Gall-Forming Protistan Parasites Infect Southern Bull Kelp Across the Southern Ocean, with Prevalence Increasing to the South

Total Page:16

File Type:pdf, Size:1020Kb

Gall-Forming Protistan Parasites Infect Southern Bull Kelp Across the Southern Ocean, with Prevalence Increasing to the South Vol. 583: 95–106, 2017 MARINE ECOLOGY PROGRESS SERIES Published November 16 https://doi.org/10.3354/meps12346 Mar Ecol Prog Ser OPEN ACCESS Gall-forming protistan parasites infect southern bull kelp across the Southern Ocean, with prevalence increasing to the south Callum Blake1, Martin Thiel2,3,4, Boris A. López2,5, Ceridwen I. Fraser1,* 1Fenner School of Environment and Society, Australian National University, Building 141 Linnaeus Way, Acton, ACT 2601, Australia 2Facultad de Ciencias del Mar, Universidad Católica del Norte, Larrondo 1281, Coquimbo, Chile 3Millennium Nucleus Ecology and Sustainable Management of Oceanic Island (ESMOI), Coquimbo, Chile 4Centro de Estudios Avanzados en Zonas Áridas, CEAZA, Coquimbo, Chile 5Departamento de Acuicultura y Recursos Agroalimentarios, Universidad de Los Lagos, Av. Fuchslocher 1305, Osorno, Chile ABSTRACT: Protistan pathogens can have devastating effects on marine plants, yet the processes that affect their distributions and infection intensities are poorly understood. Species within the brown algal genus Durvillaea are major ecosystem engineers throughout the sub-Antarctic and cold-temperate Southern Hemisphere, and a newly described genus of protistan parasite, Maullinia, was recently found infecting D. antarctica in Chile. We set out to address 3 key ques- tions. (1) Is there evidence for trans-oceanic dispersal of Maullinia? (2) Does Maullinia infect other Durvillaea species? (3) Does infection prevalence vary throughout the hosts’ ranges? We sampled Maullinia on Durvillaea populations along coasts in Chile (D. antarctica, from 32° to 42° S: 8 sites), Australia (D. potatorum and D. amatheiae, from 36° to 38° S: 5 sites) and sub-Antarctic Marion Island (46° 53’ 47’’ S, 37° 43’ 32’’ E). We used a genetic marker (18S rRNA) to verify the presence of Maullinia on Durvillaea at all sites and visual surveys of Maullinia galls to assess infection preva- lence in Chile and Australia. We confirm that Maullinia infects Australian Durvillaea species, but our results indicate that each host species is parasitised by a different Maullinia lineage. Maullinia infection prevalence increased with latitude. Long- and short-distance dispersal events are inferred to have occurred based on genetic patterns. We conclude that Maullinia protists are broadly distributed and affect multiple host species, including at least 3 Durvillaea species (2 in Australia, and 1 in both Chile and Marion Island), and that environmental factors influence host susceptibility to infection. KEY WORDS: Pathogen · Macroalgae · Host-specificity · Intertidal · Dispersal · Durvillaea · Maullinia INTRODUCTION potentially leading to ecosystem collapse (see Mou - ritsen et al. 2005, Collinge et al. 2008). As such, The infection intensities and geographic ranges of understanding the factors shaping parasite biogeog- many parasitic organisms are expected to increase raphy and patterns of infection is an important part of under forecast scenarios of environmental change predicting how ecosystems will respond to global (Eggert et al. 2010, Gleason et al. 2013). These in - environmental change. creases may prove devastating where infections Large algae (e.g. kelps) are critical components of affect keystone species at low trophic levels, even many shallow marine ecosystems as both food and © The authors 2017. Open Access under Creative Commons by *Corresponding author: [email protected] Attribution Licence. Use, distribution and reproduction are un - restricted. Authors and original publication must be credited. Publisher: Inter-Research · www.int-res.com 96 Mar Ecol Prog Ser 583: 95–106, 2017 habitat for diverse organisms (Jones et al. 1997). The virulence in natural populations are not. The only susceptibility of marine algae to pathogen infection