Evolutionary Biology of Parasitic Platyhelminths: the Role of Molecular Phylogenetics D

Total Page:16

File Type:pdf, Size:1020Kb

Evolutionary Biology of Parasitic Platyhelminths: the Role of Molecular Phylogenetics D Revmew Evolutionary Biology of Parasitic Platyhelminths: The Role of Molecular Phylogenetics D. Blair, A. Campos, M.R Cummings and J.R Laclette As our appreciation of the diversity within the flatworms systematic scheme and names of the major groups has grown, so too has our curiosity about the ways in provided in Ehlers 3,4 (Fig. in Box 1). which these varied creatures are related to one another. In Three rnain questions have emerged from the particular, the parasitic groups (trentatodes, cestodes attd literature. (1) Do the major groups of parasitic flat- monogeneans' have been the focus of enquiry. Llntil worms lie. Trernatoda (including Digenea and recently, morphohk~y, anatomy and lift" histories have pro- Aspidobothrea), Monogenea and Cestoda (including vided the raw data for building hypotheses on ivlationships. Gyrocotylidea, Amphilinidea and Eucestoda)l form a Now, ultrastructural evhtence, and most recently, mol- single clade? The name Neodermata was recent!v ecular &Tta front nucleic acid seqttences, have been brought given to this proposed clade ~. (2) How are these para- to beat" on the topic. Here, David Blair, Andrds Campos, sitic groups related to one another? (3) What are the Michael Cummings attd Juan Pedro Laclette discttss the relationships of the major parasitic groups to other ways in which molecular data, in particular, are helping tts flatworm taxa? recognize the various lineages of flatworms. Do the major parasitic groups form an exclusive The phylum Platyhelnlinthes (flatworms) is a large lineage? (>15000 species) and diverse one, and appears to be Members of the rnain parasitic groups differ con- an early diverging lineage within the Metazoa. Flat- siderablv from one another in structure, habits and worms show great diversity in anatomy, habitat, life life cycles. As a result, several proposals to explain history and size, varying from the 20m long euces- their origins assumed that they did not form a mono- tode Diphylh~bothrium latunt, to species barely visible phyletic group. For example, it has been suggested to the naked eye. They also exhibit considerable gen- that trematodes, monogeneans and cestodes all origi- etic diversity among 18S rRNA gene sequences when nated independently from parasitic rhabdocoelan compared to higher taxa of vertebrates~. The phylum ancestors '',7, or that the monogeneans, from which includes free-living, commensal, mutualist and para- de,~cencled tile cestodes, originated from a free-living sitic species, of which many are significant for medi- rhabdocoelan ancestor and had separate origins from cal and economic reasons. All parasitologists k~ow the trematodes". ot tile threat to human health posed by trematodes Ultrastructural studies were the first to plovide such as alembers of the genus St'hislos(una, or cestodes evidence contrary to such ar~pal~nents. All the major sucla as Echino('(~cc'lts granllloslts. Despite its impor- parasitic groups resemble one another in structural tance, many controversies exist concerning the sys- and dew.,Iopmental aspects of epidermal cilia, sensory tematics of the phylum and, in particular, the origin receptors, flame bulbs and sperm. In addition, in and interrelationships of the major parasitic groups. these taxa the epidermis of tile larva is replaced in tile The evolutionary history of flatworms is still uaclear adul[ by a syncitial 'l~eodernlis'J,~,", a feature that led because of the fragmentary information or, their mor- Ehters~ to propose tile name Neoderrnata for the phology, physiology and lift, cycles, and because group. Studies based on molecular data from the these soft-bodied worms have left few fossil remains. nuclear 18S rRNA gene also strongly support a single A robust phylogeny will also provide insights into origin for these major parasitic groups "-t2. the origins of parasitism in the phylum and the shared evolutionary history of parasitic flatworms Relationships among the main groups of Neodermata and their hostsL Two main clades are recognized within the Neo- In this review, we explore recent findings about dermata oil the basis of ultrastructure and aspects phylogenetic relationships in the flatworms, especially of ontogeny. The Trematoda (Aspidobothrea and Di- the parasitic o~rouF-.