Hindawi Publishing Corporation BioMed Research International Volume 2014, Article ID 170289, 10 pages http://dx.doi.org/10.1155/2014/170289 Research Article Clinic-Genomic Association Mining for Colorectal Cancer Using Publicly Available Datasets Fang Liu,1 Yaning Feng,1 Zhenye Li,2 Chao Pan,1 Yuncong Su,1 Rui Yang,1 Liying Song,1 Huilong Duan,1 and Ning Deng1 1 Department of Biomedical Engineering, Key Laboratory for Biomedical Engineering of Ministry of Education, Zhejiang University, Hangzhou 310027, China 2 General Hospital of Ningxia Medical University, Yinchuan 750004, China Correspondence should be addressed to Ning Deng;
[email protected] Received 30 March 2014; Accepted 12 May 2014; Published 2 June 2014 Academic Editor: Degui Zhi Copyright © 2014 Fang Liu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. In recent years, a growing number of researchers began to focus on how to establish associations between clinical and genomic data. However, up to now, there is lack of research mining clinic-genomic associations by comprehensively analysing available gene expression data for a single disease. Colorectal cancer is one of the malignant tumours. A number of genetic syndromes have been proven to be associated with colorectal cancer. This paper presents our research on mining clinic-genomic associations for colorectal cancer under biomedical big data environment. The proposed method is engineered with multiple technologies, including extracting clinical concepts using the unified medical language system (UMLS), extracting genes through the literature mining, and mining clinic-genomic associations through statistical analysis.