Maullinia recorded on Durvillaea appears likely to can be influenced by factors including population be a newly recognised species (‘Maullinia sp.’ in density, tissue damage and life stage (Andrews Goecke et al. 2012; now M. braseltonii: Murúa et al. 1976). Analyses of kelp pathosystems have also re - 2017). Although Australian Durvillaea populations vealed evidence for a molecular basis to host resist- have not yet been confirmed to host Maullinia, galls ance, whereby some species or genetic lineages of resembling those of the parasite were observed at marine algae are more prone to infection than others Sorrento in southern Australia several decades ago (Carius et al. 2001, Gachon et al. 2009, 2010). Marine (Jahnke 1978), and samples of M. ectocarpii were pathogen and parasite infections may in crease along confirmed by Maier et al. (2000) on local populations environmental gradients (e.g. depth, longitude and of Ectocarpus siliculosus. latitude), and their distributions and intensities can D. antarctica is able to raft long distances and has indicate dispersal routes and barriers, and biogeo- even been known to wash up on Australian shores, graphical regions (Rohde 2002). 1000s of km from the nearest source population Durvillaea is a brown algal genus comprising large, (Moore & Cribb 1952). We hypothesised that Maul - keystone species inhabiting rocky intertidal and linia would thus have a broad distribution and that shallow subtidal shores in the Southern Hemisphere. distant populations — possibly even those affecting In Australia, 2 Durvillaea species occur: D. amatheiae other host species — would show evidence of connec- is found along the south-eastern coasts of New South tivity. We further hypothesised that infection preva- Wales, Victoria and Tasmania, and D. potatorum lence would vary along latitudinal gradients, with along the coasts of eastern South Australia, western the greatest infection prevalence toward the north- Victoria and Tasmania (Fraser et al. 2009, Weber et ern limits of the hosts’ ranges, where kelps are most al. 2017). D. antarctica is not found in Australia but physiologically stressed (e.g. Tala et al. 2016). We has a broad, circumpolar distribution that includes tested these hypotheses using ecological and genetic the sub-Antarctic islands, New Zealand and much of surveys of infected Durvillaea along the southern the coast of Chile (Fraser et al. 2010). The species is Australian and southern-central Chilean coasts. highly buoyant and dispersive, and has previously been inferred to have transported an endophytic algal parasite, Herpodiscus durvillaeae, across the MATERIALS AND METHODS Pacific Ocean (Fraser & Waters 2013). Maullinia is a recently identified genus of phyto- Sample collection myxean parasite that can infect several brown algal genera including Macrocystis, Ectocarpus and Aci - Sampling was conducted in Australia, Chile and neto spora (Maier et al. 2000, Goecke et al. 2012). The sub-Antarctic Marion Island (Fig. 1). Australian sam- microscopic organisms produce motile zoospores pling and surveys were carried out at 5 sites: Tathra, which disperse and infect new hosts, causing gall- City Rock, Mallacoota, Cape Conran and Cape like hypertrophies of host tissue (Neuhauser et al. Schanck. In Chile, intertidal sampling was carried 2011). The production of resting spores may enable out at 8 sites: Pichicuy, Quintay, Pichilemu, Cura- the parasite to disperse long distances and survive nipe, Queule, Chaihuin, Hua Huar and Pumillahue. adverse conditions (Neuhauser et al. 2011). While Infected tissue from Marion Island was collected some research has described phytomyxids, including opportunistically from 3 sites: Macaroni Bay, Trypot Maul linia, as parasites that infect hosts without Beach and Rockhopper Bay. All sampling occurred in directly leading to mortality (Neuhauser et al. 2014), late spring and summer 2015/16. For visual quantifi- on flexible species such as D. antarctica the forma- cation of infections in the field (Australia and Chile tion of galls has been suggested to reduce the