~s We emphasize conclusions drawn genea) forms one lineage, and the Cercomeromorphae from DNA sequence data (see Boxes 1,2) and focus on (Monogenea and all groups allied with tile Cestoda) a number of questions that have emerged from the the other. The Cercomeromorphae is characterized by literature. For consistency, we will mostly follow the common possession of a cercornere, ie. a posterior attachment structure bearing hooks that is present at some stage in the life cycle. David Blair is at the Department of Zoology, James Cool< Monophyletic Trematoda. On the basis of morpho- University, Townsville, Queensland 481 I, Australia. Andr6s Campos and Juan Pedro Laclette are at the Department of Immunology, logical and life cycle characteristics2.3,13-% the Aspido- Instib Jto de Investigaciones Blot, ~6dicas, Universidad Nacional bothrea (Fig. la) has been proposed as the sister Aut6noma de M6xico, A.P. 70228, M6xico 04510 D.F., M~xico. group of the digeneans. Molecular studies, using 18S Michael Cummings is at the Department of Botany and Plant rR',JA sequences, have also supported this view 9,u. Sciences, Univel~sityof California, Riverside, CA 92521-0124, USA. However, the possibility that Aspidobothrea is the Tel: +61 77 814322, fax: e61 77 251570, sister group to the remaining Neodermata has not e-mail: [email protected] been ruled out 1LI7. {.)I~ "~ 4758/96/$15.00 Parasitology Today, vol. 12, no. 2, 1996 Reviews Digenea. In the Digenea (Fig. lb), Box 1. Gene Regions Used to Infer Relationships most groupings at low levels There are several different classes of genes that can provide data about phyla- (species, genus) are widely accepted. genetic relationships. Nuclear ribosomal RNA genes, which encode structural Unfortunately, there is still consider- RNA of ribosomes, tend to occur in eukaryotes as a series of tandemly able dispute concerning the higher- repeated units, each contaming three coding regions (5.8S, -150bp; 18S, level (family, order) classification. ~2000bp; 28S, ~4500bp) separated by various spacers. The rate of evolution Information gleaned from morphol- differs both among and within these genes and spacers, providing infor- ogy (including ultrastructure) and mation that is useful at a range of divergence levels. The internal transcribed spacers, located between the 18S and 28S genes and separated by the 5.8S from life cycles has been the main- gene, are the least-conserved regions used m studies, to date, on flatworms. stay of digenean systematics 2. In the Mainly for historical reasons, the gene encoding the 18S subunit (the most view of some workers ~(',~s, the conserved of the ribosomal genes), has been widely used to study relation- amount of homoplasy in the exist- ships of Platyhelminthes (see Fig. b,:iow). A short 5S ribosomal RNA gene ing data sets is such as to render occurs elsewhere in the genome. Studies using this gene for phylogenet~c impossible the accurate reconstruc- inference have been reviewed and dismissed 3". tion of the phylogenetic history of One useful feature of ribosomal repeat uI~its is that they t,~nd to be 'hom- the trematodes. Such clairns l~,ave ogenized' within an individual and among individuals within a species or spurred molecular studies on the population; a process called 'concerted evolution'. As a result, intraspecific variation among ribosomal genes is very low compared to interspecific vari- group: currently, more rnolecular ation. A sequence from one