Downloaded from Wormbase.Org
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
First Record of Diploscapter Coronata (Rhabditida), a Possible Health Significance Nematode Associated with Tomato Crops in Argentina
Rev. FCA UNCUYO. 2016. XX(X): XXX-XXX. ISSN impreso 0370-4661. ISSN (en línea) 1853-8665. First record of Diploscapter coronata (Rhabditida), a possible health significance nematode associated with tomato crops in Argentina Primer registro de Diploscapter coronata (Rhabditida), un posible nematodo de importancia sanitaria asociado a cultivos de tomate en Argentina Augusto Salas 1, José Matías Rusconi 1, Nora Camino 1, 2, Daiana Eliceche 1, María Fernanda Achinelly 1, 3 Originales: Recepción: 21/03/2016 - Aceptación: 08/10/2016 Nota científica Abstract Diploscapter coronata is a free-living soil bacterial-feeding nematode found in compost, sewage or agricultural soil and as a facultative parasite of insects and verte- brates, even humans. The clinical symptoms include epigastric tenderness, diarrhea, crampy abdominal pain, weakness and nauseas. Also, they have been considered as potential carriers of bacteria pathogenic to the surface of preharvest fruits and vegetables in contact with soil. In this note, we reported the presence of D. coronata in the framework Argentina. Soil samples taken from tomato growing (Lycopersicon esculentum) were processedof diverse soilin the nematodes laboratory samplings by the centrifugationin orchards of Abastomethod, town, while Buenos collected Aires roots province, were observed directly under stereomicroscope in order to isolate nematodes. Specimens presence of D. coronata in agricultural soil and in association with root galls, caused by thewere plant-parasitic identified by morphologicalnematode, Nacobbus and morphometric aberrans. Females characteristics. were the Resultsonly isolated showed stage. the The detection of this nematode in greenhouses where dogs, cats and poultry live together without any health control highlights the importance of applying proper hygiene measures during agricultural practices to avoid contamination of fruits and vegetables and prevent Diploscapter genus with the species D. -
Ecology of Caenorhabditis Species* §
Ecology of Caenorhabditis species* § Karin Kiontke , Department of Biology, New York University, New York, NY 10003 USA § Walter Sudhaus , Institut für Biologie/Zoologie, Freie Universität Berlin, D-14195 Berlin, Germany Table of Contents 1. Introduction ............................................................................................................................2 2. Associations with other animals .................................................................................................. 2 2.1. Necromeny ..................................................................................................................2 2.2. Phoresy .......................................................................................................................3 2.3. Possible adaptations to nematode-invertebrate associations .................................................... 3 2.4. Vertebrate associations ................................................................................................... 3 3. Ecology of Caenorhabditis species ..............................................................................................3 3.1. Ecology of C. briggsae, C. elegans and C. remanei ..............................................................4 4. Ecology of the Caenorhabditis stem species and evolution of ecological features within Caenorhabditis .. 5 4.1. The Caenorhabditis stem species ..................................................................................... 5 4.2. Evolutionary trends within Caenorhabditis -
Sensory Cilia As the Achilles Heel of Nematodes When Attacked by Carnivorous Mushrooms
