Abstracts of Lectures Gfh ÖGH SGMG Tagungsband Abstracts

Total Page:16

File Type:pdf, Size:1020Kb

Abstracts of Lectures Gfh ÖGH SGMG Tagungsband Abstracts patients were significantly different across pop mosomal level, but not generally at both levels. Abstracts of Lectures ulations with frequency maximum of the com In this view, the aneuploid karyotype is the read mon mutations in EastEurope (W151X, V326L), out of an underlying chromosomal instability NorthWestEurope (IVS81G>C), and SouthEu (CIN). In a small proportion of cancers display 1. Symposia rope (T93M). ing CIN the loss of this checkpoint is associated Carrier frequency analysis of the IVS81G>C, with the mutational inactivation of a human ho W151X, T93M, and V326L mutations in 2250 mologue of the yeast BUB1 gene. BUB1 controls S1 healthy individuals from different European pop mitotic checkpoints and chromosome segrega ulations revealed much higher frequencies for tion in yeast. The Human SHOX Mutation Database these common mutations (e.g. 1:50 for the IVS8 Because the MIN and CIN forms of instability are Beate Niesler, Christine Fischer and Gudrun A. 1G>C in Austria, and 1:84 for the W151X in rarely found to coexist in tumours, it would seem Rappold Poland) than expected from the reported preva that one form of instability is sufficient to drive Institute of Human Genetics, University of lence of the SLOS. Based on these frequencies tumorigenesis. Heidelberg, Im Neuenheimer Feld 328, the expected incidence of SLOS patients with Genetic instability appears early in tumorigene 69120 Heidelberg, Germany null mutations ranges from 1:2000 to 1:16.000. sis and is believed to play a critical role in the The human SHOX gene (Short Stature Home This discrepancy might be due to underdiagno malignant process. Cells with CIN are found to obox gene on the XChromosome) has been iso sis of both severe and mild cases, but also to activate or increase the number of copies of lated by positional cloning and resides in the embryonic/fetal loss of homozygotes for fre oncogenes and lose tumorsuppressor genes, pseudoautosomal region 1 of the sex chromo quent null alleles (W151X, IVS81G>C). whereas cells with MIN accomplish the same somes (Rao et al. 1997, Elison et al. 1997). Het Using eight cSNPs in the DHCR7 gene haplo through mutations in repetitive DNA sequences. erozygousous SHOX mutations have been types were constructed for 52 SLOS chromo This relationship is well documented, and the ef shown to cause idiopathic short stature (ISS), somes. All chromosomes carrying the most fects of genetic instability in cancer develop short stature phenotype in Turner Syndrome (TS) common European mutation IVS81G>C shared ment are straightforward in terms of Darwinian (Rao et al. 1997) and LèriWeill Dyschondrosteo the same haplotype suggesting a founder effect. evolution: Genetic instability provides a reper sis (LWD) (Belin et al. 1998, Shears et al. 1998). Mutations T93M and R404C which involve CpG toire of mutants from which the environment se The homozygous loss of SHOX has been corre islands were found on 4 and 3 different haplo lects favorable variants. Abstracts GfH ÖGH SGMG Tagungsband lated with the Langer type of mesomelic dyspla types respectively suggesting that they are re Recent experiments have shown that CIN and sia (Belin et al. 1998). current. The W151X mutation was present on MIN instabilities reflect resistance to different The Human SHOX Database has recently been different related haplotypes and is probably old carcinogens and that genomic instability in can established to provide clinicians and scientists er than the SNPs used for haplotype construc cers may mirror the mutagenic environments in access to a central source of information about tion indicating that it may be the oldest common which they evolve. It is therefore interesting to all known SHOX mutations associated with short SLOS causing mutation in Europeans. The data speculate that both MIN and CIN develop stature phenotypes. So far, the database con suggest an intriguing high frequency and hetero through selection pressures that can readily be tains 29 unique intragenic mutations of the geneity of the ages and origins of common understood in Darwinian terms rather than aris SHOX gene. These mutations were detected in DHCR7 mutations in ing in a random and mysterious manner. a total of 39 patients from different families. Fourteen of these mutations have been found Functional dissection of signal transduction from the SHOX research group at the Institute of pathways in mammalian cells using RNA Human Genetics in Heidelberg, Germany; 25 S2 interference mutations are from data reported in the litera Anja Schramme, Christine Sers, Oleg ture. Not included in this database are complete Tchernitsa, Katrin Barth and Reinhold Schäfer Genetic instability and darwinian selection SHOX gene deletions which represent the ma Laboratory of Molecular Tumour Pathology, in tumours jority of all detectable SHOX mutations ( Rap Charité, Schumannstr. 