individual should therefore be representative of data are available for Digenea than its species and sample sizes need not be large~.4s. for any other flatworm taxon (see Another source of phylogenetic information is the mitochondrial genome. Fig. in Box 1). This clonally inherited circular molecule usually encodes 37 genes, and is typi- The entire 18S rRNA gene cally less than 20000 bp long in animals 4". Mitochondrial genes often accumu- (1970bp) was evaluated as a source late changes at higher rates than the nuclear genome, and therefore data from of phylogenetic information within this genome are expected to be more useful for relatively recent divergences. the Digenea using sequences from Among the genes encoded by the mitochondrial genome are those for ribo- eight taxa m. Very little phylogenetic somal subunits, which are smaller than their nuclear counterparts and are information was found in the con- derived from the eubacterial ancestor of the mitochondrion. Nuclear protein coding genes have rarely been used in systematic studies served regions of the molecule, of Platyhehninthes (see Fig. belo,v). which make up over half of its length. Most information came from ,e- A the variable domains and especially O4 A A ,e- from the V4 domain 2", which com- o o o o o o o ~:. ¢G prises only about 16% of the mol- ¢5 ¢5 ¢5 e~ 6 6 0 ,- ¢5 o~ 6 d ecule. Data from this region provide N ~N ~ N d d g 6 g c~ ¢5 0; ¢5 c~ c~ (5 c~ d ~d g d o c5 c5 N c5 o c:f c:5 c5 o o ,-- strong support for a number of ei ~ e4 ,-: br familial groupings. For example, lepocreadiids and gyliauchenids are "O closely related to the exclusion of the paramphistomes despite the similar anatomy of the last two"L Although the V4 region is likely to be the target of many future O Z ,~ studies, it (and perhaps the 18S gene as a whole) does not seem to be informative about the earliest di- 1/ vergences among the digeneans. Rhabd0c0ela MonOg ~ neas'° a This is unfortunate because there has been lively debate on this topicN,'. ~. Several families have been proposed as the sister group to f the rest of the digeneans (reviewed I in Ref.
Recommended publications
  • Ueber Drei Malayische Trematoden
    Armales de Parasitologie (Paris), t. 43, 1968, n° 1, pp. 33 à 43 Ueber drei malayische Trematoden (Su r t r o is T rém a to d es d e M a l a is ie ) Par Klaus ROHDE, Siew Kein LEE et Heng Wan LIM (Institut für Allgemeine Zoologie Ruhr-Universität, 463 Bochum, Allemagne) Résumé Les Trématodes de Malaisie qui suivent sont décrits : Zonor- chis sp. de Callosciurus notatus et C. caniceps, Coeuritrema macro- testicularis n. sp, de Dogania subplana et Spirhapalum elongatum n. sp. de Cyclemys amboinensis. Summary The following Malayan trematodes are described : Zonorchis sp. from Callosciurus notatus and C. caniceps, Coeuritrema macro- testicularis n. sp. from Dogania subplana, Spirhapalum elongatum n. sp. from Cyclemys amboinensis. Die im folgenden beschriebenen Würmer wurden in den Jahren 1961-1966 aus verschiedenen malayischen Tieren gesammelt, in Bouins Fixierungsflüssigkeit fixiert und mit Alaun-Karmin nach Grenacher gefärbt. Einzelheiten der Geschlechtsorgane wurden aus mit Azan gefärbten Serienschnitten rekonstruiert. Annales de Parasitologie humaine et comparée (Paris), t. 43, 1968, n° 1 3 Article available at http://www.parasite-journal.org or https://doi.org/10.1051/parasite/1968431033 34 K. ROHDE, S. K. LEE ET H. W. LIM ZOMORCHIS sp. Beschreibung. Flach, grösste Breite auf der Höhe der Hoden oder dicht dahinter, nach vorne und hinten zu schmaler werdend. Mundsaugnapf subterminal, Pharynx und Oesophagus vorhanden. Darmblindsäcke nicht ganz bis zum Körperhin- terende, manchmal von verschiedener Länge. Acetabulum im ersten Köperdrittel, sehr gross. Cirrussack zwischen Acetabulum und Pharynx, mit ausstülpbarem Cirrus. Geschlechtsöffnung am Hinterrande des Pharynx oder dicht dahinter. Hoden ganzran- dig, sich unmittelbar hinter dem Acetabulum gegenüber liegend.