Sensory cilia as the Achilles heel of nematodes when attacked by carnivorous mushrooms Ching-Han Leea,b,c, Han-Wen Changa,b,c, Ching-Ting Yanga, Niaz Walic,d,e, Jiun-Jie Shiec,d,e, and Yen-Ping Hsueha,b,c,f,1 aInstitute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan; bMolecular and Cell Biology, Taiwan International Graduate Program, Academia Sinica, Taipei 11490, Taiwan; cTaiwan International Graduate Program, National Defense Medical Center, Taipei 11490, Taiwan; dInstitute of Chemistry, Academia Sinica, Taipei 11529, Taiwan; eChemical Biology and Molecular Biophysics, Taiwan International Graduate Program, Academia Sinica, Taipei 10617, Taiwan; and fDepartment of Biochemical Science and Technology, National Taiwan University, Taipei 10617, Taiwan Edited by Paul W. Sternberg, California Institute of Technology, Pasadena, CA, and approved January 27, 2020 (received for review October 22, 2019) Fungal predatory behavior on nematodes has evolved indepen- Pleurotus-triggered paralysis in the model nematode Caenorhabditis dently in all major fungal lineages. The basidiomycete oyster elegans. We demonstrate that P. ostreatus paralyzes C. elegans via a mushroom Pleurotus ostreatus is a carnivorous fungus that preys previously unreported mechanism that is evolutionarily conserved on nematodes to supplement its nitrogen intake under nutrient- across different nematode species. Through unbiased genetic limiting conditions. Its hyphae can paralyze nematodes within a screens, we found that the toxins produced by the Pleurotus few minutes of contact, but the mechanism had remained unclear. mushrooms could only exert their nematicidal activity via the We demonstrate that the predator–prey relationship is highly con- sensory cilia of C. elegans, triggering massive intracellular calcium served between multiple Pleurotus species and a diversity of nem- influx and hypercontraction of the pharyngeal and body wall atodes. -
FINAL VERSION JUNE 14 2010X
Nematodes from the Bakwena Cave in Irene, South Africa Candice Jansen van Rensburg Academic year: 2009-2010 Thesis submitted in partial fulfillment of the requirements for the award of the degree Master of Science in Nematology in the Faculty of Sciences, Ghent University Promoter: Prof. Wilfrida Decraemer Co-Promoters: Dr. Wim Bert Dr. Antoinette Swart Nematodes from the Bakwena Cave in Irene, South Africa Candice JANSEN VAN RENSBURG 1*,2 1Nematology section, Department of Biology, Faculty of Sciences, Ghent University; K.L. Ledeganckstraat 35, 9000 Ghent, Belgium 2Dept. Zoology & Entomology, P.O. 339, University of the Free State, Bloemfontein, 9300, South Africa; [email protected] *Corresponding e-mail address: [email protected] 1 Summary A survey forming part of the Bakwena cave project was carried out from January 2009 to February 2010 at the Bakwena Cave South Africa. A total of 27 nematode genera belonging to 23 families were collected, 19 genera are reported for the first time from cave environments. Of the six localities sampled, the underground pool of the cave showed the highest species diversity with lowest diversity associated with fresh and dry guano deposits. Four of the sampling localities were dominated by bacterial feeders the remaining two localities being comprised of fungal feeders, obligate and facultative plant feeders and omnivores. Multidimensional scaling indicated six nematode assemblages corresponding with six localities, which might reflect substrate associated patterns. Three species are also described, two being new to science. Diploscapter coronatus is characterised by having a visibly annulated cuticle; a pharyngeal corpus clearly distinguishable from the isthmus, the vulva situated about mid-body and the stoma almost twice as long as the lip region width. -
Nematodes of the Order Rhabditida from Andalucía Oriental, Spain. the Genera Protorhabditis (Osche, 1952) Dougherty, 1953 and D
Journal of Nematology 39(3):263–274. 2007. © The Society of Nematologists 2007. Nematodes of the Order Rhabditida from Andalucía Oriental, Spain. The Genera Protorhabditis (Osche, 1952) Dougherty, 1953 and Diploscapter Cobb, 1913, with Description of P. spiculocrestata sp. n. and a Species Protorhabditis Key J. Abolafia,R.Pen˜a-Santiago Abstract: A new species of the genus Protorhabditis is described from natural areas in the SE Iberian Peninsula. Protorhabditis spiculocrestata sp. n. is distinguished by its body length 387–707 µm in females and 375–546 µm in males, lip very low and flattened, stoma 14–22 µm long, female tail conical-elongate (48–100 µm, c = 6.4–8.3, cЈ = 4.8–7.5), phasmid near anus, male tail conical (20–27 µm, c = 18.3–22.3, cЈ = 1.4–1.5), bursa peloderan closed anteriorly and bears eight papillae (1+2+1+1+3), spicules 23–26 µm long, and gubernaculum 10–16 µm long. Diploscapter coronatus is also presented. Description, measurements and illustrations, including SEM photographs, are provided. A key to species of Protorhabditis is also given as well a compendium of their measure- ments. Key words: description, Diploscapter, key, morphology, new species, Protorhabditis, Rhabditids, SE Spain, SEM, taxonomy. Rhabditid nematodes are an interesting zoological mis (Bütschli, 1873) Sudhaus, 1976, P. tristis (Hirsch- taxon. They are very abundant in all types of soil and mann, 1952) Dougherty, 1955 and D. coronatus (Cobb, sediments of freshwater bodies and play important eco- 1893) Cobb, 1913. Nevertheless, no relevant morpho- logical roles mainly as primary consumers—their free- logical or taxonomical information on them was pro- living forms display saprophagous or bacteriophagous vided in the corresponding publications. -
