Postglacial Erosion of Bedrock Surfaces and Deglaciation Timing: New Insights from the Mont Blanc Massif (Western Alps) Benjamin Lehmann1*, Frédéric Herman1, Pierre G

Total Page:16

File Type:pdf, Size:1020Kb

Postglacial Erosion of Bedrock Surfaces and Deglaciation Timing: New Insights from the Mont Blanc Massif (Western Alps) Benjamin Lehmann1*, Frédéric Herman1, Pierre G https://doi.org/10.1130/G46585.1 Manuscript received 31 May 2019 Revised manuscript received 30 September 2019 Manuscript accepted 13 October 2019 © 2019 The Authors. Gold Open Access: This paper is published under the terms of the CC-BY license. Published online 22 November 2019 Postglacial erosion of bedrock surfaces and deglaciation timing: New insights from the Mont Blanc massif (western Alps) Benjamin Lehmann1*, Frédéric Herman1, Pierre G. Valla2,3, Georgina E. King1, Rabiul H. Biswas1, Susan Ivy-Ochs4, Olivia Steinemann4 and Marcus Christl4 1 Institute of Earth Surface Dynamics, University of Lausanne, CH-1015 Lausanne, Switzerland 2 Institut des Sciences de la Terre (ISTerre), University of Grenoble Alpes, University of Savoie Mont Blanc, Centre National de Recherche Scientifique (CNRS)–Institut de Recherche pour le Développement (IRD)–Institut Français des Sciences et Technologies des Transports, de l’Aménagement et des Réseaux (IFSTTAR), 38000 Grenoble, France 3 Institute of Geological Sciences and Oeschger Center for Climate Research, University of Bern, 3012 Bern, Switzerland 4 Laboratory of Ion Beam Physics, ETH Zürich, Otto-Stern-Weg 5, 8093 Zurich, Switzerland ABSTRACT ture variation and snow cover and their effects Since the Last Glacial Maximum, ∼20 k.y. ago, Alpine glaciers have retreated and thinned. on the evolution of bedrock surfaces over diur- This transition exposed bare bedrock surfaces that could then be eroded by a combination nal to decadal time scales (e.g., Łoziński, 1909; of debuttressing or local frost cracking and weathering. Quantification of the respective Matsuoka and Murton, 2008). However, bridging contributions of these processes is necessary to understand the links between long-term the temporal gap between these erosion estimates climate and erosion in mountains. Here, we quantified the erosion histories of postglacial remains challenging, in part because of the sto- exposed bedrock in glacial valleys. Combining optically stimulated luminescence and ter- chastic nature of geomorphic processes (Koppes restrial cosmogenic nuclide (TCN) surface exposure dating, we estimated the erosion rate and Montgomery, 2009; Ganti et al., 2016). of bedrock surfaces at time scales from 101 to 104 yr. Bedrock surfaces sampled from the To address these issues, we adopted a new flanks of the Mer de Glace (Mont Blanc massif, European Alps) revealed erosion rates that method that combined optically stimulated lumi- vary from 3.5 ± 1.2 × 10−3 mm/yr to 4.3 ± 0.6 mm/yr over ∼500 m of elevation, with a nega- nescence (OSL) and TCN surface exposure dat- tive correlation between erosion rate and elevation. The observed spatial variation in erosion ing (Sohbati et al., 2018; Lehmann et al., 2019). rates, and their high values, reflect morphometric (elevation and surface slope) and climatic In this study, we applied this methodology to (temperature and snow cover) controls. Furthermore, the derived erosion rates can be used investigate how erosion rates have evolved over to correct the timing of deglaciation based on TCN data, potentially suggesting very rapid time scales of 101–104 yr on bedrock surfaces of ice thinning during the Gschnitz stadial. the Mer de Glace (Mont Blanc massif, European Alps) and how morphometric and climatic fac- INTRODUCTION of periglacial processes during interglacial pe- tors control their evolution. Then, we addressed To understand the long-term evolution of riods (Burbank et al., 1996; Ballantyne, 2002; how the