Division: Ochrophyta- 16,999 Species Order Laminariales: Class: Phaeophyceae – 2,060 Species 1

Total Page:16

File Type:pdf, Size:1020Kb

Division: Ochrophyta- 16,999 Species Order Laminariales: Class: Phaeophyceae – 2,060 Species 1 4/28/2015 Division: Ochrophyta- 16,999 species Order Laminariales: Class: Phaeophyceae – 2,060 species 1. Life History and Reproduction Order: 6. Laminariales- 148 species - Saxicolous - Sporangia always unilocular 2. Macrothallus Construction: - Most have sieve cells/elements - Pheromone released by female gametes lamoxirene Genus: Macrocystis 3. Growth Nereocystis Pterogophora Egregia Postelsia Alaria 2 14 Microscopic gametophytes Life History of Laminariales Diplohaplontic Alternation of Generations: organism having a separate multicellular diploid sporophyte and haploid gametophyte stage 3 4 1 4/28/2015 General Morphology: All baby kelps look alike 6 Intercalary growth Meristodermal growth Meristoderm/outer cortex – outermost cells (similar to cambia in land plants) Inner cortex – unpigmented cells Medulla – contains specialized cells (sieve elements/hyphae) Meristodermal growth gives thallus girth (mostly) “transition zone” Periclinal vs. Anticlinal cell division: • Periclinal = cell division parallel to the plane of the meristoderm girth •Anticlinal = cell division • Growth in both directions away from meristem • Usually between stipe and blade (or blade and pneumatocyst) perpendicular to the plane of the 7 meristoderm height 8 2 4/28/2015 Phaeophyceae Morphology of intercellular connections Anticlinal Pattern of cell division perpendicular to surface of algae. Only alga to transport sugar/photosynthate in sieve elements Periclinal Cell division parallel to surface of plant. Plasmodesmata = connections between adjacent cells, formed during cell division - Used for cell-to-cell transport of photosynthetic products and cell communication 9 Transport: Transport in Plants vs. Algae completely independent evolutionary origins sieve elements, sieve cells, trumpet hyphae • Transport photosynthetic products Plants Algae • Have water and sugar • Outgrowths of cortex cells that grow into the medulla • Only conduct sugars and some conducting cells nutrients • Don’t divide again after formation, so they get drawn out into •Xylem non-living long thin “trumpets” = trumpet hyphae •All cells living • Sieve plates are specialized plasmodesmata between the sieve • Sieve elements alive • Sieve elements alive elements that allow transport of sugars between cells • Sieve elements lack • Sieve elements lack organelles •Important because kelps are so large: light levels don’t reach organelles except mitochondria lower portions • No companion cells • Have companion cells 11 12 3 4/28/2015 Kelp Evolution : Evidence on NE Pacific Origin Kelp Distribution 1. Kelp forests are found in shallow rocky habitats along temperate coasts throughout the world 2. Area world ocean covered by kelp forest is comparable to that covered by coral reefs 3. Kelps thrive in cool nutrient rich water-> explains why the most extensive kelp forests are found on western continental margins, where extensive upwelling occurs 4. Not found at low latitudes because intolerant of H2O temps above 20 deg C (metabolic effect or because of grazers/pathogens…) M.H. Graham Kelp Evolution : Evidence on NE Pacific Origin How did kelp get to the Southern Hemishere? Theory 1: It floated Earliest kelps: •Simple morphology •Dichotomous branching •Pneumatocysts present •Hybrid of Macrocystis and Pelagophychus •Found in So Cal Fossils •Dated back to 20 mya Obligate species evolved at the same time: •Sea Otters •Steller’s Sea Cow •Abalone •Sea Urchins 4 4/28/2015 How did kelp get to the Southern Hemishere? Theory 2: It traveled far enough to reach cold water refugia Eisenia galapagensis Foundation Species- a single species that defines much of the structure Macrocystis pyrifera = foundation species of a community by creating locally stable conditions for other species, and by modulating and stabilizing fundamental ecosystem processes Paul