The Evolutionary Developmental Biology of Nematodes
HIGHLIGHTED ARTICLE | WORMBOOK EVOLUTION AND ECOLOGY From “the Worm” to “the Worms” and Back Again: The Evolutionary Developmental Biology of Nematodes Eric S. Haag,*,1 David H. A. Fitch,† and Marie Delattre‡ *Department of Biology, University of Maryland, College Park, Maryland 20742, †Department of Biology, New York University, New York 10003, and ‡Laboratoire de Biologie Moléculaire de la Cellule, CNRS, INSERM, Ecole Normale Supérieure de Lyon, 69007, France ORCID IDs: 0000-0002-6102-3498 (E.S.H.); 0000-0001-6940-7544 (D.H.A.F.); 0000-0003-1640-0300 (M.D.) ABSTRACT Since the earliest days of research on nematodes, scientists have noted the developmental and morphological variation that exists within and between species. As various cellular and developmental processes were revealed through intense focus on Caenorhabditis elegans, these comparative studies have expanded. Within the genus Caenorhabditis, they include characterization of intraspecific polymorphisms and comparisons of distinct species, all generally amenable to the same laboratory culture methods and supported by robust genomic and experimental tools. The C. elegans paradigm has also motivated studies with more distantly related nematodes and animals. Combined with improved phylogenies, this work has led to important insights about the evolution of nematode development. First, while many aspects of C. elegans development are representative of Caenorhabditis, and of terrestrial nematodes more generally, others vary in ways both obvious and cryptic. Second, the system has revealed several clear examples of developmental flexibility in achieving a particular trait. This includes developmental system drift, in which the developmental control of homologous traits has diverged in different lineages, and cases of convergent evolution. -
The Phylogenetic Relationships of Caenorhabditis and Other Rhabditids* Karin Kiontke§, David H
The phylogenetic relationships of Caenorhabditis and other rhabditids* Karin Kiontke§, David H. A. Fitch§, Department of Biology, New York University, New York, NY 10003 USA Table of Contents 1. Introduction ............................................................................................................................2 2. Rhabditid phylogeny ................................................................................................................ 2 2.1. Overview of rhabditid relationships .................................................................................. 2 2.2. Relationships within Caenorhabditis .................................................................................4 2.3. Strongylids and diplogastrids are rhabditids ........................................................................ 5 3. Examples of character evolution ................................................................................................. 5 3.1. Reproductive mode ........................................................................................................ 5 3.2. Morphological evolution ................................................................................................. 5 3.3. Intron evolution ............................................................................................................ 7 3.4. Molecular divergence ..................................................................................................... 8 4. Resources for comparative biology using rhabditids .................................................................... -
Symposium Abstracts