20/21, D10117 Berlin Alberto Bardelli pold et al., 2002). The RASRAFMEKERK pathway is the major The Johns Hopkins University, The The database is accessible via the web site player in the regulation of oncogenic signalling Oncology Center, VogelsteinKinzler http://www.shox.unihd.de. It contains general in various types of cells. Most cells express dif Laboratory, Room 520, 1650 Orleans, information about the SHOX gene, allows remote ferent isoforms of the effector kinases down Baltimore MD 21231, USA users to search the data and to submit new mu stream of RAS, however, the contribution of in Whether and how human tumours are genetical tations into the database. The gene structure is dividual kinases is poorly understood. To eluci ly unstable has been debated for decades. There incorporated in order to facilitate data submis date the function of kinase isoforms in control is now evidence that most cancers may indeed sion. ling cell growth and transformation, we have in be genetically unstable, and that the instability References troduced siRNAs (small interfering RNA douplex exists at two distinct levels. 1. Belin et al., 1998. Nat Genet 19:679. es) specific for RAS, RAF, MEK and ERKiso In a small subset of tumours, the instability is 2. Ellison et al. 1997. Hum Mol Genet 8:13417. forms into HRAStransformed rat (FE8) and observed at the nucleotide level and results in 3. Rao E, et al.1997. Nat Genet 16:5463. mouse (NIHpEJ) fibroblasts and into human EJ base substitutions, deletions or insertions of a 4. Rappold etal. JCEM 87: 13841388. bladder carcinoma cells harbouring endogenous few nucleotides. This instability is most easily 5. Shears et al. 1998. Nat Genet 19:703. activated HRAS. HRASspecific siRNA strongly observed at short sequences of DNA repeats inhibited growth in all cells and morphological scattered throughout the genome, called mi transformation in FE8 and NIHpEJ cells. crosatellites, thus generating the characteristic KRASspecific siRNA had no effect. Targeting ki FREQUENCIES AND ORIGINS OF COMMON microsatellite instability (MIN) seen in these tu nases downstream of RAS in mouse NIHpEJ by DHCR7 MUTATIONS CAUSING THE SMITH mours. MIN tumours have nucleotide mutation RNA interference revealed a differential contri LEMLIOPITZ SYNDROME rates two to three orders of magnitude higher bution of MEK1 and MEK2 to growth control. Martina WitschBaumgartner, J. Löffler, M. than normal cells or mismatchrepairproficient Whereas the MEK1specific siRNA inhibited cell Gruber, I. Braun G. Utermann cancers of the same cell type. This form of insta growth only weakly (20%), interference with Institute of Medical Biology and Human bility arises from inactivation of DNA mismatch MEK2 expression resulted in 50% growth sup Genetics, Innsbruck, Austria repair (MMR) genes such as MSH2 or MLH1. pression. Interference with either MEK isoform SmithLemliOpitz syndrome (SLOS [MIM Strikingly, unlike the vast majority of solid tu had almost no effect on cell morphology. How 270400]) is an autosomal recessive multiple con mours, MIN cancers have a normal complement ever, the combination of both siRNAs fully re genital anomaly/mental retardation snydrome of chromosomes. These cancers retain a diploid verted the transformed phenotype of the cells caused by mutations in the D7sterol reductase karyotype ¯ one pair of each of the chromo and inhibited cell growth completely. This indi (DHCR7, E.C.1.3.1.21) gene. Based on case fre somes. cates a strong synergism between MEK1 and quency surveys the incidence of the SLOS has In most other cancers, the instability is observed MEK2. In a similar way, full morphological rever been estimated to range from approximately at the chromosome level, resulting in losses and sion was achieved upon cotransfer of ERK1 and 1:20.000 to 60.000 in populations of European gains of whole chromosomes or large portions ERK2specific siRNAs. Cell growth however, was origin. thereof. NonMIN tumours have a wide variation inhibited up to 50% by either combining ERK1 We are analysing the frequencies, origins, and in chromosome number their karyotypes are and ERK2 siRNAs or after transfer of individual ages of DHCR7 mutations in Europe (Italy, aneuploid. Such observations have led to the siRNAs. Knockdown of kinase isoform expres Spain, Poland, Austria, Germany, and Great suggestion that cancers develop instability ei sion was confirmed by Western blot analysis. In Britain). Mutational spectra analysed in 81 SLOS ther at the sequence level (MIN) or at the chro medgen 14 (2002) 1 hibition of ERK1 resulted in increased phospho S4 cation at the right time. Genome Biol 2, RE rylation of ERK2 and vice versa. This suggests a VIEWS1024. crosstalk
