Bacterial-Feeding Nematode Growth and Preference for Biocontrol Isolates of the Bacterium Burkholderia Cepacia

Total Page:16

File Type:pdf, Size:1020Kb

Bacterial-Feeding Nematode Growth and Preference for Biocontrol Isolates of the Bacterium Burkholderia Cepacia Journal of Nematology 32(4):362–369. 2000. © The Society of Nematologists 2000. Bacterial-Feeding Nematode Growth and Preference for Biocontrol Isolates of the Bacterium Burkholderia cepacia Lynn K. Carta1 Abstract: The potential of different bacterial-feeding Rhabditida to consume isolates of Burkholderia cepacia with known agricultural biocontrol ability was examined. Caenorhabditis elegans, Diploscapter sp., Oscheius myriophila, Pelodera strongyloides, Pristionchus pacificus, Zeldia punctata, Panagrellus redivivus, and Distolabrellus veechi were tested for growth on and preference for Escherichia coli OP50 or B. cepacia maize soil isolates J82, BcF, M36, Bc2, and PHQM100. Considerable growth and preference variations occurred between nematode taxa on individual bacterial isolates, and between different bacterial isolates on a given nematode. Populations of Diploscapter sp. and P. redivivus were most strongly suppressed. Only Z. punctata and P. pacificus grew well on all isolates, though Z. punctata preferentially accumulated on all isolates and P. pacificus had no preference. Oscheius myriophila preferentially accumulated on growth- supportive Bc2 and M36, and avoided less supportive J82 and PHQM100. Isolates with plant-parasitic nematicidal properties and poor fungicidal properties supported the best growth of three members of the Rhabditidae, C. elegans, O. myriophila, and P. strongyloides. Distolabrellus veechi avoided commercial nematicide M36 more strongly than fungicide J82. Key words: accumulation, attraction Caenorhabditis elegans, Diploscapter sp., Distolabrellus veechi, ecology, Escherichia coli OP50, nutrition, Oscheius myriophila, Panagrellus redivivus, Pelodera strongyloides, phylogeny, Pristionchus pacificus, repellence, Rhabditida, toxicity, Zeldia punctata. Bacterial-feeding nematodes are impor- pacia (ex Burkholder) Palleroni and Holmes, tant for soil-nutrient cycling in agricultural 1981). Current taxonomic opinion suggests systems (Freckman and Caswell, 1985). this is a polyphyletic species (Govan et al., Plant productivity might be affected if ap- 1996) where some isolates are plant or op- plied biocontrol bacteria were toxic to these portunistic-human pathogens (Hales et al., common non-target organisms. Alterna- 1998). Isolates of this gram-negative bacte- tively, some soil bacterial-feeding nematodes rium are commonly found in soil and water. may consume applied biocontrol bacteria. A number of biocontrol strains with excel- Acrobeloides nanus is known to feed on and lent rhizosphere-colonizing ability have reduce the field efficacy of the introduced been isolated from maize rhizospheres bacterial-biocontrol agent, Pseudomonas cor- (Hebbar et al., 1992a). rugata, against Gaumannomyces graminis, the Burkholderia cepacia isolate M36 is regis- take-all fungus of wheat (Ryder and Bird, tered with the U.S. Environmental Protec- 1983). tion Agency as a nematicide (Stine Micro- Another agriculturally important bacte- bial Products, marketed by Market VI, L. L. rium applied as a biocontrol agent is Burk- C., Shawnee, KS) against plant-parasitic holderia cepacia (ex Burkholder) Yabuuchi, nematodes except for cyst nematodes (Noel, Kosako, Oyaizu, Yano, Hotta, Hashimoto, 1990) but has shown variable nematicidal ac- Ezaki and Arakawa, 1993 (= Pseudomonas ce- tivity (J. O. Becker, pers. comm.). Burkhold- eria cepacia isolates Bc2 (Meyer et al., 2000) Received for publication 1 November 1999. and BcF (unpub.) reduced populations of 1 Research Plant Pathologist, USDA, ARS, Nematology Labo- root-knot