variability in erosion rates can be used Alpine landscapes, the respective contributions Scherler, 2015). Yet, the rate at which bare-bed- to correct TCN exposure ages, leading to very of surface erosion, sediment production, and rock surfaces weather and erode during intergla- different possible scenarios of ice thinning dur- sediment transport must be quantified. During cials remains poorly quantified (e.g., Colman, ing the Gschnitz stadial (a period of regional- the Quaternary period, the alternation between 1981; Zimmerman et al., 1994; André, 2002; ly extensive glacier advance in the European glacial and interglacial periods has modulated Nicholson, 2008; Kirkbride and Bell, 2010). Alps, temporally between the breakdown of the the efficiency of glacial, fluvial, and hillslope The erosion of hillslopes in periglacial envi- Last Glacial Maximum piedmont lobes and the processes (Koppes and Montgomery, 2009). In ronments is governed by a combination of land- beginning of the Bølling warm interval). that context, changes in bedrock morphology sliding, rock shattering, and weathering (e.g., and corresponding sediment delivery have been Anderson and Anderson, 2010). During the last STUDY SITE related to glacier extent, and glacial erosion is decades, the development of terrestrial cosmogen- We collected samples along two elevation often thought to be the most efficient erosional ic nuclide (TCN) methods, mainly using in situ– profiles at the Mer de Glace Fig. 1( ). Six bed- and sediment transport mechanism in mountain produced 10Be in quartz crystals, has improved rock surfaces were sampled below the Mont environments (e.g., Hallet et al., 1996; Brozović our ability to quantify bedrock surface erosion Blanc Tête de Trélaporte (MBTP sample sites, et al., 1997; Montgomery, 2002; Mitchell and over time scales from 104 to 106 yr, assuming west side of the glacier, from 2545 to 2094 m Montgomery, 2006; Egholm et al., 2009; Herman that erosion occurs steadily through time (Balco above sea level [masl]; Fig. 1), and three bed- et al., 2013; Herman and Champagnac, 2016). et al., 2008; von Blanckenburg and Willenbring, rock surfaces were sampled below the Ai- Recent studies have also revealed the importance 2014; Hippe, 2017). Over modern time scales, guille du Moine (MBAM sample sites, east geomorphologists working on frost cracking have side of the glacier, ranging from 2447 to 2259 *E-mail: [email protected] also highlighted the feedbacks between tempera- masl; Fig. 1). All surfaces were from the same CITATION: Lehmann, B., et al., 2020, Postglacial erosion of bedrock surfaces and deglaciation timing: New insights from the Mont Blanc massif (western Alps): Geology, v. 48, p. 139–144, https://doi.org/10.1130/G46585.1. Geological Society of America | GEOLOGY | Volume 48 | Number 2 | www.gsapubs.org 139 Downloaded from https://pubs.geoscienceworld.org/gsa/geology/article-pdf/48/2/139/4926750/139.pdf by guest on 13 February 2020 A C 6.93°E 6.95°E phenocrystalline granitic lithology of the Mont Switzerland N 2000 Blanc massif, and selected sampling sites can all be classified as glacially eroded bedrock 1 B 45.92° surfaces (see the GSA Data Repository ). The 2500 surfaces are rough and exhibit a weathered Trélaporte France texture without glacial striations. All studied bedrock surfaces were located between the ice- Italy 3000 surface elevations of the Little Ice Age (LIA) and the Last Glacial Maximum (LGM; Cout- B N terand and Buoncristiani, 2006; Vincent et al., Chamonix 2014) and were therefore likely deglaciated 45.91° C sometime between ca. 20–18 ka (Wirsig et al., 2016) and A.D. 1850. Moine 3000 METHODS 10 2500 We measured both Be concentrations (e.g., Gosse and Phillips, 2001; Ivy-Ochs and Briner, 2014) and OSL profiles (Sohbati et al., Mont-Blanc 4810 0 4 km 01500 000 m NN45.90°N 2012) on exposed granitic rock samples (see D the Data