Recommended publications
  • DIAGMOL Town, ZIPCODE :…………………………………………………… Director : Prof
    Mr. Mrs. (IN UPPER CASE, please) Name:……………………………………………………. Maiden Name:……………………………………. DMGL / Service de Médecine Génétique Centre d’accueil des prélèvements (CAP) First name :………………………………………………… Bâtiment des Laboratoires (BATLab), local 8D-0-850.1 Date of birth : ............ / ........... / …………… 4 rue Gabrielle-Perret-Gentil, 1211 Genève 14 Legal representative (for minors) : father mother Molecular and Genomic Diagnostics Laboratory Name/first name :…………………………………………… Street/N°:……………………………………………………… http://www.hug-ge.ch/feuilles-de-demande DIAGMOL Town, ZIPCODE :…………………………………………………… Director : Prof. Stylianos ANTONARAKIS Hospitalisation Unit: …………… Physician :…………………… Lab managers: N° EdS : …………………………………………………………… Dr J.-L. BLOUIN, Dr Th. NOUSPIKEL, Dr. M. GUIPPONI Invoice address: Patient Prescriptor Insurance [email protected], [email protected], [email protected] Type of case : Disease AI Accident Pregnancy Lab direct or results: Phone/FAX: +41 (0) 22 37 21 826 / 21 860 N° AVS (Mandatory for AI) : ………………………...................... Sample Entrance Center (CAP) : Phone +41 (0) 22 37 21 800 Insurance : ………………… Insured N° : ……………………… PHYSICIAN PHYSICIAN (NAME/First name - Street/N°- Town, ZIPCODE - Phone/FAX. IN UPPER CASES, PLEASE) COPY TO OTHER PHYSICIAN (NAME/First name - Street/N°- Town, ZIPCODE - Phone/FAX. IN UPPER CASES, PLEASE) « The laboratory is granted permission by the Physician/Patient to transmit copies of the report to other physicians» Opposition of the patient to the registration of this request results in the electronic patient record (DPI) of the HUG If the patient belongs to a family already known to the laboratory, please indicate index case NAME: CLINICAL INFORMATIONS given by the physician: Ethnic origins Father Mother Currently pregnant Date of last menses Number of weeks of amenorrhea SAMPLE(S) Most of our tests work from 4 ml of blood in EDTA (children <2 ans : 1 On every and single NAME First name ml : ok) or from purified DNA (some exceptions apply for some tests) tube.
    [Show full text]
  • Ueber Drei Malayische Trematoden
    Armales de Parasitologie (Paris), t. 43, 1968, n° 1, pp. 33 à 43 Ueber drei malayische Trematoden (Su r t r o is T rém a to d es d e M a l a is ie ) Par Klaus ROHDE, Siew Kein LEE et Heng Wan LIM (Institut für Allgemeine Zoologie Ruhr-Universität, 463 Bochum, Allemagne) Résumé Les Trématodes de Malaisie qui suivent sont décrits : Zonor- chis sp. de Callosciurus notatus et C. caniceps, Coeuritrema macro- testicularis n. sp, de Dogania subplana et Spirhapalum elongatum n. sp. de Cyclemys amboinensis. Summary The following Malayan trematodes are described : Zonorchis sp. from Callosciurus notatus and C. caniceps, Coeuritrema macro- testicularis n. sp. from Dogania subplana, Spirhapalum elongatum n. sp. from Cyclemys amboinensis. Die im folgenden beschriebenen Würmer wurden in den Jahren 1961-1966 aus verschiedenen malayischen Tieren gesammelt, in Bouins Fixierungsflüssigkeit fixiert und mit Alaun-Karmin nach Grenacher gefärbt. Einzelheiten der Geschlechtsorgane wurden aus mit Azan gefärbten Serienschnitten rekonstruiert. Annales de Parasitologie humaine et comparée (Paris), t. 43, 1968, n° 1 3 Article available at http://www.parasite-journal.org or https://doi.org/10.1051/parasite/1968431033 34 K. ROHDE, S. K. LEE ET H. W. LIM ZOMORCHIS sp. Beschreibung. Flach, grösste Breite auf der Höhe der Hoden oder dicht dahinter, nach vorne und hinten zu schmaler werdend. Mundsaugnapf subterminal, Pharynx und Oesophagus vorhanden. Darmblindsäcke nicht ganz bis zum Körperhin- terende, manchmal von verschiedener Länge. Acetabulum im ersten Köperdrittel, sehr gross. Cirrussack zwischen Acetabulum und Pharynx, mit ausstülpbarem Cirrus. Geschlechtsöffnung am Hinterrande des Pharynx oder dicht dahinter. Hoden ganzran- dig, sich unmittelbar hinter dem Acetabulum gegenüber liegend.