nematodes. A soil isolate of B. ce- ratory, Bldg. 011A, Rm. 165B, BARC-West, 10300 Baltimore Ave., Beltsville, MD 20705-2350. pacia that was not associated with maize sup- Mention of trade names or commercial products in this pub- ported good population growth of the bac- lication is solely for the purpose of providing specific informa- tion and does not imply recommendation or endorsement by terial-feeders Acrobeloides sp. (Cephalobidae) the U. S. Department of Agriculture. and Pristionchus lheritieri (Neodiplogastri- The author thanks S. Ochs and K. Campbell for lab help; P. Martin, D. P. Roberts, and K. P. Hebbar for advice; V. Illum, D. dae) (Anderson and Coleman, 1981; Ander- P. Roberts, K. P. Hebbar, W. Mao, D. H. A. Fitch, and the Caenorhabditis Genetics Center for cultures. The author also son et al., 1981). However, nothing is known thanks S. L. F. Meyer, K. P. Hebbar, L. Levy, and E. Bernard for about the effects of maize-associated isolates manuscript review. E-mail: [email protected] with pesticidal properties on non-target bac- This paper was edited by P. Grewal. terial-feeding nematode survival or bacterial 362 Growth and Attraction for Burkholderia cepacia: Carta 363 consumption. Part of the variable plant- as noted. They include Oscheius myriophila parasitic nematode control may be a result DF5020 (Rhabditidae: Rhabditinae) (from of bacterial-feeding nematodes using B. ce- D. Fitch, New York University, New York, NY pacia as an energy source. Nematicidal iso- 10003); Caenorhabditis elegans N2 (Rhabditi- lates, however, might kill or repel bacterial- dae: Peloderinae) and Panagrellus redivivus feeders before the nematodes can consume PS1163 (Panagrolaimidae) (from the Cae- substantial amounts of bacteria. Therefore, norhabditis Genetics Center (CGC), Univer- one objective of this study was to determine sity of Minnesota, 1445 Gortner Ave., St. whether different B. cepacia isolates might Paul, MN 55108); Diploscapter sp. PS2123 differentially attract and support growth of (Diploscapteridae); Pelodera strongyloides different nematode species. The null hy- PS1129 (Rhabditidae: Peloderinae); Pristion- pothesis is that all isolates equally support chus pacificus PS312 (Neodiplogastridae); growth and do not repel all bacterial- Distolabrellus veechi LKC10 (Rhabditidae: Me- feeding nematodes. sorhabditinae); and Zeldia punctata PS1192 None of the B. cepacia soil isolates tested (Cephalobidae). Voucher specimens are de- so far have shown human-pathogenic poten- posited in the U.S. Department of Agricul- tial (Hales et al., 1998), but the bacterium is ture Collection, Beltsville, Maryland. known to be highly mutable and resistant to All nematode stock cultures were grown at antibiotics. Under certain conditions, nor- 20 °C on NGM agar spotted with Escherichia mally benign environmental B. cepacia coli OP50 (CGC, St. Paul, MN) grown in L- strains might be transmissible to cystic- Broth at 37 °C and transferred from a stock fibrosis patients. Because of this concern for LB agar plate (Stiernagle, 1999). Besides its B. cepacia strains in the agricultural environ- use for stock cultures, E. coli is used here ment (Holmes et al., 1998), nematodes that experimentally as a bacterial control to com- consume this bacterium may be useful pare population growth or relative prefer- agents for environmental remediation. ence with B. cepacia isolates. Better discrimination among agricultur- All B. cepacia cultures used in this study ally and medically important B. cepacia iso- were isolated from maize rhizospheres and lates and their modes of action might also have demonstrated biocontrol potential. be obtained from Caenorhabditis elegans mu- These include antifungal isolates J82 (EPA tants with pharmacologically interesting registration no. 006419) (Mao et al., 1997), genes (Rand and Johnson, 1995). There- BcF (Mao et al., 1998), PHQM100 (Hebbar fore, a second purpose of this study was to et al., 1998), and plant-parasitic nematode quantify growth support of C. elegans on B. suppressive isolates M36 (nematicide, EPA cepacia isolates as a basis for future genetic or registration no. 006464, Stine Microbials, toxicological tests. The population quantifi- Adel, IA) and Bc2 (Meyer et al., 2000). Burk- cation also serves as a check on the reliability holderia cepacia sources and alternate isolate of the growth-rating scale for this nematode. designations with American Type Culture Collection (ATCC) numbers and Agricul- Materials and Methods tural Research Service (USDA-ARS) num- bers include (i) Stine Microbials, Adel, Iowa, The bacterial-feeding nematodes used in for Wisconsin isolates J82 (alternate desig- the assays were selected to represent distinct nations = ATCC 51993 or ARS BcB) and groups within the Rhabditida based on mo- M36 (= ATCC 51995 or ARS B18379); (ii) D. lecular (Baldwin et al., 1997; Blaxter et al., P. Roberts and K. P. Hebbar, USDA, Belts- 1998) and morphological criteria (Andrassy, ville, Maryland, for Maryland isolates ARS 1984; Sudhaus, 1976). Nematodes used in Bc2 and ARS BcF; and (iii) K. P. Hebbar for the study were isolated and identified by the French isolate PHQM100. author in the current lab (LKC) or in the Bacterial stock cultures were grown Sternberg lab (PS) at the California Institute monthly on nutrient agar plates incubated of Technology, Pasadena, California, except for 24 hours at 30 °C. For experimental use, 364 Journal of Nematology, Volume 32, No. 4, December 2000 most bacteria were grown for 24 hours in as evidenced by severely reduced optical nutrient broths (Difco Laboratories, De- density. troit, MI) to achieve densities of 106 to 107 Preference plate tests: Nematodes were CFU/ml. Isolates Bc2 and M36 required an grown to adulthood on lawns of E. coli OP50 extra 12–24 hours to reach this density. on NGM agar plates and rinsed once with Burkholderia strains were grown at 30 °C and sterile distilled water from plates recently E. coli at 37 °C. depleted of bacteria to reduce interference
Recommended publications
  • Oscheius Tipulae* §
    Oscheius tipulae* § Marie-Anne Félix , Institut Jacques Monod, CNRS – Universités Paris, 75251 Paris cedex 05, France Table of Contents 1. Phylogenetic relationships ......................................................................................................... 2 1.1. Phylogenetic position of the Oscheius genus .......................................................................2 1.2. The Oscheius genus .......................................................................................................2 2. Natural populations .................................................................................................................. 3 2.1. Ecology .......................................................................................................................3 2.2. Isolation and wild genetic resources .................................................................................. 3 2.3. Population genetics ........................................................................................................ 3 3. Basic biology in the laboratory ................................................................................................... 3 4. Genetics .................................................................................................................................3 4.1. Basic forward genetic methods ........................................................................................ 3 4.2. Available mutants ........................................................................................................