    [Show full text]
  • Platyhelminthes) at the Queensland Museum B.M
    VOLUME 53 ME M OIRS OF THE QUEENSLAND MUSEU M BRIS B ANE 30 NOVE mb ER 2007 © Queensland Museum PO Box 3300, South Brisbane 4101, Australia Phone 06 7 3840 7555 Fax 06 7 3846 1226 Email [email protected] Website www.qm.qld.gov.au National Library of Australia card number ISSN 0079-8835 Volume 53 is complete in one part. NOTE Papers published in this volume and in all previous volumes of the Memoirs of the Queensland Museum may be reproduced for scientific research, individual study or other educational purposes. Properly acknowledged quotations may be made but queries regarding the republication of any papers should be addressed to the Editor in Chief. Copies of the journal can be purchased from the Queensland Museum Shop. A Guide to Authors is displayed at the Queensland Museum web site www.qm.qld.gov.au/organisation/publications/memoirs/guidetoauthors.pdf A Queensland Government Project Typeset at the Queensland Museum THE STUDY OF TURBELLARIANS (PLATYHELMINTHES) AT THE QUEENSLAND MUSEUM B.M. ANGUS Angus, B.M. 2007 11 30: The study of turbellarians (Platyhelminthes) at the Queensland Museum. Memoirs of the Queensland Museum 53(1): 157-185. Brisbane. ISSN 0079-8835. Turbellarian research was largely ignored in Australia, apart from some early interest at the turn of the 19th century. The modern study of this mostly free-living branch of the phylum Platyhelminthes was led by Lester R.G. Cannon of the Queensland Museum. A background to the study of turbellarians is given particularly as it relates to the efforts of Cannon on symbiotic fauna, and his encouragement of visiting specialists and students.
    [Show full text]
  • 50Th-Lightweight.Pdf
    Since its formation in 1964, the Australian Society for Co-editors Parasitology (ASP) has become a premier advocate for Peter O’Donoghue, The University of Queensland the discipline of parasitology in Australia, with initiatives Lisa Jones, ASP Network for Parasitology catering for members involved in research, teaching, Melanie Leef, The University of Tasmania private industry and public service. Archivists To celebrate the occasion of the 50th anniversary of Haylee Weaver, University of Sunshine Coast the Society, ASP Council sponsored the production of a Carolyn Behm, Australian National University commemorative book reviewing the past and present accomplishments of the Society. It is timely that a review of the ASP took place as the collective and corporate memory of the Society is waning as the old guard retires and most office-bearers only have brief tenure. This commemorative book provides an overview of the Society, its membership and executive, endeavours and achievements, awards and prizes, and future aspirations. Numerous individuals provided material for the book and we are extremely grateful for their contributions. 1 Published by: Elsevier ©ASP 2014 All rights reserved No part of this publication may be reproduced, stored in retrieval system, or transmitted, in any form or by any means, without prior permission in writing of the ASP. All photographs published have either been taken at ASP events or kindly provided by the owners for use in this book. Every effort has been made to ensure the accuracy of all information included in this book. ASP takes no responsibility or liability for any errors that may occur in this publication.
    [Show full text]
  • Why Are There So Many Species in the Tropics?
    Journal of Biogeography (J. Biogeogr.) (2014) 41, 8–22 SPECIAL Why are there so many species PAPER in the tropics? James H. Brown Department of Biology, University of New ABSTRACT Mexico, Albuquerque, NM 87131, USA Known for centuries, the geographical pattern of increasing biodiversity from the poles to the equator is one of the most pervasive features of life on Earth. A long- standing goal of biogeographers has been to understand the primary factors that generate and maintain high diversity in the tropics. Many ‘historical’ and ‘ecolog- ical’ hypotheses have been proposed and debated, but there is still little consen- sus. Recent discussions have centred around two main phenomena: phylogenetic Correspondence: James H. Brown, Department niche conservatism and ecological productivity. These two factors play important of Biology, University of New Mexico, roles, but accumulating theoretical and empirical studies suggest that the single Albuquerque, NM 87131, USA. most important factor is kinetics: the temperature dependence of ecological and E-mail: [email protected] evolutionary rates. The relatively high temperatures in the tropics generate and This is an open access article under the terms of the Creative Commons Attribution- maintain high diversity because ‘the Red Queen runs faster when she is hot’. NonCommercial License, which permits use, Keywords distribution and reproduction in any medium, – provided the original work is properly cited Ecological interactions, evolutionary rates, Janzen Connell dynamics, latitudi- and is not used for commercial purposes. nal diversity gradient, metabolic theory, Red Queen, species diversity, tropics. There is, however, one natural feature of this country, the inter- INTRODUCTION est and grandeur of which may be fully appreciated in a single walk: it is the ‘virgin forest’.