host’s only), morphological identification of galls was based ability to survive in high-energy wave environments on descriptions in Aguilera et al. (1988), Jahnke (Eggert et al. 2010). In laboratory cultures, Maullinia (1978) and Goecke et al. (2012). Infection prevalence ectocarpii was also found to heavily infect the game- was quantified along a series of 10 m transects. Num- tophytes of algal species such as Macrocystis pyrifera bers of kelp transect−1 varied within and between (Maier et al. 2000), which could reduce the reproduc- sites, leading to differing sample sizes at each loca- tive potential of its host. The host range, life cycle tion (Table 1). Three transects site−1 were surveyed in and infection pathway of M. ectocarpii are relatively Australia, and 3 to 5 transects site−1 were surveyed in well characterised, but the factors shaping its Chile, depending on the extent and accessibility of Blake et al.: Protistan parasites of southern bull kelp 97 Fig. 1. (A) Global projection of Antarctica and sub-Antarctic areas, showing the main marine currents and the location of sub-Antarctic Marion Island. The study areas on (B) the Australian coast, (C) the Chilean coast and (D) Marion Island and their local marine currents are also indicated. Black dots indicate sampling and survey sites. The geographic distribution of Durvillaea antarctica along the Chilean coast is indicated Table 1. Sampling and sequencing information for intertidal sites visited Country Site Individuals Samples Samples Samples Number of surveyed collected amplified sequenced unique sequences Australia Tathra 63 8 4 4 2 City Rock 63 2 2 2 1 Mallacoota 79 9 9 9 1 Cape Conran 64 7 4 3 1 Cape Schanck 125 12 7 4 2 Chile Pichicuy 112 4 1 1 1 Quintay 133 17 8 4 2 Pichilemu 158 10 4 4 4 Curanipe 76 4 3 2 1 Queule 164 2 2 2 2 Chaihuin 144 24 14 5 3 Hua Huar 317 24 13 7 4 Pumillahue 145 32 18 7 4 kelp beds. Transect lines were laid on rocky plat- parallel to one another. Rather, they were laid on the forms partially or completely emergent at low tide. edges of such platforms, separated by at least 2 m if As Durvillaea species often inhabit fragmented rocky on the same platform, where kelp are likely to expe- platforms composed of a number of reefs separated rience similar exposure to environmental factors by water, it was not always possible to lay transects between sites.
Recommended publications
  • New Zealand's Genetic Diversity
    1.13 NEW ZEALAND’S GENETIC DIVERSITY NEW ZEALAND’S GENETIC DIVERSITY Dennis P. Gordon National Institute of Water and Atmospheric Research, Private Bag 14901, Kilbirnie, Wellington 6022, New Zealand ABSTRACT: The known genetic diversity represented by the New Zealand biota is reviewed and summarised, largely based on a recently published New Zealand inventory of biodiversity. All kingdoms and eukaryote phyla are covered, updated to refl ect the latest phylogenetic view of Eukaryota. The total known biota comprises a nominal 57 406 species (c. 48 640 described). Subtraction of the 4889 naturalised-alien species gives a biota of 52 517 native species. A minimum (the status of a number of the unnamed species is uncertain) of 27 380 (52%) of these species are endemic (cf. 26% for Fungi, 38% for all marine species, 46% for marine Animalia, 68% for all Animalia, 78% for vascular plants and 91% for terrestrial Animalia). In passing, examples are given both of the roles of the major taxa in providing ecosystem services and of the use of genetic resources in the New Zealand economy. Key words: Animalia, Chromista, freshwater, Fungi, genetic diversity, marine, New Zealand, Prokaryota, Protozoa, terrestrial. INTRODUCTION Article 10b of the CBD calls for signatories to ‘Adopt The original brief for this chapter was to review New Zealand’s measures relating to the use of biological resources [i.e. genetic genetic resources. The OECD defi nition of genetic resources resources] to avoid or minimize adverse impacts on biological is ‘genetic material of plants, animals or micro-organisms of diversity [e.g. genetic diversity]’ (my parentheses).