Dayton 1972 • Influence water motion • Dispersal of plankton •Sea otters wrap themselves with this kelp to keep from floating away while sleeping •Dissolved matter from these kelps = important food source 20 5 4/28/2015 Macrocystis pyrifera = the giant kelp • Major canopy kelp, up to 60 m in length • Capable of high growth rates: 1-2 ft/day! • Perennial, but individual blades only last ~ 2 - 6 Months •High turnover rates ( compared with trees and coral reeff)s) • Apical scimitar blade at growing tip • Intercalary meristem between blade and pneumatocyst •Sporophylls- above holdfast, no pneumatocysts,chemically defended •Hapterous holdfast 21 Macrocystis pyrifera = the giant kelp Macrocystis pyrifera = the giant kelp vs. M. integrifolia Northern limit- set by hydrodynamic forces Demes et al. 2009 Southern limit – set by lack of substrate and temperature and nutrient conditions 23 6 4/28/2015 Kelp forests vulnerable to disturbance and local extinction How far do spores travel? Removal by storm waves Poor environmental conditions Grazer outbreaks Imbreeding Nereocystis luetkeana = the bull kelp •Major canopy species •Hapterous holdfast • Stipe up to 50 m long!! • Single big pneumatocyst filled with carbon dioxide and monoxide • Annual!!! Most growth March-Sept (~200 days to get that big…can grow >1 ft/day!) •Sori on main blade, pop out and are negatively buoyant WHY?? 28 7 4/28/2015 Nereocystis luetkeana = the bull kelp Pteryogophora californica = the walking kelp Morphological plasticity: • Low flow environments– ruffled blades (increases motion and therefore nutrient uptake, broad blades for light interception) •Understory kelp • High flow environments- flat and narrow (less drag so not ripped out • Woody stipe, terminal and no shading) vegetative blade and lateral sporophylls • Perennial – up to 25 years old! • Growth rings in stipe, just like blade trees sporophylls 29 30 Egregia menziesii = feather boa kelp Egregia menziesii = feather boa kelp Perennial Mid-low intertidal Max frond # per plant = 50 Max # fronds per m2= 150 • Midrib = rachis • Sporophylls – deeper brown col;lor; shshtorter and more narrow than vegetative blades and dispersed among them • Intercalary meristem in upper portion of rachis •Northern morph and southern morph 32 5 8 4/28/2015 Postelsia palmaeformis = the sea palm Postelsia palmaeformis = the sea palm • Grows in high wave exposed • Grows in high wave exposed habitats habitats • Sensitive to desiccation in high • Blade surface with deep zone longitudinal grooves •Does not get enough light if too • Sporangia in linear sori lining submerged in low zone grooves • Zoospores released and drip down grooves (1-5m away) land on: • Mussels •Bare rock • Below mussels • Winter storms rip out mussels 35 which opens up space for light 36 9 4/28/2015 Kelp Harvest History Alaria sporophylls -intertidal to 10 meters -edible -17th century – kelp ash – French peasants -affected by climate change used for glazing pottery and making low disappeared from the English Channel quaility glass -1811 – discovery of iodine in kelps – used to treat goiters – enlargements of the thyroid gland blade - 2004-industrial use is for alginates-San Diego based firm, ISP alginates (AKA Kelco) largest in the world 37 38 Kelp Harvest- Laminariales - 89 state-defined kelp beds Family: - 38 available for lease but only 9 are leased Laminariaceae -Harvest regulated by CA DFG: can cut only upper 1.2 m Macrocystis, Nereocystis, Pelagophycus, Postelsia, Laminaria -Abalone growers lease 7 beds Alariaceae Stipe derived sporophylls - The Nature Conservancy leased 2 kelp beds-2,710 acres Alaria, Pterogophora, Undaria, Lessoniopsis, Pleurophycus (but not this one) $5, 800 for 3 years Lessoniaceae -Collaborative research by Kendra Karr UCSC and The Nature Consevancy Eckolonia, Egregia, Eisenia, Lessonia found that for juvenile rock fish better to half-harvest two kelp forest patches than to whole- harvest one patch Costariacea Flattened stipe with a perforated or reticulate blade Costaria, Agarum, Dictyoneurum, Lane et al. 2006 40 10.