    [Show full text]
  • Abstracts of Lectures Gfh ÖGH SGMG Tagungsband Abstracts
    patients were significantly different across pop mosomal level, but not generally at both levels. Abstracts of Lectures ulations with frequency maximum of the com In this view, the aneuploid karyotype is the read mon mutations in EastEurope (W151X, V326L), out of an underlying chromosomal instability NorthWestEurope (IVS81G>C), and SouthEu (CIN). In a small proportion of cancers display 1. Symposia rope (T93M). ing CIN the loss of this checkpoint is associated Carrier frequency analysis of the IVS81G>C, with the mutational inactivation of a human ho W151X, T93M, and V326L mutations in 2250 mologue of the yeast BUB1 gene. BUB1 controls S1 healthy individuals from different European pop mitotic checkpoints and chromosome segrega ulations revealed much higher frequencies for tion in yeast. The Human SHOX Mutation Database these common mutations (e.g. 1:50 for the IVS8 Because the MIN and CIN forms of instability are Beate Niesler, Christine Fischer and Gudrun A. 1G>C in Austria, and 1:84 for the W151X in rarely found to coexist in tumours, it would seem Rappold Poland) than expected from the reported preva that one form of instability is sufficient to drive Institute of Human Genetics, University of lence of the SLOS. Based on these frequencies tumorigenesis. Heidelberg, Im Neuenheimer Feld 328, the expected incidence of SLOS patients with Genetic instability appears early in tumorigene 69120 Heidelberg, Germany null mutations ranges from 1:2000 to 1:16.000. sis and is believed to play a critical role in the The human SHOX gene (Short Stature Home This discrepancy might be due to underdiagno malignant process.
    [Show full text]
  • Lecithodendriidae (Trematoda) from Taphozous Melanopogon (Chiroptera) in Perils, Malaysia
    Proc. Helminthol. Soc. Wash. 52(1), 1985, pp. 21-29 Lecithodendriidae (Trematoda) from Taphozous melanopogon (Chiroptera) in Perils, Malaysia JEFFREY M. LoTZ1 AND JAMES R. PALMiERi2'3 1 Department of Life Sciences, Indiana State University, Terre Haute, Indiana 47809 and 2 Hooper Foundation, University of California, San Francisco, California 94143 ABSTRACT: Five species of Lecithodendriidae (Trematoda) were recovered from Taphozous melanopogon (Chi- roptera) in Perlis, Malaysia: Fontius molenkampi, F. klausrohdei, Papillatrium parvouterus, Paralecithodendrium longiforme, and P. ovimagnosum. The genus Fontius is erected for lecithodendriids that possess a bulbous hermaphroditic organ and Paralecithodendrium molenkampi is; designated as the type species. Fontius klaus- rohdei sp. n. can be distinguished from F. molenkampi because F. klausrohdei has the hermaphroditic organ drawn into a permanent nipple-like structure and has a smooth-margined ovary. Paralecithodendrium parvouter- us is transferred to the genus Papillatrium because it has a genital atrium that contains a papilla. Castroia kamariae (type 2) is a junior synonym of P. parvouterus. Castroia kamariae (type 1) and Paralecithodendrium cysticircum are junior synonyms of Paralecithodendrium ovimagnosum. Twenty-five black-bearded tomb bats Tapho- contains seminal vesicle, pars prostatica, and well- zous melanopogon Temmink, 1841, were col- developed prostatic gland. Terminal genitalia lected from a cave 5 km south of the city of consist of a common genital duct surrounded by Kangar, state of Perlis, Malaysia. Five species of a hermaphroditic organ. Ovary submedian in Lecithodendriidae were recovered from their acetabular or testicular zone, lobed or entire. small intestines. Herein we review the taxonomic Laurer's canal arises from seminal receptacle. status of these species and tabulate their host and Vitellaria pretesticular.