    [Show full text]
  • Towards Universal Forward Genetics: Using a Draft Genome Sequence of the Nematode Oscheius Tipulae to Identify Mutations Affecting Vulva Development
    Genetics: Early Online, published on June 19, 2017 as 10.1534/genetics.117.203521 Towards universal forward genetics: using a draft genome sequence of the nematode Oscheius tipulae to identify mutations affecting vulva development 5 Fabrice Besnard*1,2,3, Georgios Koutsovoulos†1,4, Sana Dieudonné*, Mark Blaxter†,5 and Marie-Anne Félix*2,5 10 * Ecole Normale Supérieure, PSL Research University, CNRS, Inserm, Institut de Biologie de l'Ecole Normale Supérieure, 75005 Paris, France † Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, UK 1 Co-first authors. 2 Co-corresponding authors: [email protected], [email protected] 3 Current Address: Laboratoire de Reproduction de développement des plantes, Lyon, France; 15 4 Current Address: INRA, Université Côte d’Azur, CNRS, ISA, France 5 Co-last authors Besnard F., Koutsovoulos G. et al. Oscheius Mapping-by-sequencing 1/48 Copyright 2017. Running title: Oscheius Mapping-by-sequencing Key words : Oscheius tipulae, genome assembly, mapping-by sequencing, vulva development, mig-13 Co-corresponding authors: Fabrice Besnard Address: Laboratoire Reproduction et Développement des Plantes (RDP) 20 Ecole Normale Supérieure de Lyon (ENS-Lyon) 46, allée d'Italie, 69364 LYON Cedex 07. Tel: +33-4-72-72-86-05 mail: [email protected] Marie-Anne Félix Address: Institute of Biology of the Ecole Normale Supérieure (IBENS) 25 46 rue d'Ulm, 75230 Paris cedex 05, France Tel: +33-1-44-32-39-44 mail: [email protected] Besnard F., Koutsovoulos G. et al. Oscheius Mapping-by-sequencing 2/48 Abstract Mapping-by-sequencing has become a standard method to map and identify phenotype-causing mutations in model species.
    [Show full text]
  • Tokorhabditis N. Gen
    www.nature.com/scientificreports OPEN Tokorhabditis n. gen. (Rhabditida, Rhabditidae), a comparative nematode model for extremophilic living Natsumi Kanzaki1, Tatsuya Yamashita2, James Siho Lee3, Pei‑Yin Shih4,5, Erik J. Ragsdale6 & Ryoji Shinya2* Life in extreme environments is typically studied as a physiological problem, although the existence of extremophilic animals suggests that developmental and behavioral traits might also be adaptive in such environments. Here, we describe a new species of nematode, Tokorhabditis tufae, n. gen., n. sp., which was discovered from the alkaline, hypersaline, and arsenic‑rich locale of Mono Lake, California. The new species, which ofers a tractable model for studying animal‑specifc adaptations to extremophilic life, shows a combination of unusual reproductive and developmental traits. Like the recently described sister group Auanema, the species has a trioecious mating system comprising males, females, and self‑fertilizing hermaphrodites. Our description of the new genus thus reveals that the origin of this uncommon reproductive mode is even more ancient than previously assumed, and it presents a new comparator for the study of mating‑system transitions. However, unlike Auanema and almost all other known rhabditid nematodes, the new species is obligately live‑bearing, with embryos that grow in utero, suggesting maternal provisioning during development. Finally, our isolation of two additional, molecularly distinct strains of the new genus—specifcally from non‑extreme locales— establishes a comparative system for the study of extremophilic traits in this model. Extremophilic animals ofer a window into how development, sex, and behavior together enable resilience to inhospitable environments. A challenge to studying such animals has been to identify those amenable to labo- ratory investigation1,2.
    [Show full text]
  • Downloaded from Wormbase.Org
    Kraus et al. EvoDevo (2017) 8:16 DOI 10.1186/s13227-017-0081-y EvoDevo RESEARCH Open Access Diferences in the genetic control of early egg development and reproduction between C. elegans and its parthenogenetic relative D. coronatus Christopher Kraus1,4† , Philipp H. Schifer1,2*† , Hiroshi Kagoshima3, Hideaki Hiraki3, Theresa Vogt1,5, Michael Kroiher1 , Yuji Kohara3 and Einhard Schierenberg1 Abstract Background: The free-living nematode Diploscapter coronatus is the closest known relative of Caenorhabditis elegans with parthenogenetic reproduction. It shows several developmental idiosyncracies, for example concerning the mode of reproduction, embryonic axis formation and early cleavage pattern (Lahl et al. in Int J Dev Biol 50:393–397, 2006). Our recent genome analysis (Hiraki et al. in BMC Genomics 18:478, 2017) provides a solid foundation to better understand the molecular basis of developmental idiosyncrasies in this species in an evolutionary context by com- parison with selected other nematodes. Our genomic data also yielded indications for the view that D. coronatus is a product of interspecies hybridization. Results: In a genomic comparison between D. coronatus, C. elegans, other representatives of the genus Caenorhab- ditis and the more distantly related Pristionchus pacifcus and Panagrellus redivivus, certain genes required for central developmental processes in C. elegans like control of meiosis and establishment of embryonic polarity were found to be restricted to the genus Caenorhabditis. The mRNA content of early D. coronatus embryos was sequenced and compared with similar stages in C. elegans and Ascaris suum. We identifed 350 gene families transcribed in the early embryo of D. coronatus but not in the other two nematodes.