    [Show full text]
  • Jeffrey Kleinberger Ph.D. Candidate Molecular Medicine Program, Genome Biology Track Graduate Program in Life Sciences, University of Maryland, Baltimore
    Discovery and Analysis of Patients with Monogenic Diabetes in Multiple Cohorts to Guide Future Diagnosis Item Type dissertation Authors Kleinberger, Jeffrey Publication Date 2017 Abstract Monogenic diabetes is hyperglycemia caused by a variant in a single gene, and it accounts for approximately 1-2% of all diabetes cases. A genetic diagnosis of monogenic diabetes is important because the most common gene etiologies can be effectively ... Keywords MODY; monogenic diabetes; screening; Clinical Trial; Diabetes Mellitus, Type 2; Zebrafish Download date 05/10/2021 09:00:42 Link to Item http://hdl.handle.net/10713/7072 Jeffrey Kleinberger Ph.D. Candidate Molecular Medicine Program, Genome Biology Track Graduate Program in Life Sciences, University of Maryland, Baltimore Contact Information Medical School Teaching Facility 357 685 West Baltimore St. Baltimore, MD 21201 [email protected] Education Juniata College Huntingdon, PA August 2004 – May 2008 Cum Laude distinction (GPA: 3.701) Biochemistry major Coursework included: Organic Chemistry, Bioinorganic Chemistry, Analytical Chemistry, Physical Chemistry, Chemistry Research, Biology, Cell Biology, Genetics, Biostatistics, Molecular Techniques, Physiology, Microbiology, Biochemistry and Molecular Biology (I-III), Calculus (I&II), Physics (I&II), Scientific Glassblowing, College Writing Seminar, Art of Public Speaking, Intro to Psychology, Learning & Conditioning, Mod. Knowledge & The Self, United States to 1877, The American Revolution, Survey of Western Art, Modern Architecture,
    [Show full text]
  • 一般演題(口演)/Oral Sessions
    一般演題(口演)!Oral Sessions ご ! 案 第 60 回大会賞候補セッション(口演) Oral Presentation Award Session 内 日 時:10 月 16 日(金)11:25~12:20 第 2 会場(南館 4 階 錦) 座 長:稲澤 譲治(東京医科歯科大学難治疾患研究所ゲノム応用医学研究部門(分子細胞遺伝)) 田中 敏博(東京医科歯科大学疾患バイオリソースセンター) Date:Oct. 16 (Fri.) 11:25~12:20 Room 2(Nishiki, South Tower 4F) Chairs:Johji Inazawa(Tokyo Medical and Dental University) Toshihiro Tanaka(Tokyo Medical and Dental University) プ ロ BO-1 ゲノムワイド関連解析(GWAS)データを活用した in silico 解析による新規抗パーキンソン病薬 グ の探索 ラ In silico drug discovery for Parkinson’s disease by using genome!wide association study ム (GWAS)data ○上中 健 1(Takeshi Uenaka)、佐竹 渉 1(Wataru Satake)、謝 珮琴 1(Pei"Chieng Cha)、 岡田 随象 2(Yukinori Okada)、戸田 達史 1(Tatsushi Toda) 1 神戸大学大学院医学研究科神経内科!分子脳科学 指 (Division of Neurology, Kobe University Graduate School of Medicine, Kobe, Japan) 定 2 東京医科歯科大学大学院医歯学総合研究科疾患多様性遺伝学分野 演 (Department of Human Genetics and Disease Diversity, Graduate School of Medical and Dental Sciences, 題 Tokyo Medical and Dental University, Tokyo, Japan) 抄 録 BO-2 MIRAGE 症候群:機能亢進型 SAMD9 変異を原因とする新規症候群の発見 MIRAGE syndrome:New genetic syndrome caused by activating SAMD9 mutations ○鳴海 覚志 1(Satoshi Narumi)、天野 直子 1(Naoko Amano)、石井 智弘 1(Tomohiro Ishii)、 一 勝又 規行 2(Noriyuki Katsumata)、福澤 龍二 3(Ryuji Fukuzawa)、芝田 晋介 4(Shinsuke Shibata)、 般 4 5 6 演 岡野 栄之 (Hideyuki Okano)、清水 厚志 (Atsushi Shimizu)、三宅 紀子 (Noriko Miyake)、 題 松本 直通 6(Naomichi Matsumoto)、長谷川 奉延 1(Tomonobu Hasegawa) ( 1 慶應義塾大学医学部小児科 口 (Department of Pediatrics, Keio University School of Medicine, Tokyo, Japan) 演 ) 2 国立成育医療研究センター研究所分子内分泌研究部 抄 (Department of Molecular Endocrinology, National Research
    [Show full text]
  • Platyhelminthes) at the Queensland Museum B.M