Recommended publications
  • Marlin Marine Information Network Information on the Species and Habitats Around the Coasts and Sea of the British Isles
    MarLIN Marine Information Network Information on the species and habitats around the coasts and sea of the British Isles Sugar kelp (Saccharina latissima) MarLIN – Marine Life Information Network Biology and Sensitivity Key Information Review Nicola White & Charlotte Marshall 2007-09-06 A report from: The Marine Life Information Network, Marine Biological Association of the United Kingdom. Please note. This MarESA report is a dated version of the online review. Please refer to the website for the most up-to-date version [https://www.marlin.ac.uk/species/detail/1375]. All terms and the MarESA methodology are outlined on the website (https://www.marlin.ac.uk) This review can be cited as: White, N. & Marshall, C.E. 2007. Saccharina latissima Sugar kelp. In Tyler-Walters H. and Hiscock K. (eds) Marine Life Information Network: Biology and Sensitivity Key Information Reviews, [on-line]. Plymouth: Marine Biological Association of the United Kingdom. DOI https://dx.doi.org/10.17031/marlinsp.1375.1 The information (TEXT ONLY) provided by the Marine Life Information Network (MarLIN) is licensed under a Creative Commons Attribution-Non-Commercial-Share Alike 2.0 UK: England & Wales License. Note that images and other media featured on this page are each governed by their own terms and conditions and they may or may not be available for reuse. Permissions beyond the scope of this license are available here. Based on a work at www.marlin.ac.uk (page left blank) Date: 2007-09-06 Sugar kelp (Saccharina latissima) - Marine Life Information Network See online review for distribution map Buoy line with Saccharina latissima.
    [Show full text]
  • 27April12acquatic Plants
    International Plant Protection Convention Protecting the world’s plant resources from pests 01 2012 ENG Aquatic plants their uses and risks Implementation Review and Support System Support and Review Implementation A review of the global status of aquatic plants Aquatic plants their uses and risks A review of the global status of aquatic plants Ryan M. Wersal, Ph.D. & John D. Madsen, Ph.D. i The designations employed and the presentation of material in this information product do not imply the expression of any opinion whatsoever on the part of the Food and Agriculture Organization of the United Nations (FAO) concerning the legal or development status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. The mention of speciic companies or products of manufacturers, whether or not these have been patented, does not imply that these have been endorsed or recommended by FAO in preference to others of a similar nature that are not mentioned.All rights reserved. FAO encourages reproduction and dissemination of material in this information product. Non-commercial uses will be authorized free of charge, upon request. Reproduction for resale or other commercial purposes, including educational purposes, may incur fees. Applications for permission to reproduce or disseminate FAO copyright materials, and all queries concerning rights and licences, should be addressed by e-mail to [email protected] or to the Chief, Publishing Policy and Support Branch, Ofice of Knowledge Exchange,
    [Show full text]
  • Download PDF Version
    MarLIN Marine Information Network Information on the species and habitats around the coasts and sea of the British Isles Dabberlocks (Alaria esculenta) MarLIN – Marine Life Information Network Biology and Sensitivity Key Information Review Dr Harvey Tyler-Walters 2008-05-29 A report from: The Marine Life Information Network, Marine Biological Association of the United Kingdom. Please note. This MarESA report is a dated version of the online review. Please refer to the website for the most up-to-date version [https://www.marlin.ac.uk/species/detail/1291]. All terms and the MarESA methodology are outlined on the website (https://www.marlin.ac.uk) This review can be cited as: Tyler-Walters, H., 2008. Alaria esculenta Dabberlocks. In Tyler-Walters H. and Hiscock K. (eds) Marine Life Information Network: Biology and Sensitivity Key Information Reviews, [on-line]. Plymouth: Marine Biological Association of the United Kingdom. DOI https://dx.doi.org/10.17031/marlinsp.1291.1 The information (TEXT ONLY) provided by the Marine Life Information Network (MarLIN) is licensed under a Creative Commons Attribution-Non-Commercial-Share Alike 2.0 UK: England & Wales License. Note that images and other media featured on this page are each governed by their own terms and conditions and they may or may not be available for reuse. Permissions beyond the scope of this license are available here. Based on a work at www.marlin.ac.uk (page left blank) Date: 2008-05-29 Dabberlocks (Alaria esculenta) - Marine Life Information Network See online review for distribution map Exposed sublittoral fringe bedrock with Alaria esculenta, Isles of Scilly.