Repository). The 10Be concentrations 2800 Trélaporte profile Moine profile provided us with constraints on the time since trimline the rocks were exposed to cosmic rays and 2600 trimline MBTP1 with a temporal framework for the possible MBTP2 MBAM1 erosion histories since exposure. OSL profiles 2400 MBAM2 constrained the erosion history since the rock MBTP11 MBAM3 exposure to light following ice decay (Lehm- MBTP5 ann et al., 2019). Note that it is the differ- 2200 MBTP9 LIA 10 Elevation [masl] MBTP6 ence in sensitivity between Be and OSL that LIA 2000 makes it possible to quantify surface erosion rate histories over short (<102 yr) and long SSW NNESW NE (>104 yr) time scales (Sohbati et al., 2018; 1800 0 500 1000 1500 2000 2500 Lehmann et al., 2019). Horizontal distance [m] The evolution in time of the OSL bleaching front into a rock surface depends on exposure age, Figure 1. Study sites sampled along Mer de Glace glacier (Mont Blanc massif, European surface erosion, electron trapping and detrapping Alps) at (A) regional, (B) massif, and (C) local scale. Blue area shows extent of Mer de Glace determined from aerial images in 2004 CE (Rabatel et al., 2016). Red lines depict two vertical profiles, Trélaporte and Moine, along which bedrock surfaces were sampled (each colored 1GSA Data Repository item 2020042, supplemen- dot represents a specific sample; round and triangle dots are from the Trélaporte and Moine tal details on sample preparation, measurement, and profiles, respectively). (D) Topographic cross sections of Trélaporte and Moine vertical profiles analysis, as well as a sample list with their character- along the Mer de Glace and corresponding sampled surfaces (MB—Mont Blanc, TP—Trélaporte, istics and measured 10Be concentrations, calibration AM—Aiguille du Moine). Gray lines represent elevation of Last Glacial Maximum (LGM) trim- details, and luminescence signal, is available online lines (Coutterand and Buoncristiani, 2006); blue lines represent Little Ice Age (LIA) elevation at http://www.geosociety.org/datarepository/2020/, or (Vincent et al., 2014); masl—meters above sea level. on request from [email protected]. ABC Figure 2. Schematic representation of four different erosion scenarios through time (A,B) and their resulting luminescence signal (C), 10 where t0 is uncorrected Be exposure age, tS is onset time of erosion (yr), tC is corrected exposure age, and ε is erosion rate (mm/yr). Note that luminescence plots in C are not model outputs but drawings, with the aim of conceptualizing how the experiments were designed. 140 www.gsapubs.org | Volume 48 | Number 2 | GEOLOGY | Geological Society of America Downloaded from https://pubs.geoscienceworld.org/gsa/geology/article-pdf/48/2/139/4926750/139.pdf by guest on 13 February 2020 (bleaching) rates, and athermal loss (Lehmann tC = the corrected exposure age.
Recommended publications
  • Guide Hiver 2020-2021
    BIENVENUE WELCOME GUIDE VALLÉE HIVER 2020-2021 WINTER VALLEY GUIDE SERVOZ - LES HOUCHES - CHAMONIX-MONT-BLANC - ARGENTIÈRE - VALLORCINE CARE FOR THE INDEX OCEAN* INDEX Infos Covid-19 / Covid information . .6-7 Bonnes pratiques / Good practice . .8-9 SERVOZ . 46-51 Activités plein-air / Open-air activities ����������������� 48-49 FORFAITS DE SKI / SKI PASS . .10-17 Culture & Détente / Culture & Relaxation ����������� 50-51 Chamonix Le Pass ��������������������������������������������������������������������� 10-11 Mont-Blanc Unlimited ������������������������������������������������������������� 12-13 LES HOUCHES . 52-71 ��������������������������������������������� Les Houches ��������������������������������������������������������������������������������� 14-15 Ski nordique & raquettes 54-55 Nordic skiing & snowshoeing DOMAINES SKIABLES / SKI AREAS �����������������������18-35 Activités plein-air / Open-air activities ����������������� 56-57 Domaine des Houches . 