    [Show full text]
  • Zootaxa,Comparison of the Cryptic Nematode Species Caenorhabditis
    Zootaxa 1456: 45–62 (2007) ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ ZOOTAXA Copyright © 2007 · Magnolia Press ISSN 1175-5334 (online edition) Comparison of the cryptic nematode species Caenorhabditis brenneri sp. n. and C. remanei (Nematoda: Rhabditidae) with the stem species pattern of the Caenorhabditis Elegans group WALTER SUDHAUS1 & KARIN KIONTKE2 1Institut für Biologie/Zoologie, AG Evolutionsbiologie, Freie Universität Berlin, Königin-Luise Straße 1-3, 14195 Berlin, Germany. [email protected] 2Department of Biology, New York University, 100 Washington Square E., New York, NY10003, USA. [email protected] Abstract The new gonochoristic member of the Caenorhabditis Elegans group, C. brenneri sp. n., is described. This species is reproductively isolated at the postmating level from its sibling species, C. remanei. Between these species, only minute morphological differences are found, but there are substantial genetic differences. The stem species pattern of the Ele- gans group is reconstructed. C. brenneri sp. n. deviates from this character pattern only in small diagnostic characters. In mating tests of C. brenneri sp. n. females with C. remanei males, fertilization takes place and juveniles occasionally hatch. In the reverse combination, no offspring were observed. Individuals from widely separated populations of each species can be crossed successfully (e.g. C. brenneri sp. n. populations from Guadeloupe and Sumatra, or C. remanei populations from Japan and Germany). Both species have been isolated only from anthropogenic habitats, rich in decom- posing organic material. C. brenneri sp. n. is distributed circumtropically, C. remanei is only found in northern temperate regions. To date, no overlap of the ranges was found.
    [Show full text]
  • Research/Investigación Addition of a New Insect Parasitic Nematode, Oscheius Tipulae, to Iranian Fauna
    RESEARCH/INVESTIGACIÓN ADDITION OF A NEW INSECT PARASITIC NEMATODE, OSCHEIUS TIPULAE, TO IRANIAN FAUNA J. Karimi1*, N. Rezaei1, and E. Shokoohi2 1Biocontrol and Insect Pathology Lab., Department of Plant Protection, Ferdowsi University of Mashhad, PO Box 91775-1163, Mashhad, Iran; 2Unit for Environmental Sciences and Management, Potchefstroom, North West University, South Africa; *Corresponding author: [email protected] ABSTRACT Karimi, J., N. Rezaei, and E. Shokoohi. 2018. Addition of a new insect parasitic nematode, Oscheius tipulae, to Iranian fauna. Nematropica 48:00-00. On behalf of an ongoing project on diversity of insect pathogenic and insect parasitic nematodes of Iran, a new species was collected and characterized. This species was collected in soil from the Mashhad, Arak, and Mahalat regions of Iran through 2011-2012 using Galleria larvae baits. Based on morphologic and morphometric traits as well as SEM images, the species tentatively has been identified as Oscheius tipulae. Phylogenetic analysis based on ITS and 18S rDNA genes confirmed the species delimitation. This is the first record of this species from Iran. Key words: 18S rDNA, insect parasitic nematode, Iran, ITS, Oscheius tipulae, SEM RESUMEN Karimi, J., N. Rezaei, y E. Shokoohi. 2018. Adición de un nuevo nematodo parásito de insectos, Oscheius tipulae, a la fauna Irán. Nematropica 48:00-00. En nombre de un proyecto en curso sobre diversidad de patógenos de insectos y nematodos parásitos de insectos de Irán, se recolectó y caracterizó una nueva especie. Esta especie fue recolectada en suelo de las regiones de Mashhad, Arak y Mahalat de Irán durante el período 2011-2012 utilizando cebos Galleria.
