Lessonia (Phaeophyceae)

Total Page:16

File Type:pdf, Size:1020Kb

Lessonia (Phaeophyceae) Phylogeny, phylogeography and population connectivity of Lessonia (Phaeophyceae) Cover: Lessonia variegata in the lower intertidal of Moa Point, Wellington. Phylogeny, phylogeography and population connectivity of Lessonia (Phaeophyceae) by Peter Martin A dissertation submitted to Victoria University of Wellington in fulfilment of the requirements for the degree of Doctor of Philosophy in Ecology and Biodiversity Victoria University of Wellington Te Whare Wānanga o te Ūpoko o te Ika a Māui 2011 i Abstract The brown algal genus Lessonia is distributed in the Southern Hemisphere where it can form dominant kelp beds on the exposed rocky shores of New Zealand, South America and Tasmania. Its disjunct distribution within the West Wind Drift contrasts with the view that it is a poor disperser. Apart from studies in Chile, where it is an economically important genus, little is known about Lessonia and in some areas even the number of species is unknown. Using different genetic markers I examined the phylogeny, phylogeography, and the connectivity of populations in Lessonia. Using the literature, species affiliations and nomenclatural problems have been investigated. Combining the sequences of three mitochondrial, one chloroplast and two nuclear markers, a supermatrix approach was used to investigate the phylogenetic relationship and the timing of speciation for all known Lessonia species. The Australasian Lessonia species form a clade within a paraphyletic grouping of South American species. Radiation in Lessonia occurred about 5 Mya at the beginning of the Pliocene and rapid radiation took place in Australasia 3.5 Mya. The data also revealed cryptic species within a L. variegata species complex. Further analysis within the Australasian clade, using mitochondrial (atp8-sp) and chloroplast (rbc-sp) markers and wider sampling (469 individuals from 57 sample sites) supported four cryptic species and revealed localized distribution for all Australasian lineages. Genetic breaks between Lessonia lineages corresponded well to known biogeographic regions and could be correlated to the geographic structure of New Zealand at the end of the Pliocene. The Cook Strait region was analysed more closely with newly developed microsatellite markers to test the influence of geographic breaks (Cook Strait and Palliser Bay) on the connectivity of populations. ii The results suggested that connectivity depends on the width of unsuitable habitat, and within inner Cook Strait it is facilitated by sometimes strong tidal flows that create turbulences and unique current patterns. The results implied that rafting is an important mean of dispersal. The study of the early literature on Lessonia supported the new lectotypification of L. flavicans but revealed that L. frutescens and possibly L. ovata (supported by images of rediscovered herbarium material) are synonymous to L. searlesiana and as the older epithets they should have priority. Suggestions have been made for the lectotypification of L. fuscescens and L. ovata. In general Lessonia shows non-overlapping distribution in Australasia but overlapping distribution in South America. Despite being a poor disperser, indicated by fine scale genetic structure, Lessonia is also able to connect populations over wide areas of unsuitable habitats. iii für W altraud und Ludw ig iv Acknowledgements I have to mention red-hatted Jacques-Yves Cousteau as the person who planted an interest in marine biology into the mind of a very young Peter Martin. I am very grateful to my parents, who stood behind me and even showed excitement when I finally decided to follow my dreams and changed my professional career into an academic one with an uncertain future. Now at the end of my PhD I want to thank all the people I met along the way, who inspired me and helped me achieving my goal. These are my fellow students from the Universities in Halle, Rostock and the Victoria University in Wellington, the teachers and lecturers I enjoyed at these Institutions and my PhD supervisors at Victoria University. I also want to show gratitude to the three examiners of this thisis, Sharyn Goldstien, Ken Ryan, and John Bolton. I like and thank my best friends that have also been listeners and tellers of scientific fictions, Kai Ziervogel, Christian Bödeker, Rudi Schnitzler, Marc Hasenbank, and Elizabeth Heeg. Last but most important of all I want to thank the people I love and without their help nothing would have been possible. These are my mother, Waltraud, my father, Ludwig, my brother, Jochen, and my partner, Walli (and the apes Wumbaba and Wum). v Acknowledgements to Chapter 2 I am grateful to Ceridwen (Crid) Fraser, Cesar Cardenas, Christian Bödeker, Christopher Lane, Erasmo Macaya-Horta, Joe Buchanan, Loa