18-19 Activités avec les animaux ����������������������������������������� 58-59 Le Tourchet ����������������������������������������������������������������������������������� 20-21 Activities with animals Le Brévent - La Flégère . 22-25 Activités intérieures / Indoor activities ����������������� 60-61 Les Planards | Le Savoy ��������������������������������������������������������� 26-27 Guide des Enfants / Children’s Guide . 63-71 Les Grands Montets ����������������������������������������������������������������� 28-29 Famille Plus . 62-63 Les Chosalets | La Vormaine �����������������������������������������������
    [Show full text]
  • Monitoring Water Accumulation in a Glacier Using Magnetic Resonance Imaging
    The Cryosphere, 8, 155–166, 2014 Open Access www.the-cryosphere.net/8/155/2014/ doi:10.5194/tc-8-155-2014 The Cryosphere © Author(s) 2014. CC Attribution 3.0 License. Monitoring water accumulation in a glacier using magnetic resonance imaging A. Legchenko1, C. Vincent2, J. M. Baltassat3, J. F. Girard3, E. Thibert4,7, O. Gagliardini2,6, M. Descloitres1, A. Gilbert2, S. Garambois5, A. Chevalier1, and H. Guyard1 1IRD, UJF-Grenoble 1/CNRS/G-INP, LTHE UMR5564, BP 53, Grenoble Cedex 9, 38041, France 2Laboratoire de Glaciologie et Géophysique de l’Environnement and CNRS – LGGE, 38041 Grenoble Cedex 9, France 3BRGM, BP 6009, 45060, Orléans Cedex 2, France 4IRSTEA, UR ETGR, Erosion torrentielle neige et avalanches, 2 rue de la Papeterie-BP 76, 38402 Saint Martin d’Hères, France 5Institut des Sciences de la terre (ISTerre), CNRS/ Université Joseph Fourier, Grenoble, France 6Institut Universitaire de France, IUF, Paris, France 7Université Grenoble Alpes, 38041 Grenoble, France Correspondence to: A. Legchenko ([email protected]) Received: 29 March 2013 – Published in The Cryosphere Discuss.: 31 May 2013 Revised: 14 December 2013 – Accepted: 17 December 2013 – Published: 28 January 2014 Abstract. Tête Rousse is a small polythermal glacier located parison of the 3-D-SNMR results with those obtained by in the Mont Blanc area (French Alps) at an altitude of 3100 to drilling and pumping showed a very good correspondence, 3300 m. In 1892, an outburst flood from this glacier released confirming the high reliability of 3-D-SNMR imaging. about 200 000 m3 of water mixed with ice, causing much damage.
    [Show full text]
  • Glacier Fluctuations During the Past 2000 Years
    Quaternary Science Reviews 149 (2016) 61e90 Contents lists available at ScienceDirect Quaternary Science Reviews journal homepage: www.elsevier.com/locate/quascirev Invited review Glacier fluctuations during the past 2000 years * Olga N. Solomina a, , Raymond S. Bradley b, Vincent Jomelli c, Aslaug Geirsdottir d, Darrell S. Kaufman e, Johannes Koch f, Nicholas P. McKay e, Mariano Masiokas g, Gifford Miller h, Atle Nesje i, j, Kurt Nicolussi k, Lewis A. Owen l, Aaron E. Putnam m, n, Heinz Wanner o, Gregory Wiles p, Bao Yang q a Institute of Geography RAS, Staromonetny-29, 119017 Staromonetny, Moscow, Russia b Department of Geosciences, University of Massachusetts, Amherst, MA 01003, USA c Universite Paris 1 Pantheon-Sorbonne, CNRS Laboratoire de Geographie Physique, 92195 Meudon, France d Department of Earth Sciences, University of Iceland, Askja, Sturlugata 7, 101 Reykjavík, Iceland e School of Earth Sciences and Environmental Sustainability, Northern Arizona University, Flagstaff, AZ 86011, USA f Department of Geography, Brandon University, Brandon, MB R7A 6A9, Canada g Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales (IANIGLA), CCT CONICET Mendoza, CC 330 Mendoza, Argentina h INSTAAR and Geological Sciences, University of Colorado Boulder, USA i Department of Earth Science, University of Bergen, Allegaten 41, N-5007 Bergen, Norway j Uni Research Climate AS at Bjerknes Centre for Climate Research, Bergen, Norway k Institute of Geography, University of Innsbruck, Innrain 52, 6020 Innsbruck, Austria l Department of Geology,