Nematology,2002,V ol.4(2), 123-314 Symposium abstracts 001 Bursaphelenchusxylophilus and B.mucronatus untilthe recent identi cation in Portugal. It is felt that if inJapan: where arethey from? introducedthe nematode would establish populations or interbreedwith endemic non-virulent species. This ban 1; 2 Hideaki IWAHORI ¤, Natsumi KANZAKI and hashadmajorconsequences on theNorth American forest 2 Kazuyoshi FUTAI industry.Recently many new species of Bursaphelenchus 1NationalAgricultural Research Center for Kyushu Okinawa havebeen described from deador dyingpines throughout Region,Nishigoushi, Kumamoto 861-1192, Japan Europe.Because morphological characters are limited 2 KyotoUniversity, Kyoto 606-8502, Japan inusefulness for speciesdescriptions and cannot be ¤[email protected] usedto differentiate populations, molecular taxonomy hasbecome important. W ewilllook at the accuracy Geographicaldistribution and speciation of Bursaphelen- ofmethods used for speciesidenti cation and at what chusxylophilus (pinewoodnematode) and B. mucrona- criteriamight be used to de ne and differentiate species tus were inferredfrom molecularphylogenetic analysis of Bursaphelenchus whenconsidering import and export andchromosomal number .Severalisolates of B. xylop- bans. hilus and B.mucronatus inJapan and from someother countrieswere usedfor DNA sequencingof the ITS re- 003Mitigating the pinewoodnematode and its gionsin ribosomalDNA. Publishedresearch on thenum- vectorsin transported coniferous wood berof chromosomesof selectedisolates was usedto iden- tifya -
Dispersion of Nematodes (Rhabditida) in the Guts of Slugs and Snails
90 (3) · December 2018 pp. 101–114 Dispersion of nematodes (Rhabditida) in the guts of slugs and snails Walter Sudhaus Institut für Biologie/Zoologie der Freien Universität, Königin-Luise-Str. 1-3, 14195 Berlin, Germany E-mail: [email protected] Received 30 September 2018 | Accepted 12 November 2018 Published online at www.soil-organisms.de 1 December 2018 | Printed version 15 December 2018 DOI 10.25674/4jp6-0v30 Abstract A survey was carried out to find non-parasitic nematodes associated with slugs and snails in order to elucidate the initial phase of endophoresis and necromeny in gastropods. 78 % of the specimens of the 12 terrestrial gastropod species surveyed carried nematodes. A total of 23 nematode species were detected alive and propagable in gastropod faeces, with 16 different species found in Arion rufus alone. Most were saprobiontic rhabditids, with species of Caenorhabditis, Oscheius and Panagrolaimus appearing with some regularity. The nematodes were accidentally ingested with food and survived the passage through the digestive tract, allowing them to be transported to suitable microhabitats such as decaying fruits or fungi. The intestines of snails and slugs taken from hibernation or aestivation were free of nematodes. Seven gastropod species were experimentally infected with eight rhabditid species, all of which were able to persist uninjured in the intestines of the gastropods for two to five days before being excreted with the faeces. A list of nematode species accidentally associated with gastropods is compiled from the literature for comparison. The role of gastropods in spreading nematodes and other small animals (a few observations on rotifers and mites are mentioned) deserves more attention. -
Bacterial-Feeding Nematode Growth and Preference for Biocontrol Isolates of the Bacterium Burkholderia Cepacia
Journal of Nematology 32(4):362–369. 2000. © The Society of Nematologists 2000. Bacterial-Feeding Nematode Growth and Preference for Biocontrol Isolates of the Bacterium Burkholderia cepacia Lynn K. Carta1 Abstract: The potential of different bacterial-feeding Rhabditida to consume isolates of Burkholderia cepacia with known agricultural biocontrol ability was examined. Caenorhabditis elegans, Diploscapter sp., Oscheius myriophila, Pelodera strongyloides, Pristionchus pacificus, Zeldia punctata, Panagrellus redivivus, and Distolabrellus veechi were tested for growth on and preference for Escherichia coli OP50 or B. cepacia maize soil isolates J82, BcF, M36, Bc2, and PHQM100. Considerable growth and preference variations occurred between nematode taxa on individual bacterial isolates, and between different bacterial isolates on a given nematode. Populations of Diploscapter sp. and P. redivivus were most strongly suppressed. Only Z. punctata and P. pacificus grew well on all isolates, though Z. punctata preferentially accumulated on all isolates and P. pacificus had no preference. Oscheius myriophila preferentially accumulated on growth- supportive Bc2 and M36, and avoided less supportive J82 and PHQM100. Isolates with plant-parasitic nematicidal properties and poor fungicidal properties supported the best