Hunt, Robyn Dunmore, and Wendy Nelson for providing algal material. I also appreciate the efforts of Heroen Verbruggen and two anonymous reviewers for the Journal of Phycology for a critical reading of previous versions of this manuscript. This research was funded through a scholarship from the Victoria University of Wellington. Acknowledgements to Chapter 3 I am grateful to Christian Bödeker, Don Neale, Erasmo Macaya-Horta, Gert & Christine Vermeer, Joe Buchanan, Loa Hunt, Nick Shears, Robyn Dunmore, Waltraud Schiedermair and Wendy Nelson for helping with the sampling and/or providing algal material. I am thankful to the Wellington Botanical Society for grants to ease the cost of travelling. This research was partially funded by the Department of Conservation New Zealand and through a scholarship from the Victoria University of Wellington. Acknowledgements to Chapter 4 This project was partially funded by the Department of Conservation New Zealand and through a scholarship from the Victoria University of Wellington. I am grateful vi to Lara Shepherd, Joe Buchanan, and Erasmo Macaya-Horta for their help in microsatellite library construction. Acknowledgements to Chapter 5 The extensive samplings have only been possible with the help of self-giving Waltraud Schiedermair and also Erasmo Macaya-Horta. I want to thank the caretaker of the Fighting Bay Cable Station for granting excess to the bay and the management of Meridian Energy for providing escort to Cape Terawhiti. Acknowledgements to Chapter 6 The curators of the following herbaria have been helpful in providing specimens or high quality images of Lessonia collections: BM, PC, S, TCD, UC and US. I am especially grateful to Paul Silva and Kathy Ann Miller from UC who helped with taxonomic questions and provided images of anatomic sections, and to Bruno de Reviers who sent me an early manuscript of his research. I am also grateful to Phil Garnock-Jones for helping in dealing with the International Code of Botanical Nomenclature. vii Table of Contents Abstract ........................................................................................................................ i Acknowledgements ................................................................................................................. iv Table of Contents .................................................................................................................... vii List of Figures ...................................................................................................................... xi Supplementary Figures ........................................................................................................................ xix List of Tables .................................................................................................................... xxi Supplementary Tables........................................................................................................................ xxiv Chapter 1 Introduction & overview .................................. 1 1.1 Thesis structure ................................................................................................................1 1.2 Lessonia – First descriptions and biogeography ...............................................4 1.2.1 Distinguishing features of Lessonia species and their synonyms .......... 9 1.2.1.1 Australasian species ...................................................................... 9 1.2.1.2 South American species .............................................................. 11 1.2.2 Figures and Tables ............................................................................. 14 1.3 Lessonia – Biology and dispersal ........................................................................... 26 1.3.1 Figures............................................................................................... 32 1.4 Lessoniceae – New molecular taxonomy and phylogeny .......................... 34 1.4.1 Tables ................................................................................................ 38 1.5 References ........................................................................................................................ 41 Chapter 2 Molecular Phylogeny and timing of radiation in Lessonia (Phaeophyceae, Laminariales) .. 53 2.1 Abstract.............................................................................................................................. 53 2.2 Introduction..................................................................................................................... 55 2.3 Material and Methods ................................................................................................. 58 2.3.1 Sampling ..........................................................................................