    [Show full text]
  • Mer De Glace” (Mont Blanc Area, France) AD 1500–2050: an Interdisciplinary Approach Using New Historical Data and Neural Network Simulations
    Zeitschrift für Gletscherkunde und Glazialgeologie Herausgegeben von MICHAEL KUHN BAND 40 (2005/2006) ISSN 0044-2836 UNIVERSITÄTSVERLAG WAGNER · INNSBRUCK 1907 wurde von Eduard Brückner in Wien der erste Band der Zeitschrift für Gletscherkunde, für Eiszeitforschung und Geschichte des Klimas fertig gestellt. Mit dem 16. Band über- nahm 1928 Raimund von Klebelsberg in Innsbruck die Herausgabe der Zeitschrift, deren 28. Band 1942 erschien. Nach dem Zweiten Weltkrieg gab Klebelsberg die neue Zeitschrift für Gletscherkunde und Glazialgeologie im Universitätsverlag Wagner in Innsbruck heraus. Der erste Band erschien 1950. 1970 übernahmen Herfried Hoinkes und Hans Kinzl die Herausgeberschaft, von 1979 bis 2001 Gernot Patzelt und Michael Kuhn. In 1907 this Journal was founded by Eduard Brückner as Zeitschrift für Gletscherkunde, für Eiszeitforschung und Geschichte des Klimas. Raimund von Klebelsberg followed as editor in 1928, he started Zeitschrift für Gletscherkunde und Glazialgeologie anew with Vol.1 in 1950, followed by Hans Kinzl and Herfried Hoinkes in 1970 and by Gernot Patzelt and Michael Kuhn from 1979 to 2001. Herausgeber Michael Kuhn Editor Schriftleitung Angelika Neuner & Mercedes Blaas Executive editors Wissenschaftlicher Beirat Editorial advisory board Jon Ove Hagen, Oslo Ole Humlum, Longyearbyen Peter Jansson, Stockholm Georg Kaser, Innsbruck Vladimir Kotlyakov, Moskva Heinz Miller, Bremerhaven Koni Steffen, Boulder ISSN 0044-2836 Figure on front page: “Vue prise de la Voute nommée le Chapeau, du Glacier des Bois, et des Aiguilles. du Charmoz.”; signed down in the middle “fait par Jn. Ante. Linck.”; coloured contour etching; 36.2 x 48.7 cm; Bibliothèque publique et universitaire de Genève, 37 M Nr. 1964/181; Photograph by H. J.
    [Show full text]
  • Qu'est Ce Qu'un Site Classé
    Site classé Patrimoine national Massif du Mont-Blanc Haute-Savoie Dates des actes de classement : 16 juin 1976 (décret), 5 janvier 1952 (décret), 14 juin 1951 (arrêté) Communes concernées : Chamonix-Mont-Blanc, Les Contamines-Montjoie, Les Houches, Saint-Gervais-les-Bains, Vallorcine Superficie : 26 123 ha Une richesse naturelle exceptionnelle, un patrimoine géologique remarquable, des sommets mondialement célèbres, lieux d’exploits sportifs internationaux et une montagne parcourue de légendes… le massif du Mont‐ Blanc est le site des superlatifs ! Avec ses trente kilomètres de long sur quinze de large, le massif cristallin n’occupe pas une surface considérable sur la totalité de l’Arc Alpin – 400 km2 seulement. Mais il détient le titre de toit de l’Europe occidentale, avec sa vingtaine de sommets de plus de 4 000 mètres, dont le sommet éponyme atteint les 4 810 mètres. Ces hauts sommets et le démantèlement du relief en aiguilles, pointes et boucliers rocheux à dominante granitique sont caractéristiques du Mont‐ Blanc, qui renferme en outre des richesses minérales telles que des cristaux de quartz et fluorites. Si nul ne conteste plus aujourd’hui les raisons qui ont présidé à la protection du site, celles‐ ci ne s’imposaient pourtant pas en leur temps. En juin 1951 puis en janvier 1952, un arrêté puis un décret de classement sont pris : ils protègent toute la zone située au‐ dessus de la limite des deux mille mètres d’altitude, soit 20 000 hectares de sommets, de glaciers et de terrains publics. En 1976, se rajoutent les zones de moraines glaciaires de Chamonix et des Houches, pour leur intérêt pittoresque mais aussi écologique : la fragilité des langues glaciaires d’Argentière, de la Mer de Glace, des glaciers des Bossons et de Taconnaz et leur écrin de forêts est de plus en plus manifeste.