    [Show full text]
  • Optimization of Seedling Production Using Vegetative Gametophytes Of
    Optimization of seedling production using vegetative gametophytes of Alaria esculenta Aires Duarte Mestrado em Biologia Funcional e Biotecnologia de Plantas Departamento de Biologia 2017 Orientador Isabel Sousa Pinto, associate professor, CIIMAR Coorientador Jorunn Skjermo, Senior Scientist, SINTEF OCEAN 2 3 Acknowledgments First and foremost, I would like to express my sincere gratitude to: professor Isabel Sousa Pinto of Universidade do Porto and senior research scientist Jorunn Skjermo of SINTEF ocean. From the beginning I had an interest to work aboard with macroalgae, after talking with prof. Isabel Sousa Pinto about this interest, she immediately suggested me a few places that I could look over. One of the suggestions was SINTEF ocean where I got to know Jorunn Skjermo. The door to Jorunn’s office was always open whenever I ran into a trouble spot or had a question about my research. She consistently allowed this study to be my own work, but steered me in the right the direction whenever she thought I needed it. Thank you!! I want to thank Isabel Azevedo, Silje Forbord and Kristine Steinhovden for all the guidance provided in the beginning and until the end of my internship. I would also like to thank the experts who were involved in the different subjects of my research project: Arne Malzahn, Torfinn Solvang-Garten, Trond Storseth and to the amazing team of SINTEF ocean. I also want to thank my master’s director professor Paula Melo, who was a relentless person from the first day, always taking care of her “little F1 plants”. A huge thanks to my fellows Mónica Costa, Fernando Pagels and Leonor Martins for all the days and nights that we spent working and studying hard.
    [Show full text]
  • Macrocystis Mariculture in Chile : Growth Performance of Heterosis
    Erschienen in: Journal of Applied Phycology ; 23 (2011), 5. - S. 819-825 https://dx.doi.org/10.1007/s10811-010-9581-z Macrocystis mariculture in Chile: growth performance of heterosis genotype constructs under field conditions Renato Westermeier & David J. Patiño & Pedro Murúa & Dieter G. Müller Abstract Recent progress in Macrocystis mariculture is Introduction based on clonal stock cultures of gametophyte parents. Batches of up to 105 genetically identical sporophyte Macrocystis (giant kelp) is an important natural resource in seedlings can be produced at any time in the laboratory the coastal waters of Chile. Dried material is used for and explanted in the field for production of biomass. Sexual alginate production, while fresh fronds are harvested in crosses of selected Macrocystis pyrifera gametophyte large quantities as food for mariculture of herbivorous high- parents of different geographic origin along the coast of value mollusks (abalone, Haliotis rufescens and H. discus Chile showed heterosis and produced sporophyte batches hannai). Intense harvesting pressure on natural kelp beds with superior growth performance. Starting from zygotes, has led to over-exploitation damage (Vásquez 2008). This after 10 weeks in the laboratory and 5 months in the sea, situation calls for efforts to supplement the available kelp our best hybrid genotypes grew up to 11 kg fresh weight biomass by laboratory-based culture methods. per frond, which corresponds to 66 kg m 1 of line in a Traditional mariculture techniques make use of meio- commercial mariculture installation. In contrast, average spores from natural populations, which are collected and yields of 14.4 and 22 kg m 1 are reported in the literature manipulated to settle on ropes in laboratory tanks.