    [Show full text]
  • Genome-Wide Analysis of Gene Expression in Halicephalobus Mephisto
    © COPYRIGHT by Deborah Jane Weinstein 2019 ALL RIGHTS RESERVED GENOME-WIDE ANALYSIS OF GENE EXPRESSION IN HALICEPHALOBUS MEPHISTO (THE DEVIL WORM) BY Deborah Jane Weinstein ABSTRACT The nematode Halicephalobus mephisto was discovered in an isolated aquifer, 1.3km below ground. H. mephisto thrives under extreme conditions including elevated heat (37.2°C) and minimal oxygen, classifying it as an extremophile. H. mephisto is a vital discovery for evolution and adaptation, with particular interest in its thermophilic abilities. Here we report the full transcriptome and genome of H. mephisto. In the process we identified a unique adaptation: over amplification of AIG1 and Hsp70 genes, with 168 and 142 domains respectively. Hsp70 was over-expressed under elevated heat conditions, along with ARMET and Bax inhibitor-1, suggesting these genes help H. mephisto to survive elevated heat. AIG1 was not upregulated in elevated heat suggesting its use for non-heat abiotic stressors such as hypoxia. This paper sheds light on the genomic adaptations that have evolved in H. mephisto to survive its challenging environment. ii TABLE OF CONTENTS ABSTRACT .................................................................................................................. ii LIST OF TABLES ............................................................................................................. iv LIST OF ILLUSTRATIONS .............................................................................................. v LIST OF ABBREVIATIONS ...........................................................................................
    [Show full text]
  • Functional Diversity of Soil Nematodes in Relation to the Impact of Agriculture—A Review
    diversity Review Functional Diversity of Soil Nematodes in Relation to the Impact of Agriculture—A Review Stela Lazarova 1,* , Danny Coyne 2 , Mayra G. Rodríguez 3 , Belkis Peteira 3 and Aurelio Ciancio 4,* 1 Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, 2 Y. Gagarin Str., 1113 Sofia, Bulgaria 2 International Institute of Tropical Agriculture (IITA), Kasarani, Nairobi 30772-00100, Kenya; [email protected] 3 National Center for Plant and Animal Health (CENSA), P.O. Box 10, Mayabeque Province, San José de las Lajas 32700, Cuba; [email protected] (M.G.R.); [email protected] (B.P.) 4 Consiglio Nazionale delle Ricerche, Istituto per la Protezione Sostenibile delle Piante, 70126 Bari, Italy * Correspondence: [email protected] (S.L.); [email protected] (A.C.); Tel.: +359-8865-32-609 (S.L.); +39-080-5929-221 (A.C.) Abstract: The analysis of the functional diversity of soil nematodes requires detailed knowledge on theoretical aspects of the biodiversity–ecosystem functioning relationship in natural and managed terrestrial ecosystems. Basic approaches applied are reviewed, focusing on the impact and value of soil nematode diversity in crop production and on the most consistent external drivers affecting their stability. The role of nematode trophic guilds in two intensively cultivated crops are examined in more detail, as representative of agriculture from tropical/subtropical (banana) and temperate (apple) climates. The multiple facets of nematode network analysis, for management of multitrophic interactions and restoration purposes, represent complex tasks that require the integration of different interdisciplinary expertise. Understanding the evolutionary basis of nematode diversity at the field Citation: Lazarova, S.; Coyne, D.; level, and its response to current changes, will help to explain the observed community shifts.