    [Show full text]
  • Reco « Chamonix Courmayeur Champex Chamonix »
    N° Séjour : AEMV 19 0019 (à rappeler à chaque correspondance) RECO « CHAMONIX COURMAYEUR CHAMPEX CHAMONIX » INFORMATIONS GENERALES : ▪ Lieu de rendez-vous et prise en charge : Chamonix Mont Blanc (74) ▪ Du 2 au 5 août 2019 ▪ Lieu d’hébergement : gîtes d’étapes et refuges ▪ Niveau de difficulté (adapté à tous) : ▪ Exigences physiques = 3 / 4 ▪ Exigences techniques = 3 / 4 ▪ Durée : 4 jours / 3 nuits ▪ Tarifs : 699€/personne ▪ Minimum : 6 personnes VOTRE CONTACT: Jonathan ROUQUAIROL Adresse email : [email protected] Contact tel : +33 (0)6 86 94 25 56 DESCRIPTIF : Sur le parcours officiel de la course mythique du Mont Blanc, vous pourrez découvrir ou redécouvrir les somptueux paysages de cette région. En compagnie de Nathalie Mauclair ainsi que d’un professionnel de la discipline, vous aborderez les aspects essentiels d’une bonne préparation physique et mentale pour boucler cette course de légende. Le séjour reste exigeant et demande une expérience certaine pour pouvoir vivre au plus près de cette aventure hors du commun. AEM VOYAGES Maison des Parcs et de la Montagne 256 rue de la République 73000 CHAMBERY 04.79.70.20.42 - [email protected] RC pro MMA Oullins 69921 police 120169230 garantie financière Groupama contrat 4000716094/0 IMO 73180011 - SIRET 837 504 711 000 16 N° Séjour : AEMV 19 0019 (à rappeler à chaque correspondance) PROGRAMME ETAPE PAR ETAPE : ▪ JOUR 1 : CHAMONIX – CONTAMINES 36km, 1650m D+, 6 heures de rando course environ Rendez-vous à 8 heures devant la gare ferroviaire de Chamonix. Prise en charge des bagages par notre transporteur et briefing avant le départ. Mise en jambes sur les sentiers rejoignant Les Houches.
    [Show full text]
  • Calendar-Dated Glacier Variations in the Western European Alps During
    ManuscriptCORE with highlights,© <2014>. abstract This manuscriptand references version is made available under the CC-BY-NC-NDMetadata, citation 4.0 and similar papers at core.ac.uk ClickProvided here by University to view of Innsbruck linked Digital References Library license http://creativecommons.org/licenses/bync-nd/4.0/ https://doi.org/10.1016/j.quascirev.2014.10.033 1 Calendar-dated glacier variations in the Western European Alps during the 2 Neoglacial: the Mer de Glace record, Mont Blanc massif 3 4 Melaine Le Roy a, Kurt Nicolussi b, Philip Deline a, Laurent Astrade a, Jean-Louis Edouard c, 5 Cécile Miramont d, Fabien Arnaud a 6 7 aEDYTEM, Université de Savoie, CNRS, 73376 Le Bourget du Lac, France 8 b Institute of Geography, University of Innsbruck, 6020 Innsbruck, Austria c 9 Centre Camille Julian, Aix-Marseille Université, CNRS, 13094 Aix-en-Provence, France 10 d IMBE, Aix-Marseille Université, CNRS, 13545 Aix-en-Provence, France. 11 12 Highlights 13 14 We present a new dendro-based Neoglacial glacier record for the European Alps 15 Ten glacier advances were calendar-dated during the last 4000 years 16 Timing of Neoglacial advances proposed here broadly agrees with previous works 17 Minor differences between glacier records could arise from glacier response time 18 19 Abstract 20 21 Holocene glacier records from the Western European Alps are still extremely sparse despite 22 existence of some well-suited sites to use dendrochronology to constrain pre-Little Ice Age 23 (LIA) glacier advances. Based on the analysis of more than 190 glacially buried Pinus cembra 24 subfossil logs and wood remains from the Mer de Glace lateral moraine in the Mont Blanc 25 massif, we present the first dendro-based and calendarically dated Neoglacial glacier 26 chronology for this area.