    [Show full text]
  • Interrelationships of the Platyhelminthes
    The Systematics Association Special Volume Series 60 Interrelationships of the Platyhelminthes Edited by D. T. J. Littlewood and R. A. Bray Department of Zoology The Natural History Museum London UK London and New York Contents List of contributors vii Preface ix SECTION I Early origins and basal taxa 1 1 The early worm: Origins and relationships of the lower flatworms 3 SETH TYLER 2 Contributions to the phylogeny and systematics of the Acoelomorpha 13 OLGA. I. RAIKOVA, MARIA REUTER AND JEAN-LOU JUSTINE 3 The Nemertodermatida 24 KENNET LUNDIN AND WOLFGANG STERRER 4 Phylogenetic systematics of the Macrostomorpha 28 REINHARD M. RIEGER SECTION II Free-living groups 39 5 The Proseriata 41 MARCO CURINI-GALLETTI 6 Molecular taxonomy and phylogeny of the Tricladida ' 49 JAUME BAGUNA, SALVADOR CARRANZA, JORDI PAPS, INAKI RUIZ-TRILLO AND MARTA RIUTORT 7 Towards a pHylogenetic classification and characterization of dugesiid genera (Platyhelminthes, Tricladida, Dugesiidae): A morphological perspective 57 RONALD SLUYS 8 The Prolecithophora 74 ULF JONDELIUS, MICHAEL NOREN AND JAN HENDELBERG SECTION III Symbionts and parasites 81 9 The Temnocephalida 83 LESTER R. G. CANNON AND BORIS I. JOFFE 10 Phylogenetic relationships of the Monogenoidea 92 WALTER A. BOEGER AND DELANE C. KRITSKY 11 The Gyrocotylidea, Amphilinidea and the early evolution of Cestoda 103 WILLI E. R. XYLANDER 12 Phylogeny among orders of the Eucestoda (Cercomeromorphae): Integrating morphology, molecules and total evidence 112 ERIC P. HOBERG, JEAN MARIAUX AND DANIEL R. BROOKS 13 Cestode systematics in the molecular era 127 JEAN MARIAUX AND PETER D. OLSON 14 Interrelationships among tetraphyllidean and lecanicephalidean cestodes 135 JANINE N.
    [Show full text]
  • 3 Patterns of Diversity and Distribution of Aquatic Invertebrates and Their Parasites
    Comp. by: Amoudha Stage: Proof Chapter No.: 3 Title Name: MorandkranovandLittlewood Date:25/10/14 Time:11:09:36 Page Number: 39 3 Patterns of diversity and distribution of aquatic invertebrates and their parasites Tommy L. F. Leung, Camilo Mora and Klaus Rohde 3.1 Introduction The majority of animals on this planet are invertebrates, and a great number of them are found in aquatic habitats including freshwater, brackish or marine environments. It is likely that they also harbour a significant fraction of all parasite biodiversity. While there have been some sporadic research efforts directed at investigating the parasite fauna of aquatic invertebrates over many decades, what we know about their diversity, ecology and distribution is still relatively limited and based largely on host– parasite systems which are limited both in terms of their taxonomic diversity, habitat and geographic regions (see Kinne, 1980–1985 and Rohde, 2005 for overviews). One reason why less research effort has been directed towards investigating parasites of invertebrates compared with those of mammals, birds or fish is that with the exception of some mollusc and crustacean species, the majority of aquatic invertebrates are of little commercial value and there have been few incentives for researchers to investigate their parasites or other potential disease agents. Another reason why we have only limited knowledge of invertebrate host–parasite systems is our incomplete knowledge of the hosts themselves, many of which remain undescribed. In general our knowledge of vertebrate diversity is far greater than that of invertebrates, and consequently we know more about the parasites of those hosts than of invertebrates (Poulin & Morand, 2004).