    [Show full text]
  • Plant Life Magill’S Encyclopedia of Science
    MAGILLS ENCYCLOPEDIA OF SCIENCE PLANT LIFE MAGILLS ENCYCLOPEDIA OF SCIENCE PLANT LIFE Volume 4 Sustainable Forestry–Zygomycetes Indexes Editor Bryan D. Ness, Ph.D. Pacific Union College, Department of Biology Project Editor Christina J. Moose Salem Press, Inc. Pasadena, California Hackensack, New Jersey Editor in Chief: Dawn P. Dawson Managing Editor: Christina J. Moose Photograph Editor: Philip Bader Manuscript Editor: Elizabeth Ferry Slocum Production Editor: Joyce I. Buchea Assistant Editor: Andrea E. Miller Page Design and Graphics: James Hutson Research Supervisor: Jeffry Jensen Layout: William Zimmerman Acquisitions Editor: Mark Rehn Illustrator: Kimberly L. Dawson Kurnizki Copyright © 2003, by Salem Press, Inc. All rights in this book are reserved. No part of this work may be used or reproduced in any manner what- soever or transmitted in any form or by any means, electronic or mechanical, including photocopy,recording, or any information storage and retrieval system, without written permission from the copyright owner except in the case of brief quotations embodied in critical articles and reviews. For information address the publisher, Salem Press, Inc., P.O. Box 50062, Pasadena, California 91115. Some of the updated and revised essays in this work originally appeared in Magill’s Survey of Science: Life Science (1991), Magill’s Survey of Science: Life Science, Supplement (1998), Natural Resources (1998), Encyclopedia of Genetics (1999), Encyclopedia of Environmental Issues (2000), World Geography (2001), and Earth Science (2001). ∞ The paper used in these volumes conforms to the American National Standard for Permanence of Paper for Printed Library Materials, Z39.48-1992 (R1997). Library of Congress Cataloging-in-Publication Data Magill’s encyclopedia of science : plant life / edited by Bryan D.
    [Show full text]
  • Phaeophyceae – the Brown Algae
    Phaeophyceae – The Brown Algae Anyone who has walked along the California seashore can easily recognize that brown algae are among the most conspicuous representatives of our local marine flora. In addition to a plethora of intertidal species, brown algae comprise the impressive kelp forests that characterize subtidal regions of California waters and those of many other regions of the world, especially along shores where coastal upwelling occurs. The brown algae, of which there are approximately 225 genera and 1400 species, are almost entirely found in the marine environment. They are the predominant algae in terms of biomass in the intertidal and subtidal zones of polar, boreal and cold temperate waters, getting progressively less abundant as latitude decreases. With the exception of a few species, they are not generally found in at depths greater than ca. 25 meters. Certain brown algae, such as the giant kelp Macrocystis, are the largest of the nonvascular plants and may reach in excess of 150 feet. Plants as large as this are found along the West Coast of North America, from Alaska to Baja California. The greatest degree of tissue differentiation found in the algae occurs in this group. No unicellular or colonial forms are known and only certain reproductive stages (zoospores and some gametes) are planktonic. The evolutionary origins of these organisms remain obscure. Many brown algae are commercially valuable either for human consumption, or as a source of natural chemicals, such as alginic acid. Many species of brown algae contain toxic chemicals as a defense against herbivores. Some systematic treatments of algae consider that the brown algae comprise a separate taxonomic Division – The Phaeophyta whereas many texts include them as a class, the Phaeophyceae in the Division Chromophyta.
    [Show full text]
  • A Comprehensive Kelp Phylogeny Sheds Light on the Evolution of an T Ecosystem ⁎ Samuel Starkoa,B,C, , Marybel Soto Gomeza, Hayley Darbya, Kyle W