    VOLUME 53 ME M OIRS OF THE QUEENSLAND MUSEU M BRIS B ANE 30 NOVE mb ER 2007 © Queensland Museum PO Box 3300, South Brisbane 4101, Australia Phone 06 7 3840 7555 Fax 06 7 3846 1226 Email [email protected] Website www.qm.qld.gov.au National Library of Australia card number ISSN 0079-8835 Volume 53 is complete in one part. NOTE Papers published in this volume and in all previous volumes of the Memoirs of the Queensland Museum may be reproduced for scientific research, individual study or other educational purposes. Properly acknowledged quotations may be made but queries regarding the republication of any papers should be addressed to the Editor in Chief. Copies of the journal can be purchased from the Queensland Museum Shop. A Guide to Authors is displayed at the Queensland Museum web site www.qm.qld.gov.au/organisation/publications/memoirs/guidetoauthors.pdf A Queensland Government Project Typeset at the Queensland Museum THE STUDY OF TURBELLARIANS (PLATYHELMINTHES) AT THE QUEENSLAND MUSEUM B.M. ANGUS Angus, B.M. 2007 11 30: The study of turbellarians (Platyhelminthes) at the Queensland Museum. Memoirs of the Queensland Museum 53(1): 157-185. Brisbane. ISSN 0079-8835. Turbellarian research was largely ignored in Australia, apart from some early interest at the turn of the 19th century. The modern study of this mostly free-living branch of the phylum Platyhelminthes was led by Lester R.G. Cannon of the Queensland Museum. A background to the study of turbellarians is given particularly as it relates to the efforts of Cannon on symbiotic fauna, and his encouragement of visiting specialists and students.
    [Show full text]
  • UNSCEAR 2001 Report to the General Assembly, with Scientific Annex
    HEREDITARY EFFECTS OF RADIATION United Nations Scientific Committee on the Effects of Atomic Radiation UNSCEAR 2001 Report to the General Assembly, with Scientific Annex UNITED NATIONS HEREDITARY EFFECTS OF RADIATION United Nations Scientific Committee on the Effects of Atomic Radiation UNSCEAR 2001 Report to the General Assembly, with Scientific Annex UNITED NATIONS New York, 2001 NOTE The report of the Committee without its scientific annex appears as Official Records of the General Assembly. Fifty-sixth Session, Supplement No. 46 (N56146). The designation employed and the presentation of material in this publication do not imply the expression of any opinion whatsoever on the pad of the Secretariat of the United Nationsconcerning the legal status of any country, temtory, city orarea, or of its authorities, or concerning the delimitation of its frontiers or boundaries. The country names used in this document are, In most cases, those that were in use at the time the data were collected or the text prepared. In othercases, however, the names have been updated, where this was posslble and appropriate, to reflect political changes. UNITED NATIONS PUBLICATION Sales No. E.O1 .IX.2 ISBN 92-1-1 42244-2 Report of the United Nations Scientific Committee on the Effects of Atomic Radiation to the General Assembly 1. During the past few years, the United Nations 4. The Committee wishes to acknowledge the assistance Scientific Committee on the Effects of Atomic Radiation1 of the consultant, K. Sankaranarayanan, in the preparation has undertaken broad reviews of the sources and effects of of the scientific annex and the advice of the international ionizing radiation.
