Pelodera strongyloides, phylogeny, Pristionchus pacificus, repellence, Rhabditida, toxicity, Zeldia punctata. Bacterial-feeding nematodes are impor- pacia (ex Burkholder) Palleroni and Holmes, tant for soil-nutrient cycling in agricultural 1981). Current taxonomic opinion suggests systems (Freckman and Caswell, 1985).
    [Show full text]
  • Alternative Larval Diets and Generational Time For
    ALTERNATIVE LARVAL DIETS AND GENERATIONAL TIME FOR GULF OF MEXICO BLENNY SPECIES An Undergraduate Research Scholars Thesis by FRED SHOPNITZ Submitted to the Undergraduate Research Scholars program Texas A&M University in partial fulfillment of the requirements for the designation as an UNDERGRADUATE RESEARCH SCHOLAR Approved by Research Advisor: Dr. Ron I Eytan May 2016 Major: Marine Fisheries TABLE OF CONTENTS Page ABSTRACT .................................................................................................................................. 1 ACKNOWLEDGEMENTS ......................................................................................................... 2 CHAPTER (or SECTION) I INTRODUCTION ................................................................................................ 3 II METHODS ........................................................................................................... 7 Adult fish .............................................................................................................. 7 Cultured species .................................................................................................... 8 Larval fish ............................................................................................................. 9 III RESULTS ........................................................................................................... 11 Adult fish ........................................................................................................... 11 Cultured
    [Show full text]
  • Metabarcoding Data Allow for Reliable Biomass Estimates in the Most Abundant Animals on Earth
    Metabarcoding and Metagenomics 3: 117–126 DOI 10.3897/mbmg.3.46704 Research Article Metabarcoding data allow for reliable biomass estimates in the most abundant animals on earth Janina Schenk1, Stefan Geisen2, Nils Kleinbölting3, Walter Traunspurger1 1 Department of Animal Ecology, Bielefeld University, Konsequenz 45, 33615, Bielefeld, Germany 2 Laboratory of Nematology, Wageningen University and Research, 6700 ES Wageningen/ Department of Terrestrial Ecology, Netherlands Institute of Ecology NIOO-KNAW, 6708, PB Wageningen, The Netherlands 3 Center for Biotechnology, Bielefeld University, Universitaetsstrasse 25, 33615, Bielefeld, Germany Corresponding author: Janina Schenk ([email protected]) Academic editor: M. T. Monaghan | Received 24 September 2019 | Accepted 28 November 2019 | Published 13 December 2019 Abstract Microscopic organisms are the dominant and most diverse organisms on Earth. Nematodes, as part of this microscopic diversity, are by far the most abundant animals and their diversity is equally high. Molecular metabarcoding is often applied to study the diversity of microorganisms, but has yet to become the standard to determine nematode communities. As such, the information metabar- coding provides, such as in terms of species coverage, taxonomic resolution and especially if sequence reads can be linked to the abundance or biomass of nematodes in a sample, has yet to be determined. Here, we applied metabarcoding using three primer sets located within ribosomal rRNA gene regions to target assembled mock-communities consisting of 18 different nematode species that we established in 9 different compositions. We determined abundances and biomass of all species added to examine if relative sequence abundance or biomass can be linked to relative sequence reads.
    [Show full text]
  • Comparative Genomics of the Major Parasitic Worms
    Edinburgh Research Explorer Comparative genomics of the major parasitic worms Citation for published version: International Helminth Genomes Consortium 2019, 'Comparative genomics of the major parasitic worms', Nature Genetics, vol. 51, no. 1, pp. 163-174. https://doi.org/10.1038/s41588-018-0262-1 Digital Object Identifier (DOI): 10.1038/s41588-018-0262-1 Link: Link to publication record in Edinburgh Research Explorer Document Version: Publisher's PDF, also known as Version of record Published In: Nature Genetics Publisher Rights Statement: Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. Te images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. © The Author(s) 2018 General rights Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.
    [Show full text]
  • Comparison of Morphological, DNA Barcoding, and Metabarcoding Characterizations of Freshwater Nematode Communities
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Publications at Bielefeld University Received: 30 April 2019 | Revised: 12 January 2020 | Accepted: 28 January 2020 DOI: 10.1002/ece3.6104 ORIGINAL RESEARCH Comparison of morphological, DNA barcoding, and metabarcoding characterizations of freshwater nematode communities Janina Schenk1 | Nils Kleinbölting2 | Walter Traunspurger1 1Department of Animal Ecology, Bielefeld University, Bielefeld, Germany Abstract 2Center for Biotechnology, Bielefeld Biomonitoring approaches and investigations of many ecological questions require University, Bielefeld, Germany assessments of the biodiversity of a given habitat. Small organisms, ranging from Correspondence protozoans to metazoans, are of great ecological importance and comprise a major Janina Schenk, Department of Animal share of the planet's biodiversity but they are extremely difficult to identify, due to Ecology, Bielefeld University, Konsequenz 45, 33615 Bielefeld, Germany. their minute body sizes and indistinct structures. Thus, most biodiversity studies that Email: [email protected] include small organisms draw on several methods for species delimitation, ranging Funding information from traditional microscopy to molecular techniques. In this study, we compared the Bundesministerium für Bildung und efficiency of these methods by analyzing a community of nematodes. Specifically, we Forschung, Grant/Award Number: 031A533; Federal Institute of Hydrology (BfG) evaluated the performances of traditional morphological identification, single-speci- men barcoding (Sanger sequencing), and metabarcoding in the identification of 1500 nematodes from sediment samples. The molecular approaches were based on the analysis of the 28S ribosomal large and 18S small subunits (LSU and SSU). The mor- phological analysis resulted in the determination of 22 nematode species.
    [Show full text]
  • Fungi–Nematode Interactions: Diversity, Ecology, and Biocontrol Prospects in Agriculture
    Journal of Fungi Review Fungi–Nematode Interactions: Diversity, Ecology, and Biocontrol Prospects in Agriculture Ying Zhang 1, Shuoshuo Li 1,2, Haixia Li 1,2, Ruirui Wang 1,2, Ke-Qin Zhang 1,* and Jianping Xu 1,3,* 1 State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, and Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, Yunnan University, Kunming 650032, China; [email protected] (Y.Z.); [email protected] (S.L.); [email protected] (H.L.); [email protected] (R.W.) 2 School of Life Science, Yunnan University, Kunming 650032, China 3 Department of Biology, McMaster University, Hamilton, ON L8S 4K1, Canada * Correspondence: [email protected] (K.-Q.Z.); [email protected] (J.X.) Received: 15 September 2020; Accepted: 2 October 2020; Published: 4 October 2020 Abstract: Fungi and nematodes are among the most abundant organisms in soil habitats. They provide essential ecosystem services and play crucial roles for maintaining the stability of food-webs and for facilitating nutrient cycling. As two of the very abundant groups of organisms, fungi and nematodes interact with each other in multiple ways. Here in this review, we provide a broad framework of interactions between fungi and nematodes with an emphasis on those that impact crops and agriculture ecosystems. We describe the diversity and evolution of fungi that closely interact with nematodes, including food fungi for nematodes as well as fungi that feed on nematodes. Among the nematophagous fungi, those that produce specialized nematode-trapping devices are especially interesting, and a great deal is known about their diversity, evolution, and molecular mechanisms of interactions with nematodes.
    [Show full text]