    [Show full text]
  • Akatore Study Published in Earth and Planetary
    Earth and Planetary Science Letters 520 (2019) 18–25 Contents lists available at ScienceDirect Earth and Planetary Science Letters www.elsevier.com/locate/epsl Kelp DNA records late Holocene paleoseismic uplift of coastline, southeastern New Zealand ∗ Elahe Parvizi a, Dave Craw b, , Jonathan M. Waters a a Zoology Department, University of Otago, PO Box 56, Dunedin 9054, New Zealand b Geology Department, University of Otago, PO Box 56, Dunedin 9054, New Zealand a r t i c l e i n f o a b s t r a c t Article history: Holocene paleoseismic activity on the Akatore Fault zone, southeastern New Zealand, has caused uplift Received 20 January 2019 of a 23 km section of coastline by several metres. Prominent relict shoreline terraces are preserved at Received in revised form 4 May 2019 6 m and 3 m above the present sea level, and the latter terrace was formed 1000-1400 yrs BP. The Accepted 22 May 2019 main fault strand farther inland has 6 mof late Holocene vertical offset, but the relationships between Available online xxxx coastal offsets and fault offsets are not understood. There is no preserved geological evidence on the Editor: J.-P. Avouac coastline to distinguish between incremental uplift (e.g., numerous centimetre-scale events) and major, Keywords: metre-scale, uplift events: a distinction that is important for evaluating regional paleoseismicity. We have paleoseismology used genetic characterisation of populations of live kelp, Durvillaea antarctica growing along the shoreline neotectonics to investigate whether or not there has been a catastrophic uplift event, greater than the two metre tidal fault range, that was sufficient to extirpate intertidal kelp populations.
    [Show full text]
  • Keynote and Oral Papers1. Algal Diversity and Species Delimitation
    European Journal of Phycology ISSN: 0967-0262 (Print) 1469-4433 (Online) Journal homepage: http://www.tandfonline.com/loi/tejp20 Keynote and Oral Papers To cite this article: (2015) Keynote and Oral Papers, European Journal of Phycology, 50:sup1, 22-120, DOI: 10.1080/09670262.2015.1069489 To link to this article: http://dx.doi.org/10.1080/09670262.2015.1069489 Published online: 20 Aug 2015. Submit your article to this journal Article views: 76 View related articles View Crossmark data Full Terms & Conditions of access and use can be found at http://www.tandfonline.com/action/journalInformation?journalCode=tejp20 Download by: [University of Kiel] Date: 22 September 2015, At: 02:13 Keynote and Oral Papers 1. Algal diversity and species delimitation: new tools, new insights 1KN.1 1KN.2 HOW COMPLEMENTARY BARCODING AND GENERATING THE DIVERSITY - POPULATION GENETICS ANALYSES CAN UNCOVERING THE SPECIATION HELP SOLVE TAXONOMIC QUESTIONS AT MECHANISMS IN FRESHWATER AND SHORT PHYLOGENETIC DISTANCES: THE TERRESTRIAL MICROALGAE EXAMPLE OF THE BROWN ALGA Š PYLAIELLA LITTORALIS Pavel kaloud ([email protected]) Christophe Destombe1 ([email protected]), Department of Botany, Charles Univrsity in Prague, Alexandre Geoffroy1 ([email protected]), Prague 12801, Czech Republic Line Le Gall2 ([email protected]), Stéphane Mauger3 ([email protected]) and Myriam Valero4 Species are one of the fundamental units of biology, ([email protected]) comparable to genes or cells. Understanding the general patterns and processes of speciation can facilitate the 1Station Biologique de Roscoff, Sorbonne Universités, formulation and testing of hypotheses in the most impor- Université Pierre et Marie Curie, CNRS, Roscoff tant questions facing biology today, including the fitof 29688, France; 2Institut de Systématique, Evolution, organisms to their environment and the dynamics and Biodiversité, UMR 7205 CNRS-EPHE-MNHN-UPMC, patterns of organismal diversity.