Recommended publications
  • New Zealand's Genetic Diversity
    1.13 NEW ZEALAND’S GENETIC DIVERSITY NEW ZEALAND’S GENETIC DIVERSITY Dennis P. Gordon National Institute of Water and Atmospheric Research, Private Bag 14901, Kilbirnie, Wellington 6022, New Zealand ABSTRACT: The known genetic diversity represented by the New Zealand biota is reviewed and summarised, largely based on a recently published New Zealand inventory of biodiversity. All kingdoms and eukaryote phyla are covered, updated to refl ect the latest phylogenetic view of Eukaryota. The total known biota comprises a nominal 57 406 species (c. 48 640 described). Subtraction of the 4889 naturalised-alien species gives a biota of 52 517 native species. A minimum (the status of a number of the unnamed species is uncertain) of 27 380 (52%) of these species are endemic (cf. 26% for Fungi, 38% for all marine species, 46% for marine Animalia, 68% for all Animalia, 78% for vascular plants and 91% for terrestrial Animalia). In passing, examples are given both of the roles of the major taxa in providing ecosystem services and of the use of genetic resources in the New Zealand economy. Key words: Animalia, Chromista, freshwater, Fungi, genetic diversity, marine, New Zealand, Prokaryota, Protozoa, terrestrial. INTRODUCTION Article 10b of the CBD calls for signatories to ‘Adopt The original brief for this chapter was to review New Zealand’s measures relating to the use of biological resources [i.e. genetic genetic resources. The OECD defi nition of genetic resources resources] to avoid or minimize adverse impacts on biological is ‘genetic material of plants, animals or micro-organisms of diversity [e.g. genetic diversity]’ (my parentheses).
    [Show full text]
  • Akatore Study Published in Earth and Planetary
    Earth and Planetary Science Letters 520 (2019) 18–25 Contents lists available at ScienceDirect Earth and Planetary Science Letters www.elsevier.com/locate/epsl Kelp DNA records late Holocene paleoseismic uplift of coastline, southeastern New Zealand ∗ Elahe Parvizi a, Dave Craw b, , Jonathan M. Waters a a Zoology Department, University of Otago, PO Box 56, Dunedin 9054, New Zealand b Geology Department, University of Otago, PO Box 56, Dunedin 9054, New Zealand a r t i c l e i n f o a b s t r a c t Article history: Holocene paleoseismic activity on the Akatore Fault zone, southeastern New Zealand, has caused uplift Received 20 January 2019 of a 23 km section of coastline by several metres. Prominent relict shoreline terraces are preserved at Received in revised form 4 May 2019 6 m and 3 m above the present sea level, and the latter terrace was formed 1000-1400 yrs BP. The Accepted 22 May 2019 main fault strand farther inland has 6 mof late Holocene vertical offset, but the relationships between Available online xxxx coastal offsets and fault offsets are not understood. There is no preserved geological evidence on the Editor: J.-P. Avouac coastline to distinguish between incremental uplift (e.g., numerous centimetre-scale events) and major, Keywords: metre-scale, uplift events: a distinction that is important for evaluating regional paleoseismicity. We have paleoseismology used genetic characterisation of populations of live kelp, Durvillaea antarctica growing along the shoreline neotectonics to investigate whether or not there has been a catastrophic uplift event, greater than the two metre tidal fault range, that was sufficient to extirpate intertidal kelp populations.