    [Show full text]
  • Developmental Plasticity, Ecology, and Evolutionary Radiation of Nematodes of Diplogastridae
    Developmental Plasticity, Ecology, and Evolutionary Radiation of Nematodes of Diplogastridae Dissertation der Mathematisch-Naturwissenschaftlichen Fakultät der Eberhard Karls Universität Tübingen zur Erlangung des Grades eines Doktors der Naturwissenschaften (Dr. rer. nat.) vorgelegt von Vladislav Susoy aus Berezniki, Russland Tübingen 2015 Gedruckt mit Genehmigung der Mathematisch-Naturwissenschaftlichen Fakultät der Eberhard Karls Universität Tübingen. Tag der mündlichen Qualifikation: 5 November 2015 Dekan: Prof. Dr. Wolfgang Rosenstiel 1. Berichterstatter: Prof. Dr. Ralf J. Sommer 2. Berichterstatter: Prof. Dr. Heinz-R. Köhler 3. Berichterstatter: Prof. Dr. Hinrich Schulenburg Acknowledgements I am deeply appreciative of the many people who have supported my work. First and foremost, I would like to thank my advisors, Professor Ralf J. Sommer and Dr. Matthias Herrmann for giving me the opportunity to pursue various research projects as well as for their insightful scientific advice, support, and encouragement. I am also very grateful to Matthias for introducing me to nematology and for doing an excellent job of organizing fieldwork in Germany, Arizona and on La Réunion. I would like to thank the members of my examination committee: Professor Heinz-R. Köhler and Professor Hinrich Schulenburg for evaluating this dissertation and Dr. Felicity Jones, Professor Karl Forchhammer, and Professor Rolf Reuter for being my examiners. I consider myself fortunate for having had Dr. Erik J. Ragsdale as a colleague for several years, and more than that to count him as a friend. We have had exciting collaborations and great discussions and I would like to thank you, Erik, for your attention, inspiration, and thoughtful feedback. I also want to thank Erik and Orlando de Lange for reading over drafts of this dissertation and spelling out some nuances of English writing.
    [Show full text]
  • Journal of Nematology Volume 48 March 2016 Number 1
    JOURNAL OF NEMATOLOGY VOLUME 48 MARCH 2016 NUMBER 1 Journal of Nematology 48(1):1–6. 2016. Ó The Society of Nematologists 2016. Occurrence of Panagrellus (Rhabditida: Panagrolaimidae) Nematodes in a Morphologically Aberrant Adult Specimen of Rhynchophorus ferrugineus (Coleoptera: Dryophthoridae) 1 1 2* 1 1 1 MANUELA CAMEROTA, GIUSEPPE MAZZA, LYNN K. CARTA, FRANCESCO PAOLI, GIULIA TORRINI, CLAUDIA BENVENUTI, 1 1 1 BEATRICE CARLETTI, VALERIA FRANCARDI, AND PIO FEDERICO ROVERSI Abstract: An aberrant specimen of Rhynchophorus ferrugineus (Coleoptera: Dryophthoridae) also known as red palm weevil (RPW), the most economically important insect pest of palms in the world, was found among a batch of conspecifics reared for research purposes. A morphological analysis of this weevil revealed the presence of nematodes associated with a structured cuticle defect of the thorax. These nematodes were not able to be cultured, but were characterized by molecular analysis using 28S and 18S ribosomal DNA and shown to belong to the family Panagrolaimidae (Rhabditida), within a clade of Panagrellus. While most nematodes in the insect were juveniles, a single male adult was partially characterized by light microscopy. Morphometrics showed similarities to a species described from Germany. Excluding the entomopathogenic nematodes (EPN), only five other genera of entomophilic or saprophytic rhabditid nematodes are associated with this weevil. This is the first report of panagrolaimid nematodes associated with this invasive pest. Possible mechanisms of nematode-insect association are discussed. Key words: insect thorax defect, invasive species, nematode phoresy, physiological ecology, saprophagous nematode, sour paste nematode. Rhynchophorus ferrugineus, the RPW, is currently con- with RPW, and consider their possible effects as bio- sidered as the most damaging pest of palm species in control agents (Mazza et al., 2014).