    [Show full text]
  • Uncommon Forms of Diabetes
    Clinical Medicine 2021 Vol 21, No 4: e337–41 CME: DIABETES Uncommon forms of diabetes Authors: Yun-Ni LeeA and Mohammed SB HudaB Diabetes mellitus is a common condition which all clinicians and insulin independence. It is estimated to account for 1%–2% will encounter in their clinical practice. The most common of patients diagnosed with diabetes and, in the UK, the prevalence form is type 2 diabetes followed by type 1 diabetes. However, of MODY is estimated to be at 108 cases per million.3 However, there are many other atypical forms of diabetes which are it may be a significant underestimate and these figures are not important for a clinician to consider as it can impact on the accurate until large population screening studies are performed. ABSTRACT diagnosis and their management. The most common mutations are hepatocyte nuclear factor-1- This article focuses on maturity onset diabetes of the young alpha (HNF1α; 52%), glucokinase (GCK; 32%) and HNF4α (10%), (MODY), latent autoimmune diabetes in adults (LADA), see Table 2.3 ketosis-prone diabetes and other secondary forms of diabetes such as pancreatic cancer and haemochromatosis. We briefly Hepatocyte nuclear factor-1-alpha gene describe the key clinical features of these forms of diabetes and their investigations and treatment. Formerly called MODY3, mutations on the HNF1α gene on chromosome 3 are associated with a progressive defect of insulin secretion.4 Mutations here also result in low renal threshold for 5 Introduction glucose and thus mutation carriers have detectable glycosuria. In the UK, around 90% of people with diabetes have type 2 diabetes (T2D), around 8% have type 1 diabetes (T1D) and around 2% have other forms of diabetes.1 Key points Typically, we see T1D present in a young, lean patient with Suspect other uncommon forms of diabetes if the clinical marked symptoms of polyuria, polydipsia, weight loss and diabetic picture does not fit type 1 or type 2 diabetes.
    [Show full text]
  • Mat Kadi Tora Tutti O Al Ut Hit Hitta Atuh
    MAT KADI TORA TUTTI USO AL20180235194A1 UT HIT HITTA ATUH ( 19) United States (12 ) Patent Application Publication ( 10) Pub . No. : US 2018 /0235194 A1 Fahrenkrug et al. (43 ) Pub . Date : Aug . 23, 2018 ( 54 ) MULTIPLEX GENE EDITING Publication Classification (51 ) Int. Ci. ( 71 ) Applicant: Recombinetics , Inc ., Saint Paul, MN A01K 67/ 027 (2006 . 01 ) (US ) C12N 15 / 90 ( 2006 .01 ) (72 ) Inventors : Scott C . Fahrenkrug, Minneapolis , (52 ) U . S . CI. MN (US ) ; Daniel F . Carlson , CPC .. .. A01K 67 / 0276 (2013 . 01 ) ; C12N 15 / 907 Woodbury , MN (US ) ( 2013 .01 ) ; A01K 67 /0275 ( 2013 .01 ) ; A01K 2267/ 02 (2013 .01 ) ; AOIK 2217 / 15 (2013 .01 ) ; AOIK 2227 / 108 ( 2013 .01 ) ; AOIK 2217 /07 (21 ) Appl. No. : 15 /923 , 951 ( 2013 .01 ) ; A01K 2227/ 101 (2013 .01 ) ; AOIK ( 22 ) Filed : Mar. 16 , 2018 2217 /075 ( 2013 .01 ) (57 ) ABSTRACT Related U . S . Application Data Materials and methods for making multiplex gene edits in (62 ) Division of application No . 14 /698 ,561 , filed on Apr. cells and are presented . Further methods include animals 28 , 2015, now abandoned . and methods of making the same . Methods of making ( 60 ) Provisional application No . 61/ 985, 327, filed on Apr. chimeric animals are presented , as well as chimeric animals . 28 , 2014 . Specification includes a Sequence Listing . Patent Application Publication Aug . 23 , 2018 Sheet 1 of 13 US 2018 / 0235194 A1 GENERATION OF HOMOZYGOUS CATTLE EDITED AT ONE ALLELE USING SINGLE EDITS Edit allele , Raise FO to Mate FO enough times Raise F1s to Mate F1 siblings Clone cell , sexual maturity , to produce enough F1 sexualmaturity , to make Implant, Gestate 2 years generation carrying 2 years homozygous KO , 9 months , birth edited allele to mate 9 months of FO with each other Generation Primary Fibroblasts ? ? ? Time, years FIG .