    [Show full text]
  • A Comprehensive Kelp Phylogeny Sheds Light on the Evolution of an T Ecosystem ⁎ Samuel Starkoa,B,C, , Marybel Soto Gomeza, Hayley Darbya, Kyle W
    Molecular Phylogenetics and Evolution 136 (2019) 138–150 Contents lists available at ScienceDirect Molecular Phylogenetics and Evolution journal homepage: www.elsevier.com/locate/ympev A comprehensive kelp phylogeny sheds light on the evolution of an T ecosystem ⁎ Samuel Starkoa,b,c, , Marybel Soto Gomeza, Hayley Darbya, Kyle W. Demesd, Hiroshi Kawaie, Norishige Yotsukuraf, Sandra C. Lindstroma, Patrick J. Keelinga,d, Sean W. Grahama, Patrick T. Martonea,b,c a Department of Botany & Biodiversity Research Centre, The University of British Columbia, 6270 University Blvd., Vancouver V6T 1Z4, Canada b Bamfield Marine Sciences Centre, 100 Pachena Rd., Bamfield V0R 1B0, Canada c Hakai Institute, Heriot Bay, Quadra Island, Canada d Department of Zoology, The University of British Columbia, 6270 University Blvd., Vancouver V6T 1Z4, Canada e Department of Biology, Kobe University, Rokkodaicho 657-8501, Japan f Field Science Center for Northern Biosphere, Hokkaido University, Sapporo 060-0809, Japan ARTICLE INFO ABSTRACT Keywords: Reconstructing phylogenetic topologies and divergence times is essential for inferring the timing of radiations, Adaptive radiation the appearance of adaptations, and the historical biogeography of key lineages. In temperate marine ecosystems, Speciation kelps (Laminariales) drive productivity and form essential habitat but an incomplete understanding of their Kelp phylogeny has limited our ability to infer their evolutionary origins and the spatial and temporal patterns of their Laminariales diversification. Here, we
    [Show full text]
  • Advances in Cultivation of Gelidiales
    Advances in cultivation of Gelidiales Michael Friedlander Originally published in the Journal of Applied Phycology, Vol 20, No 5, 1–6. DOI: 10.1007/s10811-007-9285-1 # Springer Science + Business Media B.V. 2007 Abstract Currently, Gelidium and Pterocladia (Gelidiales) Introduction are collected or harvested only from the sea. Despite several attempts to develop a cultivation technology for Gelidium, As far as I know there is no current commercial cultivation no successful methodology has yet been developed. Initial of Gelidiales. Despite several attempts to develop a steps towards developmental efforts in Portugal, Spain, cultivation technology for Gelidium and Pterocladia, so far South Africa and Israel have been published. More no successful methodology has been developed. Because of developments have probably been performed but have not the proprietary nature of commercial cultivation, a success- been published. Two different technological concepts have ful technology may have been developed but has remained been tested for Gelidium cultivation: (1) the attachment of unpublished. Gelidium and Pterocladia (or Pterocladiella) Gelidium fragments to concrete cylinders floating in the are currently only collected or harvested, as opposed to sea, and (2) free-floating pond cultivation technology. other useful seaweeds for which cultivation technology has These vegetative cultivation technologies might be partially been developed. The reasons for this situation are discussed optimized by controlling physical, chemical and biological in this review, including all important variables affecting growth factors. The pond cultivation technology is the Gelidium and Pterocladia growth. This review will rely much more controllable option. The effects of all factors are mostly on Gelidium studies since most of the relevant discussed in detail in this review.