    [Show full text]
  • The Balance of Nature and Human Impact Edited by Klaus Rohde Frontmatter More Information
    Cambridge University Press 978-1-107-01961-4 - The Balance of Nature and Human Impact Edited by Klaus Rohde Frontmatter More information The Balance of Nature and Human Impact It is clear that nature is undergoing rapid changes as a result of human activities such as industry, agriculture, travel, fisheries and urbanization. What effects do these activities have? Are they disturbing equilibria in ecological populations and communities, thus upsetting the balance of nature, or are they enhancing naturally occurring disequilibria, perhaps with even worse consequences? It is often argued that large-scale fluctuations in climate and sea levels have occurred over and over again in the geological past, long before human activities could possibly have had any impact, and that human effects are very small compared to those that occur naturally. Should we conclude that human activity cannot significantly affect the environment, or are these naturally occurring fluctuations actually being dangerously enhanced by humans? This book examines these questions, first by providing evidence for equilibrium and nonequilibrium conditions in relatively undisturbed ecosystems, and second by examining human-induced effects. Klaus Rohde is Professor Emeritus at the University of New England, Armidale, Australia. He is well known for his work on the ecology, biogeography and ultrastructure of parasites, particularly marine parasites, and on latitudinal gradients in biodiversity. He has published extensively on parasite ecology, non-equilibrium ecology and marine parasitology.
    [Show full text]
  • List of Endorsees As at 6 July 2012
    List of Endorsees as at 6 July 2012 Eva Abal, Chief Scientific Officer, Great Barrier Reef Foundation, Australia Haziq Harith Abd Hamid, Seremban, Malaysia Greta Aeby, Hawaii Institute of Marine Biology, USA Ahmed Abdoulkarim, Centre National de Documentation et de Recherche Scientifique, Comoros Rahim Abdul, Wwf Pakistan Gwader, Pakistan Kee Alfian Abdul Adzis, Bangi, Malaysia Sabah Abdullah, Milan, Italy Sabrina Abdullah, Kota Kinabalu Sabah, Malaysia Mohamed Abdulrazzak, Colorado State University, USA Avigdor Abelson, Tel Aviv University, Israel David Abrego, Australian Institute of Marine Science, Australia Alberto Acosta, Pontificia Universidad Javeriana, Colombia Thomas Adam, University of California, USA M. shiham Adam, Marine Research Centre, Maldives Pierre-Andre Adam, Island Conservation Society, Seychelles Lisa Adams, Hilo, HI, USA Mehdi Adjeroud, Institute of Development Research, Noumea Jason Adolf, University of Hawaii Hilo, USA John Adornato III, National Parks Conservation Association, USA Toni Adshead, Auckland, New Zealand Sahir Advani, Dakshin Foundation, India Marcelo Aenlle, Buenos Aires, Argentina Siham Afatta, Jakarta, Indonesia Jamie Afflerbach, UCSB Bren School of Environmental Science & Management, USA Davide Agnetta, Palermo, Italy Sylvain Agostini, University of the Ryukyus, Japan Joshua Aguilar, Tacloban City, Philippines Catalina Aguilar Hurtado, James Cook University, Australia Patricia Aguirre, Queretaro, Mexico Said Ahamada, Indian Ocean Commission, Mauritius Mushtaque Ahmed, Sultan Qaboos University, Oman Laura Airoldi, University of Bologna, Italy T. T Ajith Kumar, Annamalai University, India Larissa Akiko, Universidade Federal Fluminense, Brazil Omar Al Riyami, Environment Society of Oman, Oman Moonyeen Nida Alava, Conservation International, Philippines Ali Albalushi, Sultan Qaboos University, Oman Mark Albins, Oregon State University, USA Rebecca Albright, Australian Institute of Marine Science, Australia Pedro M.