    [Show full text]
  • Macroalgae (Seaweeds)
    Published July 2008 Environmental Status: Macroalgae (Seaweeds) © Commonwealth of Australia 2008 ISBN 1 876945 34 6 Published July 2008 by the Great Barrier Reef Marine Park Authority This work is copyright. Apart from any use as permitted under the Copyright Act 1968, no part may be reproduced by any process without prior written permission from the Great Barrier Reef Marine Park Authority. Requests and inquiries concerning reproduction and rights should be addressed to the Director, Science, Technology and Information Group, Great Barrier Reef Marine Park Authority, PO Box 1379, Townsville, QLD 4810. The opinions expressed in this document are not necessarily those of the Great Barrier Reef Marine Park Authority. Accuracy in calculations, figures, tables, names, quotations, references etc. is the complete responsibility of the authors. National Library of Australia Cataloguing-in-Publication data: Bibliography. ISBN 1 876945 34 6 1. Conservation of natural resources – Queensland – Great Barrier Reef. 2. Marine parks and reserves – Queensland – Great Barrier Reef. 3. Environmental management – Queensland – Great Barrier Reef. 4. Great Barrier Reef (Qld). I. Great Barrier Reef Marine Park Authority 551.42409943 Chapter name: Macroalgae (Seaweeds) Section: Environmental Status Last updated: July 2008 Primary Author: Guillermo Diaz-Pulido and Laurence J. McCook This webpage should be referenced as: Diaz-Pulido, G. and McCook, L. July 2008, ‘Macroalgae (Seaweeds)’ in Chin. A, (ed) The State of the Great Barrier Reef On-line, Great Barrier Reef Marine Park Authority, Townsville. Viewed on (enter date viewed), http://www.gbrmpa.gov.au/corp_site/info_services/publications/sotr/downloads/SORR_Macr oalgae.pdf State of the Reef Report Environmental Status of the Great Barrier Reef: Macroalgae (Seaweeds) Report to the Great Barrier Reef Marine Park Authority by Guillermo Diaz-Pulido (1,2,5) and Laurence J.
    [Show full text]
  • Download Full Article 6.9MB .Pdf File
    Memoirs of the Museum of Victoria 52(2): 1 37-262 ( 1 990) ISSN 08 1 4- 1 827 https://doi.org/10.24199/j.mmv.1991.52.02 30 September 1991 AUSTRALASIAN SPECIES OF LIMNORIIDAE (CRUSTACEA: ISOPODA) By Laurie J. Cookson CSIRO Division of Forest Products, Private Bag 10, Clayton, Victoria 3168, Australia Abstract Cookson, L.J., 1991. Australasian species of Limnoriidae (Crustacea: Isopoda). Memoirs of the Museum of Victoria 52: 137-262. Some members of the Limnoriidae are important marine wood-borers. The taxonomy of the family was studied with emphasis on species from the Australasian region. The Lim- noriidae are reduced to two genera: Limnoria Leach and Paralimnoria Menzies. The genus Phycolimnoria is synonymised with Limnoria. Species from Australia are redescribed: Limnoria indica Becker and Kampf, L. insulae Menzies, L. multipunctata Menzies, L. nonsegnis Menzies, L. pfefferi Stebbing, L. plaiy- cauda Menzies, L. quadripunctata Holthuis, L. rugosissima Menzies, L. sublittorale Menzies, L. tripunctata Menzies and L. unicornis Menzies. New species from Australia are: L. agrostisa, L. echidna, L. gibbera, L. glaucinosa, L. orbellum, L. poorei, L. raruslima, L. torquisa and L. uncapedis. The new species L. loricata and L. convexa are also described from The Snares, New Zealand. Species from Papua New Guinea are: Paralimnoria andrewsi (Caiman), P. asterosa Cook- son and Cragg, L. andamanensis Rao and Ganapati, L. indica, L. insulae, L. kautensis Cookson and Cragg, L. multipunctata, L. pfefferi, L. tripunctata and L. unicornis. L. antarctica Pfeffer and L. stephenseni Menzies from Macquarie Island are redes- cribed. Although not found near Australia, L. tuberculata Sowinsky is also redescribed to distin- guish it from L.