    [Show full text]
  • Division: Ochrophyta- 16,999 Species Order Laminariales: Class: Phaeophyceae – 2,060 Species 1
    4/28/2015 Division: Ochrophyta- 16,999 species Order Laminariales: Class: Phaeophyceae – 2,060 species 1. Life History and Reproduction Order: 6. Laminariales- 148 species - Saxicolous - Sporangia always unilocular 2. Macrothallus Construction: - Most have sieve cells/elements - Pheromone released by female gametes lamoxirene Genus: Macrocystis 3. Growth Nereocystis Pterogophora Egregia Postelsia Alaria 2 14 Microscopic gametophytes Life History of Laminariales Diplohaplontic Alternation of Generations: organism having a separate multicellular diploid sporophyte and haploid gametophyte stage 3 4 1 4/28/2015 General Morphology: All baby kelps look alike 6 Intercalary growth Meristodermal growth Meristoderm/outer cortex – outermost cells (similar to cambia in land plants) Inner cortex – unpigmented cells Medulla – contains specialized cells (sieve elements/hyphae) Meristodermal growth gives thallus girth (mostly) “transition zone” Periclinal vs. Anticlinal cell division: • Periclinal = cell division parallel to the plane of the meristoderm girth •Anticlinal = cell division • Growth in both directions away from meristem • Usually between stipe and blade (or blade and pneumatocyst) perpendicular to the plane of the 7 meristoderm height 8 2 4/28/2015 Phaeophyceae Morphology of intercellular connections Anticlinal Pattern of cell division perpendicular to surface of algae. Only alga to transport sugar/photosynthate in sieve elements Periclinal Cell division parallel to surface of plant. Plasmodesmata = connections between adjacent cells,
    [Show full text]
  • 1 Expedition Report: Jason Islands 1
    Expedition Report: Jason Islands 1. Logistics 1.1 Vessel: Golden Fleece , Capt. Dion Poncet 1.2 Expedition dates: 23 Oct 2008 – 4 Nov 2008 1.3 Expedition participants: Karen Neely [email protected] Paul Brickle [email protected] Wetjens Dimmlich [email protected] Judith Brown jbrown@smsg -falklands.org Vlad Laptikhovsky [email protected] Dion Poncet [email protected] Steve Cartwright [email protected] Sarah Crofts [email protected] Vernon Steen [email protected] Claire Goodwin [email protected] Jen Jones [email protected] 2. Scientific rationale and objectives The inshore marine systems and resources of the Falkland Islands make up one of the nation’s most diverse, unique, and valuable assets. From its historical reputation as a safe harbour to its present dependence on fishing and wildlife-based revenues, this archipelago is defined by the sea and its resources. Though perhaps best known ecologically for its bird life, the islands hold numerous organisms and environments that are all closely linked. Of the ten bird species of global conservation concern that breed within the Falklands, eight are seabirds and two are closely associated with offshore islands that contain seabird colonies. These species rely on the marine productivity of the waters around the Falkland Islands and in turn cycle nutrients among the soils, plants, and invertebrates of coastal areas. Knowledge and management of the marine environments are thus important for the knowledge and management of all Falklands ecosystems. Surprisingly, very little of the Islands’ immense coastline has been the subject of scientifically sound investigation, and identification of shallow marine species and habitat types is still in its infancy.
    [Show full text]
  • Distribution Patterns of Tetrapygus Niger (Echinodermata: Echinoidea) Off the Central Chilean Coast
    MARINE ECOLOGY PROGRESS SERIES Published November 4 Mar. Ecol. Prog. Ser. Distribution patterns of Tetrapygus niger (Echinodermata: Echinoidea) off the central Chilean coast Sebastian R. Rodriguez, F. Patricio Ojeda* Departamento de Ecologia, Facultad de Ciencias Biologicas, Pontificia Universidad Catolica de Chile, Casilla 114-D, Santiago, Chile ABSTRACT: We investigated spatial distnbution and temporal occurrence patterns of Tetrapygus niger in the subtidal zone off the central Chilean coast from March to November 1990. The shallowest por- tion of the subtidal zone and the shallowest edge of the kelp forest of Lessonia trabeculata appeared to be important recruitment zones for this species We found a s~gnificantnumber of recruits along the bed border, and a marked decrease of urchn abundance toward the center of the kelp Data obtained in September and November outside the kelp bed showed juvenile urchins [i.e.<24 mm test diameter (TD)]strongly associated with crevices. Size-frequency distributions at 2 m depth for those months also showed a large trough of intermediate-sized individuals (i.e. 15 to 30 mm TD). Temporal analysls of size-frequency distributions of individuals collected outs~dethe kelp showed a relatively slow shift of modes between March and September and a malor modal shift from September to November. Density values of urchins found in November were relatively low; however, the individuals appeared aggre- gated. INTRODUCTION MATERIALS AND METHODS Sea urchins are one of the most common components Sea urchins were collected at Punta de Tralca (33' of near-shore marine ecosystem worldwide, often play- 35' S, 71" 42' W) off the central Chilean coast.