    Molecular Phylogenetics and Evolution 136 (2019) 138–150 Contents lists available at ScienceDirect Molecular Phylogenetics and Evolution journal homepage: www.elsevier.com/locate/ympev A comprehensive kelp phylogeny sheds light on the evolution of an T ecosystem ⁎ Samuel Starkoa,b,c, , Marybel Soto Gomeza, Hayley Darbya, Kyle W. Demesd, Hiroshi Kawaie, Norishige Yotsukuraf, Sandra C. Lindstroma, Patrick J. Keelinga,d, Sean W. Grahama, Patrick T. Martonea,b,c a Department of Botany & Biodiversity Research Centre, The University of British Columbia, 6270 University Blvd., Vancouver V6T 1Z4, Canada b Bamfield Marine Sciences Centre, 100 Pachena Rd., Bamfield V0R 1B0, Canada c Hakai Institute, Heriot Bay, Quadra Island, Canada d Department of Zoology, The University of British Columbia, 6270 University Blvd., Vancouver V6T 1Z4, Canada e Department of Biology, Kobe University, Rokkodaicho 657-8501, Japan f Field Science Center for Northern Biosphere, Hokkaido University, Sapporo 060-0809, Japan ARTICLE INFO ABSTRACT Keywords: Reconstructing phylogenetic topologies and divergence times is essential for inferring the timing of radiations, Adaptive radiation the appearance of adaptations, and the historical biogeography of key lineages. In temperate marine ecosystems, Speciation kelps (Laminariales) drive productivity and form essential habitat but an incomplete understanding of their Kelp phylogeny has limited our ability to infer their evolutionary origins and the spatial and temporal patterns of their Laminariales diversification. Here, we
    [Show full text]
  • Safety Assessment of Brown Algae-Derived Ingredients As Used in Cosmetics
    Safety Assessment of Brown Algae-Derived Ingredients as Used in Cosmetics Status: Draft Report for Panel Review Release Date: August 29, 2018 Panel Meeting Date: September 24-25, 2018 The 2018 Cosmetic Ingredient Review Expert Panel members are: Chair, Wilma F. Bergfeld, M.D., F.A.C.P.; Donald V. Belsito, M.D.; Ronald A. Hill, Ph.D.; Curtis D. Klaassen, Ph.D.; Daniel C. Liebler, Ph.D.; James G. Marks, Jr., M.D.; Ronald C. Shank, Ph.D.; Thomas J. Slaga, Ph.D.; and Paul W. Snyder, D.V.M., Ph.D. The CIR Executive Director is Bart Heldreth, Ph.D. This report was prepared by Lillian C. Becker, former Scientific Analyst/Writer and Priya Cherian, Scientific Analyst/Writer. © Cosmetic Ingredient Review 1620 L Street, NW, Suite 1200 ♢ Washington, DC 20036-4702 ♢ ph 202.331.0651 ♢ fax 202.331.0088 [email protected] Distributed for Comment Only -- Do Not Cite or Quote Commitment & Credibility since 1976 Memorandum To: CIR Expert Panel Members and Liaisons From: Priya Cherian, Scientific Analyst/Writer Date: August 29, 2018 Subject: Safety Assessment of Brown Algae as Used in Cosmetics Enclosed is the Draft Report of 83 brown algae-derived ingredients as used in cosmetics. (It is identified as broalg092018rep in this pdf.) This is the first time the Panel is reviewing this document. The ingredients in this review are extracts, powders, juices, or waters derived from one or multiple species of brown algae. Information received from the Personal Care Products Council (Council) are attached: • use concentration data of brown algae and algae-derived ingredients (broalg092018data1, broalg092018data2, broalg092018data3); • Information regarding hydrolyzed fucoidan extracted from Laminaria digitata has been included in the report.
    [Show full text]
  • Bull Kelp, Nereocystis Luetkeana, Abundance in Van Damme Bay, Mendocino County, California
    Bull kelp, Nereocystis luetkeana, abundance in Van Damme Bay, Mendocino County, California Item Type monograph Authors Barns, Allison; Kalvass, Peter Publisher California Department of Fish and Game, Marine Resources Division Download date 06/10/2021 14:12:56 Link to Item http://hdl.handle.net/1834/18330 State ofCalifornia The Resources Agency DEPARTMENT OF FISH AND GAME BULL KELP, NEREOCYSTIS LUETKEANA, ABUNDANCE IN VAN DAMME BAY, MENDOCINO COUNTY, CALIFORNIA by ALLISON BARNS and PETER KALVASS MARINE RESOURCES DIVISION Administrative Report No. 93-6 1993 Bull Kelp, Nereocystis luetkeana, Abundance in Van Damme Bay, Mendocino County, California1 by Allison Barns2 and Peter Kalvass3 ABSTRACT Size and density data were collected for Nereocystis luetkeana sporophytes from kelp beds in Van Damme Bay, Mendocino County during May, June and July 1990. Length and weight measurements were made on individual plants from representative size groups collected from depths of 6.1 m and 12.2 m. Mean sporophyte weight was 268 g (SD 393 g), while mean stipe length was 214 cm (SD 275 cm). Densities were determined separately for those plants which had reached the surface and for all plants within the water column. Sixty­ five 12.7 m2 surface quadrats yielded mean surface densities of 2.2 (SD 1.5) and 2.7 plants/m2 (SD 1.3) in June and July, respectively. Individual plants were counted within 42 1x5 m plots along benthic transect lines yielding average densities of 2.7 (SD 4.5) and 5.2 plants/m2 (SD 3.0) in May and July, respectively. Combined density and size data from July 1990 and kelp bed area estimates from fall 1988 for Van Damme Bay yielded a biomass estimate of 640 metric tons distributed over 45.7 hectares.