    [Show full text]
  • Stranding Dynamics of Floating Bull Kelp Durvillaea Antarctica (Fucales, Phaeophyceae) on Beaches in the Se Pacific1
    J. Phycol. 53, 70–84 (2017) © 2016 Phycological Society of America DOI: 10.1111/jpy.12479 THE VARIABLE ROUTES OF RAFTING: STRANDING DYNAMICS OF FLOATING BULL KELP DURVILLAEA ANTARCTICA (FUCALES, PHAEOPHYCEAE) ON BEACHES IN THE SE PACIFIC1 Boris A. Lopez Facultad de Ciencias del Mar, Universidad Catolica del Norte, Larrondo 1281, Coquimbo, Chile Departamento de Acuicultura y Recursos Agroalimentarios, Universidad de Los Lagos, Avenida Fuchslocher 1305, Osorno, Chile Erasmo C. Macaya Laboratorio de Estudios Algales (ALGALAB), Departamento de Oceanografıa, Universidad de Concepcion, Casilla 160-C, Concepcion, Chile Millennium Nucleus Ecology and Sustainable Management of Oceanic Island (ESMOI), Coquimbo, Chile Centro FONDAP de Investigaciones en Dinamica de Ecosistemas Marinos de Altas Latitudes (IDEAL), Valdivia, Chile Fadia Tala Facultad de Ciencias del Mar, Universidad Catolica del Norte, Larrondo 1281, Coquimbo, Chile Centro de Investigacion y Desarrollo Tecnologico en Algas (CIDTA), Universidad Catolica del Norte, Larrondo 1281, Coquimbo, Chile Florence Tellier Departamento de Ecologıa, Facultad de Ciencias, Universidad Catolica de la Santısima Concepcion, Casilla 297, Concepcion, Chile Centro de Investigacion en Biodiversidad y Ambientes Sustentables (CIBAS), Universidad Catolica de la Santısima Concepcion, Casilla 297, Concepcion, Chile and Martin Thiel2 Facultad de Ciencias del Mar, Universidad Catolica del Norte, Larrondo 1281, Coquimbo, Chile Millennium Nucleus Ecology and Sustainable Management of Oceanic Island (ESMOI), Coquimbo,
    [Show full text]
  • In Situ Localisation of Mrnas to Decipher Plant and Algal
    bioRxiv preprint doi: https://doi.org/10.1101/378794; this version posted September 26, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 1 Biotrophic interactions disentangled: In situ localisation of mRNAs to decipher plant and 2 algal pathogen – host interactions at the single cell level. 3 4 Julia Badstöber1, Claire M. M. Gachon2, Jutta Ludwig-Müller3, Adolf M. Sandbichler4, Sigrid 5 Neuhauser1 6 7 1Institute of Microbiology, University of Innsbruck, A-6020 Innsbruck, Austria 8 2The Scottish Association for Marine Science, Scottish Marine Institute, Oban PA37 1QA, UK 9 3Institute of Botany, Technische Universität Dresden, D-01217 Dresden, Germany 10 4Institute of Zoology, University of Innsbruck, A-6020 Innsbruck, Austria 11 12 Author for correspondence: 13 Sigrid Neuhauser 14 Tel: +43 (0) 512 507-51259 15 Email: [email protected] 16 17 Summary 18 19 Plant-pathogen interactions follow spatiotemporal developmental dynamics where gene 20 expression in pathogen and host undergo crucial changes. It is of great interest to detect, 21 quantify and localise where and when key genes are active or inactive. Here, we adapt 22 single molecule FISH techniques to demonstrate presence and activity of mRNAs using 23 phytomyxids in their plant and algal host from laboratory and field materials. This 24 allowed to monitor and quantify the expression of genes from the clubroot pathogen 25 Plasmodiophora brassicae, several species of its Brassica hosts, and of several brown 26 algae, including the genome model Ectocarpus siliculosus, infected with the 27 phytomyxid Maullinia ectocarpii.
    [Show full text]
  • Botanical Society of Otago Newsletter
    Botanical Society of Otago Newsletter Number 48 May 2006 BSO Meetings and Field Trips 24 May, Wednesday 5.20 pm. A magnificent obsession: the botanical life and legacy of Tony Druce A talk by Geoff Rogers . An account of the wit, wisdom, mentoring role, and scientific achievements of a great New Zealand botanist. At the Zoology Benham Building, 346 Great King Street, behind the Zoology car park by the Captain Cook Hotel. Use the main entrance of the Benham Building to get in and go to the Benham Seminar Room, Rm. 215, 2nd floor. Please be prompt as we have to hold the door open. 27 May , Saturday 9 am. Fungal Foray to Orokonui A fungal foray led by David Orlovich (as seen on TV) to Orokonui Reserve. Note this trip will run subject to DoC approval. Bring hand lens, a basket or bag for collecting fungi, greaseproof paper (for wrapping specimens in the field) and a camera if you have one. Leave 9 AM from the Botany Dept carpark or 9:15 AM at the Orokonui carpark. We will aim to collect in the morning, and then return to the Department of Botany to record and dry the collections we make for the herbarium, finishing by 4 pm. In case of really bad weather, we will go on Sunday 28th May instead. Contact David Orlovich, phone: (03) 479 9060. (daytime). 14 June, Wednesday 5.20 pm Fungi: New Zealand's hidden diversity A talk by Dr David Orlovich . Fungi are nature's recyclers. They form the connections between plants and soil, algae and rocks, toxic wastes and the atmosphere, even life and death! In New Zealand, fungi support the beech forests of Fiordland, the high country tussock grasslands and our agricultural pastures through symbiotic mycorrhizal associations.