    [Show full text]
  • Populations of a New Morphotype of Corrugate Lessonia Bory in the Beagle Channel, Sub-Antarctic Magellanic Ecoregion: a Possible Case of On-Going Speciation
    cryptogamie Algologie 2020 ● 41 ● 11 DIRECTEUR DE LA PUBLICATION / PUBLICATION DIRECTOR : Bruno DAVID Président du Muséum national d’Histoire naturelle RÉDACTRICE EN CHEF / EDITOR-IN-CHIEF : Line LE GALL Muséum national d’Histoire naturelle ASSISTANTE DE RÉDACTION / ASSISTANT EDITOR : Audrina NEVEU ([email protected]) MISE EN PAGE / PAGE LAYOUT : Audrina NEVEU RÉDACTEURS ASSOCIÉS / ASSOCIATE EDITORS Ecoevolutionary dynamics of algae in a changing world Stacy KRUEGER-HADFIELD Department of Biology, University of Alabama, 1300 University Blvd, Birmingham, AL 35294 (United States) Jana KULICHOVA Department of Botany, Charles University, Prague (Czech Repubwlic) Cecilia TOTTI Dipartimento di Scienze della Vita e dell’Ambiente, Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona (Italy) Phylogenetic systematics, species delimitation & genetics of speciation Sylvain FAUGERON UMI3614 Evolutionary Biology and Ecology of Algae, Departamento de Ecología, Facultad de Ciencias Biologicas, Pontificia Universidad Catolica de Chile, Av. Bernardo O’Higgins 340, Santiago (Chile) Marie-Laure GUILLEMIN Instituto de Ciencias Ambientales y Evolutivas, Universidad Austral de Chile, Valdivia (Chile) Diana SARNO Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli (Italy) Comparative evolutionary genomics of algae Nicolas BLOUIN Department of Molecular Biology, University of Wyoming, Dept. 3944, 1000 E University Ave, Laramie, WY 82071 (United States) Heroen VERBRUGGEN School of BioSciences,
    [Show full text]
  • Macrocystis Integrifolia and Lessonia Trabeculata (Laminariales; Phaeophyceae) Kelp Habitat Structures and Associated Macrobenthic Community Ov Northern Chile
    Helgol Mar Res (2008) 62 (Suppl 1):S33–S43 DOI 10.1007/s10152-007-0096-1 ORIGINAL ARTICLE Macrocystis integrifolia and Lessonia trabeculata (Laminariales; Phaeophyceae) kelp habitat structures and associated macrobenthic community oV northern Chile Mario J. Villegas · Jürgen Laudien · Walter Sielfeld · Wolf E. Arntz Received: 6 June 2007 / Revised: 2 November 2007 / Accepted: 9 November 2007 / Published online: 20 December 2007 © Springer-Verlag and AWI 2007 Abstract Macrocystis integrifolia and Lessonia trabecu- present on barren ground are shorter and have more stipes lata form vast kelp beds providing a three-dimensional habi- compared with those in the dense L. trabeculata kelp bed. tat for a diverse invertebrate and Wsh fauna oV northern Thus, the habitats provide diVerent three-dimensional struc- Chile. Habitat modiWcations caused by the El Niño Southern tures. The associated macrobenthic communities show a Oscillation (ENSO) are likely to alter the inhabiting commu- variable degree of overlapping; however, key faunal assem- nities. The aim of this study was to reveal relationships blages were distinguished for each habitat. Our study pro- between distinct habitat structures of a M. integrifolia kelp vides evidence that habitat diversity drives species diversity, bed, a dense L. trabeculata kelp bed and L. trabeculata the more homogeneous, monospeciWcally composed kelp patches colonizing a barren ground, and the associated dom- bed habitats show comparatively low diversity, mainly inant macrobenthic key species. Seasonally 15 sampling caused by the dominance of the ascidian P. chilensis and T. units (10 m2 each) of any of the three habitats were moni- tridentata in the M. integrifolia bed, and the mussel A.