    [Show full text]
  • Beyond Type 1 and Type 2 Diabetes; Why Correct Diabetes Classification Is Important Gabriel I. Uwaifo, MD Dept of Endocrinology
    Beyond Type 1 and Type 2 Diabetes; Why Correct Diabetes Classification is Important Gabriel I. Uwaifo, MD, FACP, FTOS, FACE. Dept of Endocrinology, Diabetes, Metabolism and Weight Management, Ochsner Medical Center Objectives To highlight various classification methods of diabetes To highlight the importance and consequences of appropriate diabetes classification To provide suggested processes for diabetes classification in primary care settings and indices for specialty referral Presentation outline 1. Case presentations 2. Diabetes classification; past present and future 3. Diabetes classification; why is it important? 4. Suggested schemas for diabetes classification 5. Case presentation conclusions 6. Summary points and conclusions 3 Demonstrative cases Patient DL is a 56 yr old AA gentleman with a BMI of 24 referred for management of his “type 2 diabetes”. He is on basal bolus insulin with current HBA1c of 8.3. His greatest concern is on account of recent onset progressive neurologic symptoms and gaite unsteadiness Patient CY is a 21 yr old Caucasian lady with BMI of 28 and strong family history of diabetes referred for management of her “type 2 diabetes”. She is unsure if she even has diabetes as she indicates most of the SMBGs are under 160 and her current HBA1 is 6.4 on low dose metformin. Patient DR is a 54 yr old Asian lady with BMI of 36 and long standing “type 2 diabetes”. She has been referred because of poor diabetes control on multiple oral antidiabetics and persistent severe hypertriglyceridemia. Questions; Do all
    [Show full text]
  • Endocrine Genetic Test List
    Endocrine Genetic Test List Associated conditions Test No. Test Name Genes Included and phenotypes Bone HPP, X-Linked Hypophosphatemia, X-Linked Hypophosphatemic Rickets, XLH, Hypophosphatemic Rickets, X-Linked Hypophosphatasia and Dominant Hypophosphatemic Rickets (XLHR), ALPL, CLCN5, CYP2R1, CYP27B1, DMP1, ENPP1, FGF23, PHEX, 630292 Hypophosphatemic Rickets X-Linked Rickets (XLR), Vitamin D-Resistant SLC34A3, VDR Panel Rickets, X-Linked Vitamin D-Resistant Rickets (VDRR), Hypophosphatemic Vitamin D-Resistant Rickets (HPDR), Phosphate Diabetes, Familial Hypophosphatemic Rickets BMP1, COL1A1, COL1A2, CREB3L1, CRTAP, FKBP10, IFITM5, LRP5, Osteogenesis Imperfecta 630543 MBTPS2, P3H1, PLOD2, PPIB, SERPINF1, SERPINH1, SP7, SPARC, OI, Juvenile Primary Osteoporosis Genetic Panel TENT5A, TMEM38B, WNT1 Cancer Familial Isolated Hyperparathyroidism, VistaSeq® Endocrine Cancer CDC73, MAX, MEN1, NF1, PRKAR1A, PTEN, RET, SDHB, SDHC, SDHD, 481374 Multiple Endocrine Neoplasia, Paraganglioma, Panel* TMEM127, TP53 and VHL Parathyroid Cancer, Pheochromocytoma Diabetes and Insulin Maturity-Onset Diabetes of the 630568 GCK, HNF1A, HNF1B, HNF4A Young (MODY) 4-gene Panel Maturity-Onset Diabetes of ABCC8, APPL1, BLK, GCK, HNF1A, HNF1B, HNF4A, INS, KCNJ11, 630513 the Young (MODY) Expanded KLF11, NEUROD1, PAX4, PDX1 Genetic Panel Congenital Hyperinsulinism ABCC8, GCK, GLUD1, HADH, HNF1A, HNF4A, KCNJ11, PGM1, PMM2, 630500 Hypoglycemia Genetic Panel SLC16A1, UCP2 Growth and Development Combined Pituitary Hormone GLI1, HESX1, LHX3, LHX4, OTX2, POU1F1, PROKR2, PROP1,