    [Show full text]
  • Ecological Roles of the Parasitic Phytomyxids (Plasmodiophorids) in Marine Ecosystems ] a Review
    CSIRO PUBLISHING www.publish.csiro.au/journals/mfr Marine and Freshwater Research, 2011, 62, 365–371 Ecological roles of the parasitic phytomyxids (plasmodiophorids) in marine ecosystems ] a review Sigrid Neuhauser A,C, Martin Kirchmair A and Frank H. GleasonB AInstitute of Microbiology, Leopold Franzens]University Innsbruck, Technikerstrasse 25, 6020 Innsbruck, Austria. BSchool of Biological Sciences A12, University of Sydney, Sydney, NSW 2006, Australia. CCorresponding author. Email: [email protected] Abstract. Phytomyxea (plasmodiophorids) is an enigmatic group of obligate biotrophic parasites. Most of the known 41 species are associated with terrestrial and freshwater ecosystems. However, the potential of phytomyxean species to influence marine ecosystems either directly by causing diseases of their hosts or indirectly as vectors of viruses is enormous, although still unexplored. In all, 20% of the currently described phytomyxean species are parasites of some of the key primary producers in the ocean, such as seagrasses, brown algae and diatoms; however, information on their distribution, abundance and biodiversity is either incomplete or lacking. Phytomyxean species influence fitness by altering the metabolism and/or the reproductive success of their hosts. The resulting changes can (1) have an impact on the biodiversity within host populations, and (2) influence microbial food webs because of altered availability of nutrients (e.g. changed metabolic status of host, transfer of organic matter). Also, phytomyxean species may affect their host populations indirectly by transmitting viruses. The majority of the currently known single-stranded RNA marine viruses structurally resemble the viruses transmitted by phytomyxean species to crops in agricultural environments. Here, we explore possible ecological roles of these parasites in marine habitats; however, only the inclusion of Phytomyxea in marine biodiversity studies will allow estimation of the true impact of these species on global primary production in the oceans.
    [Show full text]
  • Bioactive Polyphenols from Southern Chile Seaweed As Inhibitors of Enzymes for Starch Digestion
    marine drugs Article Bioactive Polyphenols from Southern Chile Seaweed as Inhibitors of Enzymes for Starch Digestion Luz Verónica Pacheco 1, Javier Parada 2,* , José Ricardo Pérez-Correa 3 , María Salomé Mariotti-Celis 4, Fernanda Erpel 3, Angara Zambrano 5 and Mauricio Palacios 6,7,8 1 Graduate School, Faculty of Agricultural Sciences, Universidad Austral de Chile, Valdivia 5090000, Chile; [email protected] 2 Institute of Food Science and Technology, Faculty of Agricultural Sciences, Universidad Austral de Chile, Valdivia 5090000, Chile 3 Department of Chemical and Bioprocess Engineering, Pontificia Universidad Católica de Chile, Macul, Santiago 7810000, Chile; [email protected] (J.R.P.-C.); [email protected] (F.E.) 4 Programa Institucional de Fomento a la Investigación, Desarrollo e Innovación, Universidad Tecnológica Metropolitana, Santiago 8940577, Chile; [email protected] 5 Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia 5090000, Chile; [email protected] 6 Centro FONDAP de Investigación Dinámica de Ecosistemas Marinos de Altas Latitudes (IDEAL), Valdivia 5090000, Chile; [email protected] 7 Programa de Doctorado en Biología Marina, Facultad de Ciencias, Universidad Austral de Chile, Valdivia 5090000, Chile 8 Facultad de Ciencias, Universidad de Magallanes, Punta Arenas 6200000, Chile * Correspondence: [email protected]; Tel.: +56-63-222-1619 Received: 26 May 2020; Accepted: 7 July 2020; Published: 8 July 2020 Abstract: The increment of non-communicable chronic diseases is a constant concern worldwide, with type-2 diabetes mellitus being one of the most common illnesses. A mechanism to avoid diabetes-related hyperglycemia is to reduce food digestion/absorption by using anti-enzymatic (functional) ingredients.