    [Show full text]
  • 9781107037656.Pdf
    Parasite Diversity and Diversification Evolutionary Ecology Meets Phylogenetics The development of molecular tools has dramatically increased our knowledge of parasite diversity and the vectors that transmit them. From viruses and protists to arthropods and helminths, each branch of the Tree of Life offers an insight into significant, yet cryptic, biodiversity. Alongside this, the studies of host–parasite inter- actions and parasitism have influenced many scientific disciplines, such as biogeog- raphy and evolutionary ecology, by using comparative methods based on phylogenetic information to unravel shared evolutionary histories. Parasite Diversity and Diversification brings together two active fields of research, phylogenetics and evolutionary ecology, to reveal and explain the patterns of parasite diversity and the diversification of their hosts. This book will encourage students and researchers in the fields of ecology and evolution of parasitism, as well as animal and human health, to integrate phylogenetics into the investigation of parasitism in evolutionary ecology, health ecology, medicine and conservation. Serge Morand is CNRS researcher at the Institute of Evolutionary Sciences at the University of Montpellier II, France. His research focuses on the evolutionary ecology of host–parasite interactions and population ecology of parasites and pathogens. He is conducting several projects on the impacts of global changes on the links between biodiversity and health in Southeast Asia, using rodent-borne diseases as a model. He is the co-author of several articles and books on these fields. Boris R. Krasnov is Professor and Head of the Mitrani Department of Desert Ecology in the Jacob Blaustein Institutes for Desert Research at the Ben-Gurion University of the Negev, Israel.
    [Show full text]
  • A Functional Biology of Parasitism Functional Biology Series Series Editor: Peter Calow, Department of Zoology, University of Sheffield
    A Functional Biology of Parasitism Functional Biology Series Series Editor: Peter Calow, Department of Zoology, University of Sheffield A Functional Biology of Free-living Protozoa * Johanna Laybourn-Parry A Functional Biology of Sticklebacks * R.J. Wootton A Functional Biology of Marine Gastropodst Roger N. Hughes A Functional Biology of Nematodest David A. Wharton A Functional Biology of Crop Plants# Vincent P. Gutschick A Functional Biology of Echinodermst John M. Lawrence A Functional Biology of Clonal Animals Roger N. Hughes A Functional Biology of Sea Anemones J. Malcolm Shick A Functional Biology of Parasitism Gerald W. Esch and Jacqueline C. Fernandez Available in the USA from * University of California Press t The Johns Hopkins University Press # Timber Press A Functional Biology of Parasitism Ecological and evolutionary implications Gerald w. Esch and Jacqueline c. Femandez Department of Biology Wake Porest University Winston-Salem North Carolina, USA IUI11 SPRINGER-SCIENCE+BUSINESS MEDIA, B.V. First edition 1993 © 1993 Gerald W. Esch and Jacqueline C. Femăndez Originally published by Chapman & Hali in 1993 Typeset in M Plantin 10/12 pt by Expo Holdings Sdn Bhd, Malaysia ISBN 978-94-010-5039-5 ISBN 978-94-011-2352-5 (eBook) DOI 10.1007/978-94-011-2352-5 Apart from any fair dealing for the purposes of reseatch or private study, or criticism or review, as permitted under the UK Copyright Designs and Patents Act, 1988, this publication may not be reproduced, stored or transmitted, in any form or by any means, without the prior permission in writing of the publishers, or in the case of reprographic reproduction only in accordance with the terms of the licences issued by the Copyright Iicensing Agency in the VI<, or in accordance with the terms oflicences issued by the appropriate Reproduction Rights Organization outside the UK.
    [Show full text]