    [Show full text]
  • First Record of Diploscapter Coronata (Rhabditida), a Possible Health Significance Nematode Associated with Tomato Crops in Argentina
    Rev. FCA UNCUYO. 2016. XX(X): XXX-XXX. ISSN impreso 0370-4661. ISSN (en línea) 1853-8665. First record of Diploscapter coronata (Rhabditida), a possible health significance nematode associated with tomato crops in Argentina Primer registro de Diploscapter coronata (Rhabditida), un posible nematodo de importancia sanitaria asociado a cultivos de tomate en Argentina Augusto Salas 1, José Matías Rusconi 1, Nora Camino 1, 2, Daiana Eliceche 1, María Fernanda Achinelly 1, 3 Originales: Recepción: 21/03/2016 - Aceptación: 08/10/2016 Nota científica Abstract Diploscapter coronata is a free-living soil bacterial-feeding nematode found in compost, sewage or agricultural soil and as a facultative parasite of insects and verte- brates, even humans. The clinical symptoms include epigastric tenderness, diarrhea, crampy abdominal pain, weakness and nauseas. Also, they have been considered as potential carriers of bacteria pathogenic to the surface of preharvest fruits and vegetables in contact with soil. In this note, we reported the presence of D. coronata in the framework Argentina. Soil samples taken from tomato growing (Lycopersicon esculentum) were processedof diverse soilin the nematodes laboratory samplings by the centrifugationin orchards of Abastomethod, town, while Buenos collected Aires roots province, were observed directly under stereomicroscope in order to isolate nematodes. Specimens presence of D. coronata in agricultural soil and in association with root galls, caused by thewere plant-parasitic identified by morphologicalnematode, Nacobbus and morphometric aberrans. Females characteristics. were the Resultsonly isolated showed stage. the The detection of this nematode in greenhouses where dogs, cats and poultry live together without any health control highlights the importance of applying proper hygiene measures during agricultural practices to avoid contamination of fruits and vegetables and prevent Diploscapter genus with the species D.
    [Show full text]
  • Entomopathogenic Nematodes 37
    UCLA UCLA Electronic Theses and Dissertations Title Investigating the Neural Circuit for Carbon Dioxide Avoidance Behavior in Caenorhabditis elegans Permalink https://escholarship.org/uc/item/70m1v28x Author Carrillo, Mayra Publication Date 2015 Peer reviewed|Thesis/dissertation eScholarship.org Powered by the California Digital Library University of California UNIVERSITY OF CALIFORNIA Los Angeles Investigating the Neural Circuit for Carbon Dioxide Avoidance Behavior in Caenorhabditis elegans A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Microbiology, Immunology, and Molecular Genetics by Mayra Alejandra Carrillo 2015 ABSTRACT OF THE DISSERTATION Investigating the Neural Circuit for Carbon Dioxide Avoidance Behavior in Caenorhabditis elegans by Mayra Alejandra Carrillo Doctor of Philosophy in Microbiology, Immunology, and Molecular Genetics University of California, Los Angeles, 2015 Professor Elissa A. Hallem, Chair Carbon dioxide (CO2) is a byproduct of oxidative metabolism that can be sensed by different species including mammals, insects, and nematodes and can lead to both physiological and behavioral responses. In the free-living nematode Caenorhabditis elegans the behavioral response can be either avoidance or neutral to CO2, indicating that the behavior is flexible. In this thesis, I investigated the neural basis of behavioral flexibility. We found that the CO2 circuit can be modulated by diverse sensory neurons that respond to ambient oxygen (O2), temperature, and food odor. Additionally, we identified two interneurons downstream of the CO2- sensing BAG neurons, AIY and RIG, that have opposing roles in CO2-evoked responses. A decrease in AIY activity and an increase in RIG activity promote appropriate avoidance behavior to CO2 levels.
    [Show full text]