    [Show full text]
  • Lessonia (Phaeophyceae)
    Phylogeny, phylogeography and population connectivity of Lessonia (Phaeophyceae) Cover: Lessonia variegata in the lower intertidal of Moa Point, Wellington. Phylogeny, phylogeography and population connectivity of Lessonia (Phaeophyceae) by Peter Martin A dissertation submitted to Victoria University of Wellington in fulfilment of the requirements for the degree of Doctor of Philosophy in Ecology and Biodiversity Victoria University of Wellington Te Whare Wānanga o te Ūpoko o te Ika a Māui 2011 i Abstract The brown algal genus Lessonia is distributed in the Southern Hemisphere where it can form dominant kelp beds on the exposed rocky shores of New Zealand, South America and Tasmania. Its disjunct distribution within the West Wind Drift contrasts with the view that it is a poor disperser. Apart from studies in Chile, where it is an economically important genus, little is known about Lessonia and in some areas even the number of species is unknown. Using different genetic markers I examined the phylogeny, phylogeography, and the connectivity of populations in Lessonia. Using the literature, species affiliations and nomenclatural problems have been investigated. Combining the sequences of three mitochondrial, one chloroplast and two nuclear markers, a supermatrix approach was used to investigate the phylogenetic relationship and the timing of speciation for all known Lessonia species. The Australasian Lessonia species form a clade within a paraphyletic grouping of South American species. Radiation in Lessonia occurred about 5 Mya at the beginning of the Pliocene and rapid radiation took place in Australasia 3.5 Mya. The data also revealed cryptic species within a L. variegata species complex. Further analysis within the Australasian clade, using mitochondrial (atp8-sp) and chloroplast (rbc-sp) markers and wider sampling (469 individuals from 57 sample sites) supported four cryptic species and revealed localized distribution for all Australasian lineages.
    [Show full text]
  • Maullinia Ectocarpii Gen. Et Sp. Nov. (Plasmodiophorea), an Intracellular
    Erschienen in: Protist ; 151 (2000), 3. - S. 225-238 https://dx.doi.org/10.1078/1434-4610-00021 Maullinia ectocarpii gen. et sp. nov. (Plasmodiophorea), an Intracellular Parasite in Ectocarpus siliculosus (Ectocarpales, Phaeophyceae) and other Filamentous Brown Algae Ingo Maiera,1, Elisa Parodib, Renato Westermeierc, and Dieter G. Müllera a Fachbereich Biologie, Universität Konstanz, D-78457 Konstanz, Germany b Instituto Argentino de Oceanografía, UNS-CONICET, 8000 Bahia Blanca, Argentina c Facultad de Pesquerias y Oceanografia, Universidad Austral de Chile, Casilla 1327, Puerto Montt, Chile An obligate intracellular parasite infecting Ectocarpus spp. and other filamentous marine brown algae is described. The pathogen forms an unwalled multinucleate syncytium (plasmodium) within the host cell cytoplasm and causes hypertrophy. Cruciform nuclear divisions occur during early de- velopment. Mature plasmodia become transformed into single sporangia, filling the host cell com- pletely, and then cleave into several hundred spores. The spores are motile with two unequal, whiplash-type flagella inserted subapically and also show amoeboid movement. Upon settlement, cysts with chitinous walls are formed. Infection of host cells is accomplished by means of an adheso- rium and a stachel apparatus penetrating the host cell wall, and injection of the cyst content into the host cell cytoplasm. The parasite is characterized by features specific for the plasmodiophorids and is described as a new genus and species, Maullinia ectocarpii. Introduction Filamentous brown algae are important members in made on living algal hosts and their parasites. As many benthic marine communities. They have been has been stated by Andrews (1976), “pathological frequently reported to be attacked by various investigations by algologists have been more the re- pathogens, including viruses (Müller et al.
    [Show full text]