    [Show full text]
  • Marges Proglaciaires Du Secteur Bionnassay-Tête Rousse-Griaz
    Rapport Action 2D GlaRiskAlp : Marges proglaciaires du secteur Bionnassay-Tête Rousse-Griaz P. Deline 1, M. Gardent 1, J.-B. Bosson 2, X. Bodin 1, J. Duroule 1, F. Magnin 1, E. Malet 1 1 EDYTEM, CNRS - Université de Savoie, FR-73376 Le Bourget-du-Lac ([email protected] ) 2 IGD, Université de Lausanne, Mouline - Géopolis, CH-1015 Lausanne 1. Introduction Les cinq sites-pilotes retenus par l’Action 2D pour l’étude de la morphodynamique des secteurs récemment déglacés sont les marges proglaciaires des glaciers de Tzanteleina (haut Val de Rhêmes) et Verra Grande (haut Val d’Ayas) en Vallée d’Aoste, della Capra et Ciardoney (haut Val d’Orco) en Piémont, et de Bionnassay, Tête Rousse et de la Griaz (massif du Mont Blanc) en Haute-Savoie. S’ils ont tous fait l’objet d’une analyse géomorphologique donnant lieu à cartographie, l’approche de ces sites par les trois partenaires (FMs, CNR-IRPI, EDYTEM-CNRS) a été complémentaire : les sites valdôtains ont bénéficié d’études géotechniques visant à caractériser les matériaux des formations superficielles ; une analyse diachronique des sites piémontais a été réalisée à l’aide de méthodes de suivi topographiques ; l’étude de la stabilité des dépôts qui caractérisent le site français à l’aval du site-pilote de Tête Rousse (Action 2C) a utilisé la géoélectrique (méthode géophysique). 2. Description du site Fig. 1 Le secteur Bionnassay-Tête Rousse-Griaz (massif du Mont Blanc), site-pilote français de l’Action 2D. Les ellipses jaunes indiquent les trois secteurs sur lesquels l’étude s’est concentrée.
    [Show full text]
  • A Winter's Day at Courmayeur 1
    228 A WINTER'S DAY AT COURMAYEUR A WINTER'S DAY AT COURMAYEUR 1 BY CI-IARLES GOS T La Fouly the winter's day is darkening into night. Avalanches have fallen, it is hard to say where; up by the La Neuvaz Glacier, I should say. Somewhere the thunder of their voices can be heard. It 'is like listening to the rise and fall of the battering surge far off along the coast. In these mysterious rumblings, this clash of battle as nature's forces meet, we see another likeness that betrays the common parentage of sea and mountain. To-morrow we cross the Coi du Petit Ferret on skis. I cannot finish off some notes I need for a work I am just completing without once more seeing Courmayeur with its guides, its own particular setting and its old cemetery. My brother Emile comes with me, and we are to be joined by that fine old fellow Maurice · Crettex of Champex, well known to English climbers, and often referred to as ' le vieux guide du Signal.' He has business of his own to see to, including some transaction concerning cow-bells which appears to be an extremely complicated affair ; he is delighted at the prospect of a meeting with those trusted friends of his, Henri and Adolphe Rey, Laurent Croux and the rest of them. * * * * * Icy gusts were sweeping over the Col. In front of us lay the long white trough of the Italian Val Ferret with its mosaic of dark blue forests. The great walls of the Triolet, heavy with snow, rose above us.