growth of three members of the Rhabditidae, C. elegans, O. myriophila, and P. strongyloides. Distolabrellus veechi avoided commercial nematicide M36 more strongly than fungicide J82. Key words: accumulation, attraction Caenorhabditis elegans, Diploscapter sp., Distolabrellus veechi, ecology, Escherichia coli OP50, nutrition, Oscheius myriophila, Panagrellus redivivus, Pelodera strongyloides, phylogeny, Pristionchus pacificus, repellence, Rhabditida, toxicity, Zeldia punctata. Bacterial-feeding nematodes are impor- pacia (ex Burkholder) Palleroni and Holmes, tant for soil-nutrient cycling in agricultural 1981). Current taxonomic opinion suggests systems (Freckman and Caswell, 1985). -
The Genome of a Subterrestrial Nematode Reveals an Evolutionary Strategy for Adaptation to Heat
bioRxiv preprint doi: https://doi.org/10.1101/747584; this version posted August 28, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. The genome of a subterrestrial nematode reveals an evolutionary strategy for adaptation to heat Deborah J. Weinstein1, Sarah E. Allen1¶, Maggie C. Y. Lau2, Mariana Erasmus3, Kathryn C. Asalone1, Kathryn Walters-Conte1, Gintaras Deikus4, Robert Sebra4, Gaetan Borgonie5, Esta van Heerden3§, Tullis C. Onstott2, John R. Bracht1† 1 Biology Department, American University, Washington DC 20016, USA 2 Department of Geosciences, Princeton University, Princeton, NJ 08544, USA 3 UFS/TIA Saense Platform, Department of Microbial, Biochemical, and Food Biotechnology, University of the Free State, Bloemfontein 9301, South Africa. 4 Department of Genetics and Genomic Sciences and Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA 5 Extreme Life Isyensya, Gentbrugge, 9050 Belgium. ¶ Current: Biology Department, Cornell University, Ithaca, NY, 14853, USA § Current: North West University, Private Bag X6001, Potchefstroom, 2520, South Africa. †Contact: John R. Bracht ([email protected]) 1 bioRxiv preprint doi: https://doi.org/10.1101/747584; this version posted August 28, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Abstract The nematode Halicephalobus mephisto was originally discovered inhabiting a deep terrestrial aquifer 1.3 km underground. H. mephisto can thrive under conditions of abiotic stress including heat and minimal oxygen, where it feeds on a community of both chemolithotrophic and heterotrophic prokaryotes in an unusual ecosystem isolated from the surface biosphere. -
Diploscapter Formicidae Sp. N. (Rhabditida: Diploscapteridae), from the Ant Prolasius Advenus (Hymenoptera: Formicidae) in New Zealand
I Nematology BRILL Nematology 15 (2013) 109-123 brili.com/nemy Diploscapter formicidae sp. n. (Rhabditida: Diploscapteridae), from the ant Prolasius advenus (Hymenoptera: Formicidae) in New Zealand Zeng Qi ZHAO ^'*, Kerrie A. DAVIES ^, Evan C. BRENTON-RULE ^, Julien GRANGIER ^, Monica A.M. GRUBER ^, Robin M. GIBLIN-DAVIS "^ and Philip J. LESTER ^ ' Landcare Research, Private Bag 92170, Auckland Mail Centre, Auckland 1142, New Zealand ^Australian Centre for Evolutionary Biology and Biodiversity, School of Agriculture, Eood and Wine, University of Adelaide, Waite Campus, PMB 1, Glen Osmond, SA 5064, Australia ^ Centre for Biodiversity and Restoration Ecology, Victoria University of Wellington, P.O. Box 600, Wellington 6140, New Zealand '^ Fort Lauderdale Research and Education Center, University of Elorida-IFAS, 3205 College Avenue, Fort Lauderdale, FL 33314-7719, USA Received: 8 March 2012; revised: 5 May 2012 Accepted for publication: 5 May 2012; available online: 10 July 2012 Summary - Diploscapter formicidae sp. n. was collected from the ant Prolasius advenus and its nests in native beech forests of the South Island, New Zealand. This is a new host record for the nematode genus and the first report of an ant associate from the southern hemisphere. Diploscapter formicidae sp. n. appears to be native to New Zealand. No males were found from collections from 16 nests, in agreement with previously published data on the other members of this genus, suggesting that males are absent or very rare. The adult females have bilateral symmetry of the head, characteristic dorsal and ventral projections of the putative cheilostom with paired hook-like structures or hamuli, expansive membranous lateral lip flaps or laciniae, gymnostom and stegostom with parallel walls, a swollen procorpus, large terminal bulb with a strong valve, paired ovaries with medial vulva, and a short conoid tail with slender pointed or spicate tip.