    [Show full text]
  • Download Full Article 6.9MB .Pdf File
    Memoirs of the Museum of Victoria 52(2): 1 37-262 ( 1 990) ISSN 08 1 4- 1 827 https://doi.org/10.24199/j.mmv.1991.52.02 30 September 1991 AUSTRALASIAN SPECIES OF LIMNORIIDAE (CRUSTACEA: ISOPODA) By Laurie J. Cookson CSIRO Division of Forest Products, Private Bag 10, Clayton, Victoria 3168, Australia Abstract Cookson, L.J., 1991. Australasian species of Limnoriidae (Crustacea: Isopoda). Memoirs of the Museum of Victoria 52: 137-262. Some members of the Limnoriidae are important marine wood-borers. The taxonomy of the family was studied with emphasis on species from the Australasian region. The Lim- noriidae are reduced to two genera: Limnoria Leach and Paralimnoria Menzies. The genus Phycolimnoria is synonymised with Limnoria. Species from Australia are redescribed: Limnoria indica Becker and Kampf, L. insulae Menzies, L. multipunctata Menzies, L. nonsegnis Menzies, L. pfefferi Stebbing, L. plaiy- cauda Menzies, L. quadripunctata Holthuis, L. rugosissima Menzies, L. sublittorale Menzies, L. tripunctata Menzies and L. unicornis Menzies. New species from Australia are: L. agrostisa, L. echidna, L. gibbera, L. glaucinosa, L. orbellum, L. poorei, L. raruslima, L. torquisa and L. uncapedis. The new species L. loricata and L. convexa are also described from The Snares, New Zealand. Species from Papua New Guinea are: Paralimnoria andrewsi (Caiman), P. asterosa Cook- son and Cragg, L. andamanensis Rao and Ganapati, L. indica, L. insulae, L. kautensis Cookson and Cragg, L. multipunctata, L. pfefferi, L. tripunctata and L. unicornis. L. antarctica Pfeffer and L. stephenseni Menzies from Macquarie Island are redes- cribed. Although not found near Australia, L. tuberculata Sowinsky is also redescribed to distin- guish it from L.
    [Show full text]
  • Stranding Dynamics of Floating Bull Kelp Durvillaea Antarctica (Fucales, Phaeophyceae) on Beaches in the Se Pacific1
    J. Phycol. 53, 70–84 (2017) © 2016 Phycological Society of America DOI: 10.1111/jpy.12479 THE VARIABLE ROUTES OF RAFTING: STRANDING DYNAMICS OF FLOATING BULL KELP DURVILLAEA ANTARCTICA (FUCALES, PHAEOPHYCEAE) ON BEACHES IN THE SE PACIFIC1 Boris A. Lopez Facultad de Ciencias del Mar, Universidad Catolica del Norte, Larrondo 1281, Coquimbo, Chile Departamento de Acuicultura y Recursos Agroalimentarios, Universidad de Los Lagos, Avenida Fuchslocher 1305, Osorno, Chile Erasmo C. Macaya Laboratorio de Estudios Algales (ALGALAB), Departamento de Oceanografıa, Universidad de Concepcion, Casilla 160-C, Concepcion, Chile Millennium Nucleus Ecology and Sustainable