    [Show full text]
  • Kelp Aquaculture
    Aquaculture in Shared Waters Kelp Aquaculture Sarah Redmond1 ; Samuel Belknap2 ; Rebecca Clark Uchenna3 “Kelp” are large brown marine macroalgae species native to New England and traditionally wild harvested for food. There are three commercially important kelp species in Maine—sugar kelp (Saccharina latissima), winged kelp (Alaria esculenta), and horsetail kelp (Laminaria digitata). Maine is developing techniques for culturing kelp on sea farms as a way for fishermen and farmers to diversify their operations while providing a unique, high quality, nutritious vegetable seafood for new and existing markets. Kelp is grown on submerged horizontal long lines on leased sea farms from September to May, making it a “winter crop” for Maine. The simple farm design, winter season, and relatively low startup costs allow for new and existing sea farmers to experiment with this newly developing type of aquaculture on Maine’s coast. “Kelp” can refer to sugar kelp (Saccharina latissima), Alaria (Alaria esculenta), or horsetail kelp (Laminaria digitata). Sugar kelp has been cultivated in Maine for several years, and successful experimental cultivation has been done with species such as Alaria. These photos are examples of the cultivation stages of sugar kelp. Microscopic Seeded kelp line Kelp line at time of kelp seed harvest 1 Sarah Redmond • Marine Extension Associate, Maine Sea Grant College Program and University of Maine Cooperative Extension 33 Salmon Farm Road Franklin, ME • 207.422.6289 • [email protected] 2 Samuel Belknap • University of Maine • 234C South Stevens Hall Orono, ME • 207.992.7726 • [email protected] 3 Rebecca Clark Uchenna • Island Institute • Rockland, ME • 207.691.2505 • [email protected] Is there a viable market for Q: kelps grown in Maine? aine is home to a handful of consumers are looking for healthier industry, the existing producers and Mcompanies that harvest sea alternatives.
    [Show full text]
  • Effect of Environmental History on the Habitat-Forming Kelp Macrocystis
    www.nature.com/scientificreports OPEN Efect of environmental history on the habitat‑forming kelp Macrocystis pyrifera responses to ocean acidifcation and warming: a physiological and molecular approach Pamela A. Fernández1*, Jorge M. Navarro2, Carolina Camus1, Rodrigo Torres3 & Alejandro H. Buschmann1 The capacity of marine organisms to adapt and/or acclimate to climate change might difer among distinct populations, depending on their local environmental history and phenotypic plasticity. Kelp forests create some of the most productive habitats in the world, but globally, many populations have been negatively impacted by multiple anthropogenic stressors. Here, we compare the physiological and molecular responses to ocean acidifcation (OA) and warming (OW) of two populations of the giant kelp Macrocystis pyrifera from distinct upwelling conditions (weak vs strong). Using laboratory mesocosm experiments, we found that juvenile Macrocystis sporophyte responses to OW and OA did not difer among populations: elevated temperature reduced growth while OA had no efect on growth − and photosynthesis. However, we observed higher growth rates and NO3 assimilation, and enhanced − expression of metabolic‑genes involved in the NO3 and CO2 assimilation in individuals from the strong upwelling site. Our results suggest that despite no inter‑population diferences in response to OA and − OW, intrinsic diferences among populations might be related to their natural variability in CO2, NO3 and seawater temperatures driven by coastal upwelling. Further work including additional populations and fuctuating climate change conditions rather than static values are needed to precisely determine how natural variability in environmental conditions might infuence a species’ response to climate change. Anthropogenic climate change, such as global warming and ocean acidifcation (OA) are altering the structure and functioning of terrestrial and marine ecosystems, causing shifs in the distribution and relative abundance of species1–4.
    [Show full text]