    [Show full text]
  • Nature-Et-Patrimoine.Pdf
    sommaire mars 2012 - n°36 02 patrimoine - histoire 02 toponymie n une réflexion sur le nom des communes de l'Espace Mont-Blanc 10 jardins n les jardins botaniques dans l'Espace Mont-Blanc 14 histoire n les glaciers, une richesse pour l'homme Publication du Centre de la Nature Montagnarde 20 développement durable 20 territoire n Espace Mont-Blanc, un territoire d'exception engagé dans une démarche de développement durable 26 gestion n le futur plan de gestion du Massif du Mont-Blanc 30 espaces naturels 30 espaces protégés n à la découverte des espaces protégés de l'Espace Mont-Blanc : la nature sans frontière ? 35 sciences de la vie et de la terre 35 glaciologie n 12 000 ans d'histoire de la Mer de Glace 1 une réflexion sur le nom des communes de l'Espace Mont-Blanc patrimoine - histoire toponymie Au total, l’Espace Mont-Blanc comprend 47 communes et représente une superficie voisine de 2 800 km². Qu’ont-elles de commun pour avoir été choisies pour faire partie de ce territoire ? Les pages suivantes permettront d’y répondre. 2 Une observation rapide d’une carte d’une coupe de bois : à Bourg Saint- géographique donne une première Maurice (Savoie), Val-d’Illiez (Valais), réponse. Non seulement, le massif du Courmayeur (Val d’Aoste) et Saint- Mont-Blanc forme la colonne vertébrale Gervais-les-Bains (Haute-Savoie). de ce territoire, mais de plus, celui-ci est grossièrement délimité par plusieurs <"La Pennaz" cols importants : Col du Cou entre la Dénomination caractérisant une Haute-Savoie et le Valais ; Col du Petit falaise rocheuse : à Bourg-Saint-Pierre Saint-Bernard entre le Val d’Aoste et la (Valais), Les Contamines-Montjoie Savoie ; Col du Grand Saint-Bernard (Haute-Savoie), Beaufort (Savoie) et entre le Valais et le Val d’Aoste.
    [Show full text]
  • MONT-BLANC PANORAMIC Self-Guided
    MONT-BLANC PANORAMIC self-guided A selection of the most beautiful hikes, self-guided and at a gentle pace! If the mythical Tour of Mont Blanc is a little too much for you, we invite you to discover its wonders in small steps. We have selected the most beautiful routes with unique viewpoints, vast panoramic views and also the discovery of the natural and cultural heritage of the region. Hiking at a gentle pace, allowing time to appreciate the deep blue gentian flowers, the purple orchids, the soaring golden eagles and the playful marmots. 7 days Self-guided / without a guide With baggage transport Accommodation : Hotel *** Level : ** From : 895€ You will like ● The exceptional panoramic views of the Mont Blanc range ● An easy and accessible route for all, still with a very alpine character ● Your proximity to major glaciers throughout the week ● The comfortable 3 star hotels Altitude Montblanc - 62 Passage du Nant Devant - 74110 Montriond - +33(0)4 50 79 09 16 - [email protected] Capital 6000€ - IM 074100150 - APE 7912Z SIRET: 48156356700025 - TVA : FR67481563567 Assurance RC MMA SARL SAGA – Caution Groupama 200 000€ The route Day 1 Meeting at your hotel L'Aiguille du Midi in Les Bossons, Chamonix. (train station 200m away) FRANCE: MONT-BLANC FROM THE CHAMONIX SIDE MER DE GLACE Short transfer by bus or train to take the Aiguille du Midi cable car to the mid station Plan de l’Aiguille. Traverse along the balcony trail via the Blaitière pastures to the Forbes Signal (2200m). Descend along the Mer de Glace facing the Aiguille des Drus and the Grandes Jorasses.
    [Show full text]
  • Fluctuations of the Mer De Glace (Mont Blanc Area, France)
    Summary Glacier fluctuations are sensitive indicators of climate variability. Glacier mass balance is a direct function of temperature and precipitation and determines, among other factors, the dynamical be- haviour and fluctuations of a glacier. Glacier length on the other hand is an indirect and delayed signal of climate information, but much easier to determine than mass balance. Glacier length is thus a useful and pragmatic tool for the examination of the glacier – climate relationship. At the end of the 19th century, the first accurate measurements of glacier length fluctuations were carried out. Unfortunately, the preceding time of the Little Ice Age (LIA) is not documented by instrumental data, and interdisciplinary approaches that use both historical and physical methods are needed to reconstruct the behaviour of glaciers back in time. Such an approach has been chosen in this study to investigate the fluctuations of the Mer de Glace. Glacier length curve for the Mer de Glace The Mer de Glace is a valley glacier 12 km long that is situated at the northern exposition of the Mont Blanc (France). Including all tributaries, it covers an area of about 32 km2 and spans an altitudinal range from 1500 to 4000 m asl. It is the longest and largest glacier of the western Alps. During the LIA, the Mer de Glace nearly continuously reached the bottom of the Vallée de Chamonix at 1000 m asl. The attractiveness of the landscape and the easy accessibility soon made the glacier a desirable object of study for scientists, artists and tourists, leading to a large number of historical documentary data.
    [Show full text]