Management of Oceanic Island (ESMOI), Coquimbo, Chile Centro FONDAP de Investigaciones en Dinamica de Ecosistemas Marinos de Altas Latitudes (IDEAL), Valdivia, Chile Fadia Tala Facultad de Ciencias del Mar, Universidad Catolica del Norte, Larrondo 1281, Coquimbo, Chile Centro de Investigacion y Desarrollo Tecnologico en Algas (CIDTA), Universidad Catolica del Norte, Larrondo 1281, Coquimbo, Chile Florence Tellier Departamento de Ecologıa, Facultad de Ciencias, Universidad Catolica de la Santısima Concepcion, Casilla 297, Concepcion, Chile Centro de Investigacion en Biodiversidad y Ambientes Sustentables (CIBAS), Universidad Catolica de la Santısima Concepcion, Casilla 297, Concepcion, Chile and Martin Thiel2 Facultad de Ciencias del Mar, Universidad Catolica del Norte, Larrondo 1281, Coquimbo, Chile Millennium Nucleus Ecology and Sustainable Management of Oceanic Island (ESMOI), Coquimbo,
    [Show full text]
  • The Global Status of Seaweed Production, Trade and Utilization
    GLOBEFISH RESEARCH PROGRAMME The global status of seaweed production, trade and utilization Volume 124 FAO GLOBEFISH RESEARCH PROGRAMME VOL. 124 The global status of seaweed production, trade and utilization by Fatima Ferdouse Susan Løvstad Holdt Rohan Smith Pedro Murúa Zhengyong Yang FAO Consultants Products, Trade and Marketing Branch Fisheries and Aquaculture Policy and Resources Division Rome, Italy FOOD AND AGRICULTURE ORGANIZATION OF THE UNITED NATIONS Rome, 2018 5HTXLUHGFLWDWLRQ )$2 7KHJOREDOVWDWXVRIVHDZHHGSURGXFWLRQWUDGHDQGXWLOL]DWLRQ *OREHILVK5HVHDUFK3URJUDPPH9ROXPH 5RPHSS /LFHQFH&&%<1&6$,*2 7KHGHVLJQDWLRQVHPSOR\HGDQGWKHSUHVHQWDWLRQRIPDWHULDOLQWKLVLQIRUPDWLRQSURGXFWGRQRWLPSO\WKHH[SUHVVLRQRIDQ\RSLQLRQZKDWVRHYHU RQWKHSDUWRIWKH)RRGDQG$JULFXOWXUH2UJDQL]DWLRQRIWKH8QLWHG1DWLRQV )$2 FRQFHUQLQJWKHOHJDORUGHYHORSPHQWVWDWXVRIDQ\FRXQWU\ WHUULWRU\FLW\RUDUHDRURILWVDXWKRULWLHVRUFRQFHUQLQJWKHGHOLPLWDWLRQRILWVIURQWLHUVRUERXQGDULHV7KHPHQWLRQRI VSHFLILFFRPSDQLHVRU SURGXFWVRIPDQXIDFWXUHUVZKHWKHURUQRWWKHVHKDYHEHHQSDWHQWHGGRHVQRWLPSO\WKDWWKHVHKDYHEHHQHQGRUVHGRUUHFRPPHQGHGE\ )$2LQSUHIHUHQFHWRRWKHUVRIDVLPLODUQDWXUHWKDWDUHQRWPHQWLRQHG 7KHYLHZVH[SUHVVHGLQWKLVLQIRUPDWLRQSURGXFWDUHWKRVHRIWKHDXWKRU V DQGGRQRWQHFHVVDULO\UHIOHFWWKHYLHZVRUSROLFLHVRI)$2 ,6%1 )$2 6RPHULJKWVUHVHUYHG7KLVZRUNLV PDGH DYDLODEOHXQGHUWKH&UHDWLYH&RPPRQV$WWULEXWLRQ1RQ&RPPHUFLDO6KDUH$OLNH ,*2OLFHQFH && %<1&6$ ,*2KWWSVFUHDWLYHFRPPRQVRUJOLFHQVHVE\QFVDLJR 8QGHUWKHWHUPVRIWKLVOLFHQFH WKLVZRUNPD\EHFRSLHGUHGLVWULEXWHG DQGDGDSWHG IRUQRQFRPPHUFLDOSXUSRVHVSURYLGHGWKDWWKHZRUNLV DSSURSULDWHO\FLWHG,QDQ\XVHRIWKLVZRUNWKHUHVKRXOGEHQRVXJJHVWLRQWKDW)$2
    [Show full text]