    [Show full text]
  • An Interesting Case of Young Onset Diabetes Mellitus
    International Journal of Research in Medical Sciences Gulati S et al. Int J Res Med Sci. 2017 Sep;5(9):4178-4180 www.msjonline.org pISSN 2320-6071 | eISSN 2320-6012 DOI: http://dx.doi.org/10.18203/2320-6012.ijrms20174007 Case Report An interesting case of young onset diabetes mellitus Shipra Gulati*, Tanvi Batra, Akshay A. Dhamne, Vijayashree S. Gokhale Department of Medicine, Dr. DY Patil Medical College and Hospital, Pimpri, Pune, Maharashtra, India Received: 23 June 2017 Accepted: 22 July 2017 *Correspondence: Dr. Shipra Gulati, E-mail: [email protected] Copyright: © the author(s), publisher and licensee Medip Academy. This is an open-access article distributed under the terms of the Creative Commons Attribution Non-Commercial License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. ABSTRACT A 24 years old female, was admitted with symptoms of urinary tract infection. She was married and had bad obstetric history. She was known diabetic for 16 years of age and was on regular treatment with injection human insulin mixtard since the time of diagnosis, but had no episode of diabetic ketosis/ ketoacidosis. She had a positive family history of diabetes. She was further evaluated and was found to have normal C peptide levels and islet cell antibodies were found to be negative. Hence, the possibility of MODY (monogenic diabetes) was considered. Her genetic testing could not be done due to financial constraints. But a trial of sulfonylureas was given along with reduction in the dose of insulin to which she responded well and is presently well controlled.
    [Show full text]
  • Servicios GENYCA 20171218 ENGLISH
    RARE DISEASES GENYCA_2018 TAT* CODE TEST OMIM ANALYSIS OF: GENES SAMPLE SPECIALITY (turnaraound time) 5 ml blood EDTA/Saliva SRD5A1-S Steroid 5-alpha-reductase *184753 cds SRD5A1 1 month Oncologic on swab 5 ml blood EDTA/Saliva ABL1-S ABL1, Gene *189980 cds ABL1 3 months Oncologic on swab 5 ml blood EDTA/Saliva GCDH-S Glutaric Acidemia Type I 231670 cds GCDH 4 weeks Metabolic on swab ACAT1, BCKDHA, BCKDHB, DBT, 251000, 251100, 251110, GCDH, HMGCL, IVD, MMAA, ACID-N Isolated Methylmalonic Acidemia 251120, 277410, 607481, cds 5 ml blood EDTA 3 months Metabolic MMAB, MMACHC, MCCC1, 607568, 608419, 609058 MCCC2, MUT, PCCA, PCCB 5 ml blood EDTA/Saliva SLC4A1-S Renal Tubular Distal Acidosis 611590 cds SLC4A1 6 weeks Hematologic on swab 5 ml blood EDTA/Saliva AUH-S 3-methylglutaconic aciduria, type I 250950 cds AUH 2 months Metabolic on swab 5 ml blood EDTA/Saliva IDH2-S D-2-hydroxyglutaric aciduria 2 613657 cds IDH2 6 weeks Multisystemic on swab ACYL-COA Dehydrogenase Medium-Chain, c.985A>G 5 ml blood EDTA/Saliva ACADM-V 201450 ACADM 1 month Metabolic Deficiency of (p.Lys304Glu) on swab ACYL-COA Dehydrogenase Medium-Chain, ACADM-S 201450 cds ACADM 5 ml blood EDTA 2 months Metabolic Deficiency of 5 ml blood EDTA/Saliva FGFR3-V Achondroplasia 100800 p.G380R, p.G375C FGFR3 2 weeks Musculoskeletal on swab 5 ml blood EDTA/Saliva ITGB2-S Leukocyte adhesion deficiency (LAD) 116920 cds ITGB2 2 months Hematologic on swab 5 ml blood EDTA/Saliva ADIPOQ-V Adiponectin (Hipoadiponectinemia) 612556 c.276G>T ADIPOQ 1 week Metabolic on swab ABCD1-D Adrenoleukodystrophy
    [Show full text]